Supporting Information for:

# Thiocarbamate-Directed Tandem Olefination - Intramolecular Sulfuration of Two ortho C_H Bonds: Application to Synthesis of a COX-2 Inhibitor 

Wendong Li, ${ }^{\dagger}$ Yingwei Zhao, ${ }^{\dagger}$ Shaoyu Mai, and Qiuling Song*<br>Institute of Next Generation Matter Transformation, College of Chemical Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen 361021, P. R. China.<br>Email: qsong@hqu.edu.cn

## CONTENTS

1. General information
2. Optimization of the reaction conditions (Table S1-S5)
3. General procedures for the dual $\mathrm{C}-\mathrm{H}$ Bond Activation and product characterization
4. Control experiments and product characterization
5. Synthetic application and product characterization
6. Copies for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum
7. X-Ray crystallographic data for compound 3qa

## 1. General information

Starting materials were purchased from Adamas Reagent, Energy chemical company, J\&K Scientific Ltd, Bide Pharmatech Ltd or Tansoole. Unless stated otherwise, reactions were performed in oven-dried or flame-dried glassware using a seal tube under air atmosphere. Flash column chromatography was performed over silica gel (200-300 mesh).
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra were recorded in $\mathrm{CDCl}_{3}$ on a Bruker Avance $500 \mathrm{MHz} /$ Avance III spectrometer $\left(500 \mathrm{MHz}{ }^{1} \mathrm{H}, 125 \mathrm{MHz}^{13} \mathrm{C}\right)$ at room temperature. Chemical shifts were reported in ppm on the scale relative to $\mathrm{CDCl}_{3}$ ( $\delta=7.26$ for ${ }^{1} \mathrm{H}$-NMR, $\delta=77.00$ for ${ }^{13} \mathrm{C}$-NMR) as an internal reference. Coupling constants ( $J$ ) were reported in Hertz (Hz).The following abbreviations are used to indicate signal multiplicity: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, and $\mathrm{br}=$ broad. High resolution mass spectra were recorded using a Thermo Fisher Scientific LTQ FT Ultra or Waters Micromass GCT Premier instrument.

## 2. Optimization of the reaction conditions (Table S1-S5)

Table S1. Temperature and atmosphere

|  <br> 1a |  <br> 2a (5 equiv) | $\xrightarrow[\substack{\mathrm{AcOH}: \mathrm{HFIP}=1: 1 \\ T, 12 \mathrm{~h}, \text { air }}]{\substack{\mathrm{Pd}(\mathrm{OAC})_{2}(10 \mathrm{~mol} \%) \\ \mathrm{BQ}(2 \text { equiv })}}$ |  |
| :---: | :---: | :---: | :---: |
| entry | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ |  | yield (\%) ${ }^{\text {a }}$ |
| 1 | 60 |  | 0 |
| 2 | 70 |  | 45 |
| 3 | 80 |  | 62 |
| 4 | 90 |  | 54 |
| 5 | 100 |  | 39 |
| 6 | 90 |  | $59^{\text {b }}$ |
| 7 | 90 |  | $61^{\text {c }}$ |

Conditions : ${ }^{\mathbf{a}} 0.2 \mathrm{mmol}$ of $\mathbf{1 a}, 1 \mathrm{mmol}$ of $\mathbf{2 a}, 0.02 \mathrm{~mol}$ of Pd catalyst, 0.4 mmol of $B Q, 1 \mathrm{ml}$ of solvent (the volume ratio of two components is $1: 1$ ), reaction under air atmosphere for 12 h ; ${ }^{\mathrm{b}} \mathrm{N}_{2}$ instead of air; ${ }^{\mathrm{C}} \mathrm{O}_{2}$ instead of air.

Table S2. Catalyst

|  <br> 1a |  <br> 2a (5 equiv) | $\xrightarrow[\substack{\text { AcOH:HFIP }=1: 1 \\ 80^{\circ} \mathrm{C}, 12 \mathrm{~h}, \text { air }}]{\substack{\text { catalyst (10 mol\%) } \\ \text { BQ (2 equiv) }}}$ |  |
| :---: | :---: | :---: | :---: |
| entry |  | catalyst | yield (\%) ${ }^{\text {a }}$ |
| 1 |  | $\mathrm{Cu}(\mathrm{OAc})_{2}$ | 0 |
| 2 |  | [ $\left.\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ | 0 |
| 3 |  | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | 62 |
| 4 |  | $\mathrm{Pd}(\mathrm{OAc})_{2}$ | $36^{\text {b }}$ |
| 5 |  | $\mathrm{Pd}(\mathrm{TFA})_{2}$ | 40 |
| 6 |  | $\mathrm{PdCl}_{2}$ | 0 |
| 7 |  | $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ | 55 |
| 8 |  | $\mathrm{Pd}_{2}(\mathrm{dba})_{2}$ | 50 |

Conditions: ${ }^{\text {a }} 0.2 \mathrm{mmol}$ of $\mathbf{1 a}, 1 \mathrm{mmol}$ of $\mathbf{2 a}, 0.02 \mathrm{mmol}$ of catalyst, 0.4 mmol of $\mathrm{BQ}, 1 \mathrm{ml}$ of solvent (the volume ratio of two components is $1: 1$ ), $80^{\circ} \mathrm{C}$, reaction under air atmosphere for $12 \mathrm{~h} ;{ }^{\mathrm{b}} 0.01 \mathrm{mmol}$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$.

Table S3. Solvent

|  <br> 12 |  |  |  |
| :---: | :---: | :---: | :---: |
| entry |  | solvent | yield (\%) ${ }^{\text {a }}$ |
| 1 |  | AcOH:HFIP=1:1 | 62 |
| 2 |  | AcOH | 0 |
| 3 |  | HFIP | 0 |
| 4 |  | AcOH:DMF=1:1 | trace |
| 5 |  | AcOH :Toluene=1:1 | 25 |
| 6 |  | AcOH:TFE=1:1 | 55 |

Conditions : ${ }^{\mathbf{a}} 0.2 \mathrm{mmol}$ of $\mathbf{1 a}, 1 \mathrm{mmol}$ of $\mathbf{2 a}, 0.02 \mathrm{mmol}$ of catalyst, 0.4 mmol of $B Q, 1 \mathrm{ml}$ of solvent (the volume ratio of two components is $1: 1$ ), $80^{\circ} \mathrm{C}$, reaction under air atmosphere for 12 h .

## Table S4. Amount of Olefin

|  <br> 1a |  <br> 2a (x equiv) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| entry |  | x |  | yield (\%) |
| 1 |  | 1.5 |  | 26 |
| 2 |  | 2 |  | 30 |
| 3 |  | 3 |  | 41 |
| 4 |  | 4 |  | 52 |
| 5 |  | 5 |  | 62 |
| 6 |  | 6 |  | 60 |

Condations : ${ }^{\text {a }} 0.2 \mathrm{mmol}$ of $1 \mathrm{a}, 0.02 \mathrm{mmol}$ of catalyst, $0.4 \mathrm{mmol} \mathrm{BQ}, 1 \mathrm{ml}$ of solvent (the volume ratio of two components is $1: 1$ ), $80^{\circ} \mathrm{C}$, reaction under air atmosphere 12 h .

Table S4. Amount of BQ

|  <br> 1a |  <br> 2a (5 equiv) |  | $\xrightarrow[\substack{\text { AcOH:HFIP }=1: 1 \\ 80^{\circ} \mathrm{C}, 12 \mathrm{~h}, \text { air }}]{\substack{\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%) \\ \mathrm{BQ}(\mathrm{x} \text { equiv })}}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| entry |  | x |  | yield (\%) ${ }^{\text {a }}$ |
| 1 |  | 1 |  | 25 |
| 2 |  | 1.5 |  | 40 |
| 3 |  | 2 |  | 62 |
| 4 |  | 2.5 |  | 58 |
| 5 |  | 3 |  | 53 |

Conditions : ${ }^{\text {a }} 0.2 \mathrm{mmol}$ of $\mathbf{1 a}, 1 \mathrm{mmol}$ of $\mathbf{2 a}, 0.02 \mathrm{mmol}$ of catalyst, 1 ml of solvent (the volume ratio of two components is $1: 1$ ), $80^{\circ} \mathrm{C}$, reaction under air atmosphere 12 h .

## 3. General procedures for the dual $\mathbf{C}-\mathrm{H}$ Bond Activation and

 product characterization

To a cooled solution of phenol ( $0.1 \mathrm{~mol}, 9.4 \mathrm{~g}$ ) dissolved in of dimethylformamide $(100 \mathrm{ml})$ was added, in small portions, sodium hydride $(0.12 \mathrm{~mol}, 4.8 \mathrm{~g}, 60 \%$ in mineral oil). After hydrogen evolution ceased the solution was cooled to $10^{\circ} \mathrm{C}$ in an ice bath and dimethylthiocarbamoyl chloride ( $0.12 \mathrm{~mol}, 14.9 \mathrm{~g}$ ) added all at once. The temperature rose rapidly to $25^{\circ} \mathrm{C}$ and then slowly to $40^{\circ} \mathrm{C}$. The cooling bath was removed and the mixture heated during 1 h to $80^{\circ} \mathrm{C}$. After cooling, the mixture was poured into 200 mL of potassium hydroxide (1\%). The resulting solution was saturated with sodium chloride and then extracted with ethyl acetate. Organic extracts were washed with 100 mL of water and then 100 mL of saturated sodium chloride, filtered through anhydrous sodium sulfate, and concentrated to dark oil. Chromatography on silica gel with ethyl acetate/petroleum ether (1:20) yielded 16.2 g $(90 \%)$ product as colorless oil. Recrystallization under $-20{ }^{\circ} \mathrm{C}$ in ethyl acetate/petroleum ether afforded pure O-phenyl dimethylcarbamothioate (1a) as a colorless crystal.

All the aryl thiocarbamates ( $\mathbf{1 a - 1 q}$ ) were synthesized according to reported methods. (See: Zhao, Y.; Xie, Y.; Xia, C.; Huang, H., Adv. Synth. Catal. 2014, 356, 2471; Zhao, Y.; Han, F.; Yang, L.; Xia, C., Org. Lett. 2015, 17, 1477; Mai, S.; Song, Q., Angew. Chem. Int. Ed. 2017, 56, 7952.)


## General procedure

To a 25 mL dry reaction tube added 0.2 mmol of aryl thicarbamate $\mathbf{1}, 1.0 \mathrm{mmol}$ of olefin 2, 0.02 mmol of $\mathrm{Pd}(\mathrm{OAc})_{2}, 0.4 \mathrm{mmol}$ of benzoquinone ( BQ ), 0.5 mL of acetic acid, and 0.5 mL of HFIP. The reaction tube was then sealed and the mixture was allowed to react at $80^{\circ} \mathrm{C}$ for 12 h . After cooled to room temperature, solvents of the obtained solution was evaporated under reduced pressure and the residue was purified by chromatography on silica gel with ethyl acetate / petroleum ether (1:50) to give corresponding product 3 .

## The NMR and HRMS data on the products:

Butyl (E)-3-(2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3aa): This product was
 obtained from the reaction of $\mathbf{1 a}$ with $\mathbf{2 a}$ as a colorless oil ( 34.5 mg , yield $62 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta 7.74(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, \mathrm{J}=7.9,0.8 \mathrm{~Hz}$, 1 H ), 7.41 ( $\mathrm{dd}, \mathrm{J}=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.27 (dd, J = 9.7, 6.0 $\mathrm{Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 1.72-166(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.96$ (t, $\mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.126 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 168.0$, 166.6, 146.1, 137.0, 127., 125.3, 124.0, 123.4, 122.8, 120.1, 64.8, 30.7, 19.2, 13.8; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 301.0510, found 301.0507.

Butyl (E)-3-(5-methyl-2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3ba): This
 product was obtained from the reaction of $\mathbf{1 b}$ with $\mathbf{2 a}$ as a white solid ( 32 mg , yield $55 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}$, $1 \mathrm{H}), 6.69$ (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, 2.39 ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.73-1.67 (m, 2H), 1.48-1.40 (m, 2H), 0.97 $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.3$, 166.7, 144.2, 137.2, 135.3, 128.1, 123.8, 123.7, 122.6, 119.7, 64.7, 30.7, 21.1, 19.2, 13.8; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 315.0667$, found 315.0662.
Butyl (E)-3-(5-(tert-butyl)-2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3ca): This
 product was obtained from the reaction of $\mathbf{1 c}$ with $\mathbf{2 a}$ as a white solid ( 43 mg , yield $64 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.41$ (s, 1H), 6.72 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H})$, $0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 168.4, 166.7, 148.9, 144.1, 137.7, 125.1, 123.7, 122.5, 120.5, 119.3, 64.7, 35.0, 31.3, 30.7, 19.2, 13.8.

Butyl (E)-3-(5-(4-bromophenyl)-2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3da):


This product was obtained from the reaction of $\mathbf{1 d}$ with 2a as a white solid ( 40.6 mg , yield $47 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}$, 3H), 7.55 (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38$ (m, 2H), 6.77 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.67$ (m, 2H), 1.49-1.41 (m, 2H), 0.97 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.7,166.5,145.6$, 137.9, 137.8, 136.8, 132.3, 128.6, 126.3, 124.9, 123.4, 122.6, 121.6, 120.3, 64.9, 30.7, 19.2, 13.8. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrO}_{4} \mathrm{SNa}$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right): 454.9929$, found 454.9922.

Butyl (E)-3-(5-methoxy-2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3ea): This
 product was obtained from the reaction of $\mathbf{1 e}$ with $\mathbf{2 a}$ as a white solid ( 32.6 mg , yield $53 \%$ ). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{q}, J=2.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.68(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H})$, $0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 168.1, 166.5, 156.9, 140.4, 137.0, 124.8, 123.0, 120.6, 112.6, 109.0, 64.8, 56.0, 30.7, 19.2 , 13.8. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 331.0616$, found 331.0612.
Butyl (E)-3-(5-(methylthio)-2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3fa): This
 product was obtained from the reaction of $\mathbf{1 f}$ with $\mathbf{2 a}$ as a white solid ( 26 mg , yield $40 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{dd}, J=14.4$, $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.7,166.4,143.9,136.6$, 136.2, 125.9, 124.9, 123.4, 121.3, 120.3, 64.9, 30.7, 19.2, 16.7, 13.8. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 347.0388 , found 347.0383 .
Butyl (E)-3-(5-fluoro-2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3ga): This product was obtained from the reaction of $\mathbf{1 g}$ with $\mathbf{2 a}$ as a white solid ( 31.4 mg , yield $53 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $7.71(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J$ $=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{dt}, J=14.5$, $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.4,159.3$ (d, $J=$ $247.2 \mathrm{~Hz}), 158.4,142.3,135.76$ (d, $J=1.9 \mathrm{~Hz}$ ), 125.20 (d, $J=10.6 \mathrm{~Hz}), 124.0,121.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 113.62(\mathrm{~d}, J=$ $24.7 \mathrm{~Hz}), 110.70(\mathrm{~d}, J=28.2 \mathrm{~Hz}), 65.0,30.7,19.2,13.7$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{FO}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right): 297.0591$, found 297.0584.

Butyl (E)-3-(5-chloro-2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3ha): This product

was obtained from the reaction of $\mathbf{1 h}$ with $\mathbf{2 a}$ as a white solid ( 26.8 mg , yield $43 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.68 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.1$, 166.2, 144.5, 135.6, 130.9, 127.0, 125.4, 124.1, 122.9, 121.2, 65.0, 30.7, 19.2, 13.7. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClO}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right):$313.0296, found 313.0292.

Butyl (E)-3-(5-bromo-2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3ia): This product

was obtained from the reaction of $\mathbf{1 i}$ with $\mathbf{2 a}$ as a white solid ( 40.6 mg , yield $57 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 7.67 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.73-1.67$ (m, 2H), 1.48-1.40 (m, 2H), 0.97 (t, J $=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.0$, 166.1, 145.0, 135.5, 129.9, 125.7, 125.6, 124.1, $121.6,117.9,65.0,30.7,19.2,13.7 .117 .9,65.0,30.7,19.2,13.7$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{BrO}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right): 356.9791$, found 356.9786 .
Butyl (E)-3-(5-(2-methoxy-2-oxoethyl)-2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate

( $\mathbf{3 j a}$ ): This product was obtained from the reaction of $\mathbf{1 j}$ with 2a as a white solid ( 30.1 mg , yield $43 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.72$ (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.36 ( s , $2 \mathrm{H}), 6.71(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, 3.72 (s, 3H), 3.65 (s, 2H), 1.74-1.66 (m, 2H), 1.48-1.40 $(\mathrm{m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.1,167.9,166.5,145.3,136.8,131.5,128.5$, 124.4, 124.1, 123.2, 120.0, 64.8, 52.4, 40.4 , 30.7, 19.2, 13.8. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right): 351.0897$, found 351.0891 .
Methyl-(E)-7-(3-butoxy-3-oxoprop-1-en-1-yl)-2-oxobenzo[d][1,3]oxathiole-5-carb
 oxylate (3ka): This product was obtained from the reaction of $\mathbf{1 k}$ with $\mathbf{2 a}$ as a white solid ( 24.2 mg , yield $36 \%) .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.19(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.11(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.77(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}$, $3 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{3} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.2,166.3$, 165.0, 148.8, 136.0, 128.9, 127.7, 124.5, 124.5, 123.9, 120.0, 64.9, 52.8, 30.7, 19.2, 13.7. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 337.0740, found 337.0736.

Butyl (E)-3-(5-acetyl-2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3la): This product
 was obtained from the reaction of $\mathbf{1 1}$ with 2a as a white solid ( 32 mg , yield $50 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $8.06(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}$, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.49-$ 1.41 (m, 2H), 0.97 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 195.2, 167.2, 166.3, 148.8, 136.1, 134.4, $128.0,125.0,124.0,123.2,120.0,65.0,30.7,26.57,19.2$, 13.7.HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 343.0616$, found 343.0612.

Butyl (E)-3-(2-oxo-5-(trifluoromethyl)benzo[d][1,3]oxathiol-7-yl)acrylate (3ma):


This product was obtained from the reaction of $\mathbf{1 m}$ with 2a as a white solid ( 22.1 mg , yield $32 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.73(\mathrm{~m}$, $1 \mathrm{H}), 7.69(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.24(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.40$ $(\mathrm{m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.7,166.0,147.8,135.5,128.2(\mathrm{~d}, J=33.7$ $\mathrm{Hz}), 125.2,124.6,124.5(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.1(\mathrm{~d}, J=$ $272.7 \mathrm{~Hz}), 120.5,120.2(\mathrm{q}, J=3.8 \mathrm{~Hz}), 65.0,30.7,19.2,13.7$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right): 347.0559$, found 347.0554 .
Butyl (E)-3-(4-methoxy-2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3na): The
 product as isomer mixture was obtained from the reaction of $\mathbf{1 n}$ with 2a as a white solid. Pure 3na was obtained from recrystallization in ethyl acetate/ petroleum ether ( 42.3 mg , yield $75 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=16.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.66$ (m, 2H), 1.46-1.41 (m, 2H), $0.96(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.7,167.17,154.7,146.8,137.3,129.0,120.1,113.6$, 111.7, 106.7, 64.6, 56.4, 30.8, 19.2, 13.8. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{SNa}$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right): 331.0616$, found 331.0612 .
Butyl (E)-3-(4-methyl-2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3oa): This

product was obtained from the reaction of $\mathbf{1 0}$ with $\mathbf{2 a}$ as a colorless oil ( 26.3 mg , yield $45 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 2 \mathrm{H})$, 1.48-1.40 (m, 2H), $0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,166.8,145.9,137.2,134.2$, $127.2,126.0,123.9,121.7,117.5,64.7,30.7,20.5,19.2$, 13.8. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right):$315.0667, found 315.0663.

Butyl (E)-3-(4-bromo-2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3pa): This
 product was obtained from the reaction of $\mathbf{1 p}$ with $\mathbf{2 a}$ as a white solid ( 30.6 mg , yield $43 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.40(\mathrm{~m}$, 2H), 0.96 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.4,166.0,145.8,136.2,128.2,128.1,127.1$, 123.2, 118.9, 116.0, 64.9, 30.7, 19.2, 13.7. HRMS (ESI)
calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{BrO}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 356.9791 , found 356.9786 .
Single crystal was obtained from recrystallization in ethyl acetate/ petroleum ether.
Butyl (E)-3-(2-oxonaphtho[2,3-d][1,3]oxathiol-9-yl)acrylate (3qa): This product
 was obtained from the reaction of $\mathbf{1 q}$ with $\mathbf{2 a}$ as a white solid ( 36.1 mg , yield $53 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.91(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=16.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 2 \mathrm{H})$, $1.50-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.3,166.8,143.1,137.8,130.5$, 129.6, 129.2, 129.0, 127.5, 126.7, 123.7, 123.0, 120.1, 119.0, 64.8, 30.8, 19.2, 13.8. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right): 329.0848$, found 329.0843.
Ethyl (E)-3-(2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3ab): This product was
 obtained from the reaction of $\mathbf{1 a}$ with $\mathbf{2 b}$ as a white solid ( 27 mg , yield $54 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta 7.76(\mathrm{~d}$, $\mathrm{J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{dd}, \mathrm{J}=7.8$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.9,166.5,146.2,137.0,127.4$, 125.3, 124.0, 123.4, 122.9, 120.1, 29.7, 14.3..HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 273.0197, found 273.0211.
tert-Butyl (E)-3-(2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3ac): This product was
 obtained from the reaction of 1a with 2c as a white solid ( 26.1 mg , yield $47 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.64$ (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.44(\mathrm{dd}, J=7.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (dd, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}$, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 168.0,165.8,146.1,136.0,127.4,125.3,124.9$, 123.9, 123.1, 120.4, 81.1, 28.2.HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 301.0510$, found 301.0507 .
Phenyl (E)-3-(2-oxobenzo[d][1,3]oxathiol-7-yl)acrylate (3ad): This product was
 obtained from the reaction of $\mathbf{1 a}$ with $\mathbf{2 d}$ as a white solid ( 15 mg , yield $25 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.95$ (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (dd, $J=7.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (ddt, $J=9.9,4.1,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.29-7.25 (m, 1H), 7.20-7.17 (m, 2H), 6.93 (d, $J=16.2$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.8,164.9$, 150.7, 146.3, 138.9, 129.5, 127.7, 126.0, 125.4, 124.2, 123.9, 122.0, 121.5, 119.8. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right):$321.0197, found 321.0192 .
(E)-7-styrylbenzo[d][1,3]oxathiol-2-one (3ae): This product was obtained from the
 reaction of $\mathbf{1 a}$ with 2 e as a white solid ( 14.2 mg , yield $28 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.60-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{dd}, J$ $=10.4,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{dt}, J=6.0,3.2$
$\mathrm{Hz}, 2 \mathrm{H}$ ), 7.25-7.23 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 168.6, 145.3, 136.6, $132.8,128.8,128.5,126.9,125.2,124.9,123.6,123.0,121.0,120.7 . H R M S$ (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right): 255.0474$, found 255.0471.

## 4. Control experiments and product characterization

Reaction of 4a with $\mathbf{2 a}$


To a 25 mL dry reaction tube added 0.2 mmol of $\mathbf{4 a}, 1.0 \mathrm{mmol}$ of $\mathbf{2 a}, 0.02 \mathrm{mmol}$ of $\mathrm{Pd}(\mathrm{OAc})_{2}, 0.4 \mathrm{mmol}$ of benzoquinone $(\mathrm{BQ}), 0.5 \mathrm{~mL}$ of acetic acid, and 0.5 mL of HFIP. The reaction tube was then sealed and the mixture was allowed to react at $80^{\circ} \mathrm{C}$ for 12 h . After cooled to room temperature, no 3aa was detected by GC-MS.

## Synthesis of Potential Reaction Intermediate (5ab)



A suspension of the ethyl 2-bromoacetate ( 18 mmol ), the 2-hydroxybenzaldehyde $1(10 \mathrm{mmol})$, and $\mathrm{PPh}_{3}(4.72 \mathrm{~g}, 18 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ containing $\mathrm{LiOH}(504 \mathrm{mg}, 21 \mathrm{mmol})$ and $\mathrm{LiCl} \cdot \mathrm{H}_{2} \mathrm{O}(3.63 \mathrm{~g}, 60 \mathrm{mmol})$ was refluxed in air for the indicated time. After cooling to room temperature, the reaction mixture was extracted with EtOAc ( $50 \mathrm{~mL} \times 3$ ), and the combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under reduced pressure, then DMF ( 30 ml ) and $\mathrm{NaH}(480 \mathrm{mg}, 12$ equiv, $60 \%$ in mineral oil) were added under ice bath stired 5 min , followed by addition of dimethylcarbamothioic chloride ( $1.23 \mathrm{~g}, 10$ mmol ). The mixture was stirred overnight under room temperature. Then reaction mixture was extracted with $\mathrm{EtOAc}(50 \mathrm{~mL} \times 3$ ), and the combined organic layer was washed with sodium hydroxide solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under reduced pressure and the residue was purified by flash column chromatograph to give the desired product (5ab) as an white solid ( 2.1 g , yield $75 \%$ in two steps). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.71(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=7.8$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{td}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (dd, $J=8.1$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}$, $3 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 187.1,166.8,152.62$, 138.1, 130.8, 128.0, 127.2, 126.4, 124.4, 120.0, 60.6, 43.4, 38.8, 14.3.

## Intramolecular sulfuration of 5ab



To a 25 mL dry reaction tube was added 0.2 mmol of $\mathbf{5 a b}, 0.02 \mathrm{mmol}$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$, 0.4 mmol of benzoquinone (BQ), 0.5 mL of acetic acid, and 0.5 mL of HFIP. The reaction tube was then sealed and the mixture was allowed to react at $80^{\circ} \mathrm{C}$ for 12 h . After cooled to room temperature, solvents of the obtained solution was evaporated under reduced pressure and the residue was purified by chromatography on silica gel with ethyl acetate / petroleum ether (1:50) to give corresponding product 3ab as a white solid ( 42.5 mg , yeild $85 \%$ ).

## Reaction of ortho-substituted thiocarbamates with olefin 2a:



To a 25 mL dry reaction tube was added 0.2 mmol of $\mathbf{3 b}, 0.2 \mathrm{mmol}$ of $\mathbf{2 a}, 0.02$ mmol of $\mathrm{Pd}(\mathrm{OAc})_{2}, 0.4 \mathrm{mmol}$ of benzoquinone (BQ), 0.5 mL of acetic acid, and 0.5 mL of HFIP. The reaction tube was then sealed and the mixture was allowed to react at $80^{\circ} \mathrm{C}$ for 12 h . After cooled to room temperature, solvents of the obtained solution was evaporated under reduced pressure and the residue was purified by chromatography on silica gel with ethyl acetate / petroleum ether (1:50) to give corresponding product $\mathbf{4 b}$ as a white solid ( 29.0 mg , yield $63 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 166.7, 145.9 131.0, 126.1, 124.0, 121.2, 105.0.

7-phenylbenzo[d][1,3]oxathiol-2-one. The reaction was performed following the same general procedure give corresponding product $\mathbf{4 c}$ as a white solid $(34.2 \mathrm{mg}$, yield $75 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.5,145.3,135.2,128.7(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 128.4,128.1,126.8$, 125.4, 123.8, 121.2.

## GC analysis for the concentration of the mixture varies with time

General Procedure. To a 25 mL dry reaction tube added 0.2 mmol of $\mathbf{1 a}, 0.2 \mathrm{mmol}$ of $\mathbf{2 b}, 0.02 \mathrm{mmol}$ of $\mathrm{Pd}(\mathrm{OAc})_{2}, 0.4 \mathrm{mmol}$ of benzoquinone $(\mathrm{BQ}), 0.5 \mathrm{~mL}$ of acetic acid, and 0.5 mL of HFIP. The reaction tube was then sealed and the mixture was allowed to react at $80^{\circ} \mathrm{C}$. The data ( $\%$ product versus time) was analyzed using the initial rates
method. Product yield from the corresponding reaction was monitored by GC analysis using dodecane as internal standard.


1a
2b
3ab
5ab

| $\mathrm{t}(\mathrm{min})$ | $\mathbf{1 a}(\mathrm{mol} / \mathrm{L})$ | $\mathbf{5 a b}(\mathrm{mol} / \mathrm{L})$ | $\mathbf{3 a b}(\mathrm{mol} / \mathrm{L})$ |
| :---: | :---: | :---: | :---: |
| 0 | 0.200 | 0 | 0 |
| 30 | 0.152 | 0.04 | 0 |
| 40 | 0.136 | 0.05 | 0 |
| 50 | 0.090 | 0.084 | 0 |
| 60 | 0.032 | 0.134 | 0.04 |
| 70 | 0.010 | 0.054 | 0.088 |
| 90 | 0 | 0.012 | 0.112 |
| 120 | 0 | 0.008 | 0.114 |
| 150 | 0 | 0 | 0.115 |



Figure S1

## 5. Synthetic application and product characterization




To a reaction tube was added 3 na ( $154 \mathrm{mg}, 0.5 \mathrm{mmol}$ ), $\mathrm{Et}_{2} \mathrm{NH}$ ( 6 equiv) and toluene $(2 \mathrm{~mL})$. The tube was sealed and heated at $100{ }^{\circ} \mathrm{C}$. After 12 hours, the reaction
mixture was cooled to room temperature. Then it was condensed under reduced pressure and the residue was purified by flash column chromatograph to give the desired product ( $\mathbf{6 e}$ ) as an colorless oil ( 84 mg , yield $44 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.38(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.39$ (q, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.33(\mathrm{~m}$, 3 H ), $1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.5,157.5,153.0,141.0,137.7,132.1,129.5,121.0,114.9,111.0,64.5,55.8,42.6$, 42.1, 30.7, 19.2, 14.4, 13.7, 13.3. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 382.1683 , found 382.1677 .


To a reaction tube was added 3aa ( $139 \mathrm{mg}, 0.5 \mathrm{mmol}$ ), NaOH ( $120 \mathrm{mg}, 6$ equiv) and $\mathrm{MeOH}(2 \mathrm{~mL})$ and then sealed. The reaction mixture was stirred at room temperature for 12 hours, followed by addition of $5 \mathrm{ml} \mathrm{HCl}(1 \mathrm{M})$. Then the reaction mixture was extracted with EtOAc ( $10 \mathrm{~mL} x \mathrm{3}$ ), and the combined organic layer was washed with sodium hydroxide solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and condensed under reduced pressure and the residue was purified by flash column chromatograph to give the desired product (7e) as an white solid ( 55 mg , yield $56 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO- $\mathrm{d}_{6}$ ) $\delta 7.93(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 168.1,153.9,139.0,131.1,127.6,125.5,124.1,121.6,120.1$.


To a reaction tube was added 3ha ( $314 \mathrm{mg}, 1.0 \mathrm{mmol}$ ), 1 ml aq NaOH ( 5 M ), $\mathrm{Bu}_{4} \mathrm{NBr}(30 \mathrm{mg})$ and $1 \mathrm{mLCH} \mathrm{CH}_{2} \mathrm{Br}_{2}$. The tube was then sealed and heated at $100^{\circ} \mathrm{C}$. After 2 hours, the reaction mixture was cooled to room temperature. Then it was condensed under reduced pressure and the residue was purified by flash column chromatograph to give the desired product $(\mathbf{8 h})$ as an white solid ( 283 mg , yield $95 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.56$ (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.10 (s, 2H), 6.56 (d, $J=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.39$ $(\mathrm{m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 166.9,153.8,137.9$, 129.0, 127.4, 125.2, 122.9, 121.6, 119.1, 76.1, 64.6, 30.8, 19.2, 13.8. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 299.0503 , found 299.0499.

## Synthesis of COX-2 inhibitor



To a reaction tube was added $3 \mathrm{ha}(1.57 \mathrm{~g}, 5.0 \mathrm{mmol}), \mathrm{NaIO}_{4}$ ( $3.2 \mathrm{~g}, 3$ equiv, 15 mmol ), $\mathrm{RuCl}_{3}$ (aq., $0.1 \mathrm{M}, 250 \mu \mathrm{l}$ ), $\mathrm{H}_{2} \mathrm{SO}_{4}(20 \mathrm{~mol} \%$ ), $\mathrm{EtOAc}(3 \mathrm{ml}), t$ - $\mathrm{BuOH}(3 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 12 h . Then it was condensed under reduced pressure and the residue was purified by flash column chromatograph to give the desired product (9) as a white solid ( 642 mg , yield $60 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.31(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 185.0,166.67,147.4,131.5,127.2,126.3,126.1,121$.


To a schlenk tube was added 1 mmol 9 ( 214 mg ), 1.2 equiv $\mathrm{Et}_{2} \mathrm{NH}$ and 2 ml DMF at $90^{\circ} \mathrm{C}$ for 12 h , then added 1.2 equiv NaH and 2 equiv $\mathrm{CH}_{3} \mathrm{I}$ under room temperature for 12 h , and condensed under reduced pressure and the residue was purified by flash column chromatograph to give the desired product (10) as an white solid ( 172 mg , yield $57 \%$ in two steps) . ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 7.61$ (d, $J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.51(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 126 MHz , DMSO) $\delta 188.8,152.3,147.2,138.0,131.7,130.3,130.1,125.5,42.6,42.2,14.6$, 14.1, 13.6. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClNO}_{3} \mathrm{~S}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 302.0612, found 302.0608 .


To a schlenk tube was added $0.5 \mathrm{mmol} \mathbf{1 0}, 2 \mathrm{mmol} \mathrm{NaOH}$ and 2 ml MeOH at room temperature for 12 h ,remove the Me , then added 5 equiv ethyl (E)-4,4,4-trifluorobut-2-enoate, 2.5 equiv $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 2 ml DMF at $90^{\circ} \mathrm{C}$ for 24 h , the reaction mixture was extracted with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and EtOAc, and steam the organic phase, then added $0.5 \mathrm{ml} \mathrm{NaOH}(\mathrm{aq})(5 \mathrm{M})$ and 1 ml MeOH under room
temperature for 24 h . Then condensed under reduced pressure and the residue was purified by flash column chromatograph to give the desired product (11) as an white solid 50 mg (yield 31\% ). ${ }^{1}$ H NMR ( 500 MHz , DMSO) $\delta 7.83$ (s, 1H), 7.40 (d, J = 2.4 $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 126 MHz , DMSO) $\delta 164.9,147.5,135.4,129.1,127.5,127.5,125.1,120.1,119.1$, $79.4(\mathrm{t}, \mathrm{J}=33.2 \mathrm{~Hz}), 70.7(\mathrm{q}, \mathrm{J}=32.3 \mathrm{~Hz}), 13.8$.

## 6. Copies for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum





| $\begin{aligned} & 2 n \\ & 3 \% \\ & \frac{8}{1} \frac{8}{1} \end{aligned}$ | $\stackrel{\infty}{\frac{\infty}{3}}$ |  | \& |  | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: |






|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |












| $\begin{aligned} & 88 \\ & 8 \frac{8}{8} \\ & \frac{8}{8} \end{aligned}$ | $\stackrel{ \pm}{*}$ |  | \% - I | 2 0 0 0 | $\stackrel{2}{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
























3qa



3ab









5ab








$$
\begin{array}{lllllllllllllllllllllllllllllllllllllllllll}
210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\
\hline
\end{array}
$$


$7 e$











| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 |  |  |  | 90 |  |  |  |  |  |  | 1 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 200 | 190 | 180 | 170 | 160 | 100 | 140 | 130 | 120 | 110 | $\begin{gathered} 100 \\ \mathrm{fl}(\mathrm{pm}) \end{gathered}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | 10 |

## 7. X-Ray crystallographic data for compound 3pa



Bond precision : $\quad \mathrm{C}-\mathrm{C}=0.0086 \mathrm{~A} \quad$ Wavelength $=0.71073$
Cell : $\begin{array}{cc}\mathrm{a}=6.9777(8) \\ \text { alpha }=68.487(13)\end{array} \quad \begin{aligned} & \mathrm{b}=9.4206(13) \\ & \mathrm{beta}=82.995(10) \mathrm{c}=12.6844(17) \\ & \text { gamma }=72.591(12)\end{aligned}$
Temperature : 296 K

|  | Calculated | Reported |
| :--- | :---: | :---: |
| Volume | 740.11 (18) | 740.11 (18) |
| Space group | $\mathrm{P}-1$ | $\mathrm{P}-1$ |
| Hall group | -P 1 | -P 1 |
| Moiety formula | $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{4} \mathrm{~S}$ | $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{4} \mathrm{~S}$ |
| Sum formula | $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{4} \mathrm{~S}$ | $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{4} \mathrm{~S}$ |
| Mr | 357.20 | 357.21 |
| Dx, $\mathrm{g} \mathrm{cm}^{-3}$ | 1.603 | 1.603 |
| Z | 2 | 2 |
| Mu $\left(\mathrm{mm}^{-1}\right)$ | 2.927 | 2.927 |
| F000 | 360.0 | 360.0 |
| F000' | 359.84 |  |
| h,k,lmax | $8,11,15$ | $8,11,15$ |
| Nref | 2930 | 2927 |
| Tmin,Tmax | $0.596,0.704$ | $0.505,1.000$ |
| Tmin | 0.436 |  |
| Correction method $=$ \# Reported T Limits: Tmin $=0.505$ Tmax $=1.000$ |  |  |

AbsCorr $=$ MULTI-SCAN
Data completeness $=0.999 \quad$ Theta $(\max )=26.020$
R(reflections) $=0.0639$ ( 1773) $\quad w R 2$ (reflections) $=0.1981$ (2927)
$\mathrm{S}=1.037$
Npar= 219

