## **Supplementary Information**

Number of pages: 11 Number of figures: 6 Number of tables: 3

## Thermal stability of particle-phase monoethanolamine salts

Xiaolong Fan,<sup>1,2</sup> Joseph Dawson,<sup>3,†</sup> Mindong Chen,<sup>1</sup> Chong Qiu,<sup>4\*</sup> and Alexei Khalizov,<sup>2,5\*</sup>

<sup>1</sup> School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China

<sup>2</sup> Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark 07102

<sup>3</sup> Department of Chemistry and Industrial Hygiene, University of North Alabama, Florence, AL 35632

<sup>4</sup> Department of Chemistry and Chemical Engineering, University of New Haven, New Haven, Connecticut, 06516

<sup>5</sup> Department of Chemical, Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark 07102;

<sup>†</sup>Current Address: Department of Chemistry, Pennsylvania State University, University Park, PA 16802

\* Corresponding authors: khalizov@njit.edu and CQiu@newhaven.edu

## EXPERIMENTAL

*Synthesis of the mono-ethanolamine (MEA) salts*. The salts were synthesized by neutralization reactions between MEA and a series of mono-, di- and triprotic acids, including acetic, benzoic, oxalic, succinic, adipic, glutaric, sulfuric, and citric acids. For instance, to prepare MEA oxalate, 12 mL of 0.75 M oxalic acid in ethanol was slowly added to 24 mL of 0.75 M ethanolamine in ethanol to allow complete neutralization, yielding 2-hydroxyethanammonium oxalate. The product was then isolated by rotary evaporation at approximately 40 °C until all ethanol was removed. <sup>1</sup>H and <sup>13</sup>C NMR spectra were obtained (in D<sub>2</sub>O) using a Varian 300 MHz NMR spectrometer to confirm that the purity of the product was >98% and no free-form amine or ethanol was left in the final product. All precursor chemicals were ACS grade, obtained from Sigma Aldrich or Fisher Scientific, and used without further purification.

|               | Model I, fu                           | ll length                                           | Model                                 | [, 1/e                                              | Model II                              |                                             |  |  |
|---------------|---------------------------------------|-----------------------------------------------------|---------------------------------------|-----------------------------------------------------|---------------------------------------|---------------------------------------------|--|--|
| Name          | <i>P<sub>sat</sub></i> (298 K),<br>Pa | Δ <i>H</i> <sub>vap</sub> ,<br>kJ mol <sup>-1</sup> | <i>P<sub>sat</sub></i> (298 K),<br>Pa | Δ <i>H</i> <sub>vap</sub> ,<br>kJ mol <sup>-1</sup> | <i>P<sub>sat</sub></i> (298 K),<br>Pa | ΔH <sub>vap</sub> ,<br>kJ mol <sup>-1</sup> |  |  |
| Succinic acid | 1.1 ×10 <sup>-4</sup>                 | 81.3                                                | 2.1 ×10 <sup>-4</sup>                 | 82.2                                                | $2.4 \times 10^{-5}$                  | 87.7                                        |  |  |
| Adipic acid   | 3.1 ×10 <sup>-5</sup>                 | 91.5                                                | 6.4 ×10 <sup>-5</sup>                 | 91.7                                                | $8.2 \times 10^{-6}$                  | 95.9                                        |  |  |

**Table S1.** Determination of the saturation vapor pressure and enthalpy of vaporization for known substances (accommodation coefficient  $\alpha$  was set to 1.0 in all cases)

| Chem  | ical   | al Change in the Particle Size (Gfd) |       |       |       |       |       |       |       |       |       |       |       |       |       |
|-------|--------|--------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| EaAc  | T, K   | 295                                  | 329   | 337   | 346   | 358   | 363   | 368   | 373   | 383   | 403   | 414   | 433   | 453   | 473   |
|       |        | Gfd                                  | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   |
|       | 75 nm  | 0.991                                | 0.920 | 0.903 | 0.877 | 0.833 | 0.813 | 0.775 | 0.756 | 0.741 | 0.708 | 0.683 | 0.640 | 0.597 | 0.555 |
|       | 100 nm | 0.993                                | 0.923 | 0.906 | 0.882 | 0.841 | 0.826 | 0.789 | 0.766 | 0.742 | 0.711 | 0.688 | 0.643 | 0.601 | 0.557 |
|       | 150 nm | 0.993                                | 0.927 | 0.906 | 0.885 | 0.848 | 0.835 | 0.800 | 0.782 | 0.746 | 0.713 | 0.693 | 0.646 | 0.602 | 0.558 |
| EaBz  | Τ, Κ   | 296                                  | 313   | 328   | 343   | 358   | 375   | 409   | 430   | 431   | 444   | 458   | 468   |       |       |
|       |        | Gfd                                  | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   |       |       |
|       | 75 nm  | 0.964                                | 0.942 | 0.937 | 0.893 | 0.883 | 0.837 | 0.823 | 0.777 | 0.683 | 0.609 | 0.586 | 0.570 |       |       |
|       | 100 nm | 0.978                                | 0.949 | 0.948 | 0.901 | 0.889 | 0.844 | 0.825 | 0.786 | 0.699 | 0.636 | 0.603 | 0.579 |       |       |
|       | 150 nm | 0.989                                | 0.960 | 0.955 | 0.912 | 0.897 | 0.845 | 0.823 | 0.789 | 0.702 | 0.651 | 0.615 | 0.583 |       |       |
| EaHOx | Τ, Κ   | 296                                  | 313   | 323   | 333   | 338   | 343   | 348   | 353   | 358   |       |       |       |       |       |
|       |        | Gfd                                  | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   |       |       |       |       |       |
|       | 75 nm  | 1.000                                | 0.987 | 0.956 | 0.854 | 0.797 | 0.734 | 0.516 | 0.294 |       |       |       |       |       |       |
|       | 100 nm | 1.000                                | 0.992 | 0.971 | 0.908 | 0.871 | 0.831 | 0.665 | 0.541 |       |       |       |       |       |       |
|       | 150 nm | 1.000                                | 0.996 | 0.985 | 0.950 | 0.920 | 0.901 | 0.813 | 0.718 | 0.545 |       |       |       |       |       |
| Ea2Ox | Т, К   | 296                                  | 313   | 333   | 338   | 343   | 348   | 353   | 358   | 363   | 368   |       |       |       |       |
|       |        | Gfd                                  | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   |       |       |       |       |
|       | 75 nm  | 1.000                                | 0.998 | 0.961 | 0.953 | 0.923 | 0.871 | 0.805 | 0.667 | 0.465 |       |       |       |       |       |
|       | 100 nm | 1.000                                | 0.997 | 0.973 | 0.966 | 0.946 | 0.906 | 0.881 | 0.758 | 0.629 | 0.321 |       |       |       |       |
|       | 150 nm | 1.000                                | 0.995 | 0.985 | 0.978 | 0.966 | 0.942 | 0.926 | 0.845 | 0.772 | 0.612 |       |       |       |       |
| Ea2Su | Τ, Κ   | 295                                  | 303   | 309   | 314   | 318   | 323   |       |       |       |       |       |       |       |       |
|       |        | Gfd                                  | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   |       |       |       |       |       |       |       |       |
|       | 75 nm  | 0.926                                | 0.855 | 0.815 | 0.711 | 0.603 |       |       |       |       |       |       |       |       |       |
|       | 100 nm | 0.950                                | 0.899 | 0.870 | 0.795 | 0.759 | 0.529 |       |       |       |       |       |       |       |       |
|       | 150 nm | 0.970                                | 0.939 | 0.921 | 0.878 | 0.856 | 0.715 |       |       |       |       |       |       |       |       |
| Ea2Gl | Τ, Κ   | 295                                  | 303   | 308   | 313   | 318   | 323   | 325   |       |       |       |       |       |       |       |
|       |        | Gfd                                  | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   |       |       |       |       |       |       |       |       |
|       | 75 nm  | 0.905                                | 0.847 | 0.811 | 0.670 | 0.396 |       |       |       |       |       |       |       |       |       |
|       | 100 nm | 0.935                                | 0.898 | 0.860 | 0.780 | 0.610 | 0.418 |       |       |       |       |       |       |       |       |
|       | 150 nm | 0.960                                | 0.938 | 0.912 | 0.867 | 0.781 | 0.695 | 0.595 |       |       |       |       |       |       |       |
| Ea2Ad | Τ, Κ   | 297                                  | 303   | 308   | 313   | 318   | 323   | 325   |       |       |       |       |       |       |       |
|       |        | Gfd                                  | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   | Gfd   |       |       |       |       |       |       |       |
|       | 75 nm  | 0.953                                | 0.907 | 0.830 | 0.713 | 0.495 |       |       |       |       |       |       |       |       |       |
|       | 100 nm | 0.968                                | 0.938 | 0.891 | 0.797 | 0.669 | 0.401 | 0.258 |       |       |       |       |       |       |       |
|       | 150 nm | 0.978                                | 0.960 | 0.932 | 0.876 | 0.806 | 0.699 | 0.646 |       |       |       |       |       |       |       |

Table S2. The change in the particle size (*Gfd*) determined using TD-TDMA for all the MEA salts (See Table 1 for the definitions of the abbreviations).

| Chemical Change in the Particle Size (Gfd) |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|--------------------------------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| EaH2Ct                                     | ТК     | 296   | 353   | 368   | 378   | 383   | 388   | 393   | 395   | 398   | 403   |       |       |       |       |       |       |
| Eurizet                                    | 1, 11  | Gfd   |       |       |       |       |       |       |
|                                            | 75 nm  | 1 000 | 0.951 | 0.929 | 0.903 | 0.856 | 0 788 | 0.690 | 0.614 | 0 587 | 0.285 |       |       |       |       |       |       |
|                                            | 100 nm | 1.000 | 0.951 | 0.929 | 0.905 | 0.050 | 0.854 | 0.090 | 0.730 | 0.702 | 0.528 |       |       |       |       |       |       |
|                                            | 150    | 1.000 | 0.955 | 0.938 | 0.920 | 0.033 | 0.854 | 0.795 | 0.739 | 0.702 | 0.526 |       |       |       |       |       |       |
|                                            | 150 nm | 1.000 | 0.960 | 0.947 | 0.932 | 0.912 | 0.896 | 0.861 | 0.832 | 0.804 | 0.711 |       |       |       |       |       |       |
| Ea2HCt                                     | Т, К   | 296   | 313   | 328   | 343   | 368   | 373   | 378   | 383   | 385   | 388   | 393   | 398   | 403   |       |       |       |
|                                            |        | Gfd   |       |       |       |
|                                            | 75 nm  | 0.979 | 0.962 | 0.942 | 0.927 | 0.885 | 0.864 | 0.825 | 0.801 | 0.779 | 0.761 | 0.692 | 0.535 | 0.395 |       |       |       |
|                                            | 100 nm | 0.980 | 0.964 | 0.943 | 0.927 | 0.891 | 0.877 | 0.854 | 0.832 | 0.817 | 0.810 | 0.742 | 0.676 | 0.464 |       |       |       |
|                                            | 150 nm | 0.982 | 0.967 | 0.944 | 0.927 | 0.893 | 0.884 | 0.872 | 0.858 | 0.845 | 0.840 | 0.781 | 0.752 | 0.623 |       |       |       |
| Ea3Ct                                      | Т, К   | 296   | 313   | 338   | 358   | 373   | 383   | 390   | 398   | 406   | 413   |       |       |       |       |       |       |
|                                            |        | Gfd   |       |       |       |       |       |       |
|                                            | 75 nm  | 0.980 | 0.963 | 0.928 | 0.908 | 0.893 | 0.819 | 0.737 | 0.508 | 0.308 |       |       |       |       |       |       |       |
|                                            | 100 nm | 0.979 | 0.963 | 0.929 | 0.909 | 0.892 | 0.847 | 0.756 | 0.573 | 0.354 |       |       |       |       |       |       |       |
|                                            | 150 nm | 0.978 | 0.962 | 0.928 | 0.905 | 0.888 | 0.866 | 0.788 | 0.731 | 0.530 | 0.362 |       |       |       |       |       |       |
| Ea2SO4                                     | Т, К   | 296   | 308   | 329   | 349   | 359   | 378   | 396   | 416   | 431   | 435   | 439   | 443   | 448   | 453   | 458   | 463   |
|                                            |        | Gfd   |
|                                            | 75 nm  | 0.984 | 0.982 | 0.969 | 0.943 | 0.928 | 0.921 | 0.911 | 0.892 | 0.861 | 0.830 | 0.799 | 0.751 | 0.687 | 0.638 | 0.610 | 0.596 |
|                                            | 100 nm | 0.988 | 0.985 | 0.974 | 0.950 | 0.936 | 0.927 | 0.916 | 0.903 | 0.877 | 0.850 | 0.831 | 0.790 | 0.751 | 0.695 | 0.660 | 0.642 |
|                                            | 150 nm | 0.992 | 0.990 | 0.979 | 0.958 | 0.945 | 0.935 | 0.922 | 0.909 | 0.892 | 0.870 | 0.853 | 0.828 | 0.804 | 0.753 | 0.718 | 0.698 |

Table S3. Continued (See Table 1 for the definitions of the abbreviations).



**Figure S1.** Schematic of the TDMA aerosol system for measurements of aerosol evaporation rates.



**Figure S2.** Derivation of the saturation vapor pressure and surface tension from evaporation rate experiments performed on aerosol of different initial particle sizes at a single temperature.



**Figure S3.** Profiles of the gas temperature and normalized saturation vapor pressure of salt along the length of the thermal denuder



**Figure S4.** The measured volume fraction remaining for the size-classified aerosol composed of ethanolammonium acetate (EaAc), hydrogen oxalate (EaHOx), oxalate (Ea<sub>2</sub>Ox), succinate (Ea<sub>2</sub>Su), glutarate (EaGl), adipate (Ea<sub>2</sub>Ad), dihydrogen citrate (EaH<sub>2</sub>Ct), hydrogen citrate (Ea<sub>2</sub>HCt), citrate (Ea<sub>3</sub>Ct), sulfate (Ea<sub>2</sub>SO<sub>4</sub>), and benzoate (EaBz). Black squares, red circles, blue triangles, and purple diamonds correspond to particles with initial mobility diameters of 75, 100, and 150 nm, respectively.



Figure S5. Gfd and VFR of the size-classified succinic and adipic acid aerosols



**Figure S6.** Temperature dependence of the saturation vapor pressure of the size-classified succinic and adipic acid aerosols.