Regioselective Palladium-Catalyzed C-H Bond Trifluoroethylation of Indoles: Exploration and Mechanistic Insight

Hao Zhang, ${ }^{\dagger}$ Hao-Yang Wang, ${ }^{* \dagger}$ Yixin Luo, ${ }^{\dagger}$ Chaohuang Chen, ${ }^{\dagger}$ Yimiao Cao, ${ }^{\dagger}$ Pinhong Chen, ${ }^{\dagger}$ Yin-Long Guo, ${ }^{\dagger}$ Yu Lan ${ }^{* \dagger}$ and Guosheng Liu ${ }^{* \dagger}$
${ }^{\dagger}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
${ }^{\star}$ School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China

E-mail: haoyangwang@sioc.ac.cn; lanyu@cqu.edu.cn; gliu@mail.sioc.ac.cn

Contents

1. General Considerations 2
2. Experimental Section 2
2.1 Starting Materials 2
2.2 General Procedure for Palladium-Catalyzed Trifluoroethylation of Indoles. 3
2.3 Ligand Screening. 3
2.4 Synthetic Application 4
3. Mechanism Studies 9
3.1 Characterization of anionic palladacycle 9
3.2. Stoichiometric Reaction 12
3.3 Deuterium Labeling Experiments 14
3.4 Kinetic Isotopic Effect. 14
3.5 Kinetic Studies 18
3.6 ESI-Mass studies. 23
4. DFT Caculation 24
5. New Compounds Characterization 28
6. Reference 43

1. General Considerations

All commercially available compounds were used as received. Palladium catalysts, such as $\operatorname{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{Pd}(\mathrm{acac})_{2}$, were purchased from STREM. $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}$ was purchased from TCI. Norbornene was purchased from J\&K. NMR spectra were recorded on a Varian Mercury- 400 MHz or an Agilent- 400 MHz spectrometer. ESI-MS(/MS) spectra were recorded on a Thermo TSQ (Thermo Finnigan, Quantum Access TM) triple-quadrupole mass spectrometer equipped with a standard ESI ion source. CDCl_{3} was purchased from J\&K. The chemical shifts (δ) were given in parts per million relative to internal standard TMS (0 ppm for ${ }^{1} \mathrm{H}$), CDCl_{3} (77.0 ppm for ${ }^{13} \mathrm{C}$). Flash column chromatography was performed on silica gel 60 (particle size 200-300 mesh, purchased from Canada) and eluted with petroleum ether/ethyl acetate (PE/EA). DMF was directly obtained from solvent purification system of Innovation Technology Company.

2. Experimental Section

2.1 Starting Materials

Compounds $\mathbf{4 a - 4 j}, \mathbf{4} \mathbf{1 - 4} \mathbf{p}, \mathbf{4 s}$ and $\mathbf{4 v}$ were commercial available and used as received. $\mathbf{4 k},{ }^{1} \mathbf{4 q},{ }^{2} \mathbf{4 r},{ }^{3} \mathbf{4},{ }^{4} \mathbf{4} \mathbf{u}^{4}$ were synthesized according to corresponding literatures.

Synthesis of 4w: To a solution of indole-3-acetic acid ($1.75 \mathrm{~g}, 10 \mathrm{mmol}$) in THF (50 mL) were added DCC ($1.03 \mathrm{~g}, 5 \mathrm{mmol}$) and DMAP ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$), followed by cholesterol ($1.93 \mathrm{~g}, 5 \mathrm{mmol}$). The reaction mixture was sirred at room temperature for 15 h , then poured into water and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with water twice and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure, the residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate (5:1 to 3:1) to afford $4 \mathbf{w}(2.06 \mathrm{~g}, 80 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{br}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.36$ $(\mathrm{d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.62(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.04-1.79 (m, 5H), 1.64-0.98 (m, 21H), $1.02(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}$,
$J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,139.6,136.1,127.2,123.0,122.7,122.1,119.5,119.0,111.2,108.6,74.4$, 56.7, 56.1, 49.9, 42.3, 39.7, 39.5, 38.1, 36.9, 36.6, 36.2, 35.8, 31.9, 31.8, 31.7, 28.2, 28.0, 27.8, 24.3, 23.8, 22.8, 22.6, 21.0, 19.3, 18.7, 11.8. HRMS: m/z (ESI) calculated $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 561.4415$, measured: 561.4413.

2.2 General Procedure for Palladium-Catalyzed Trifluoroethylation of Indoles.

To a dried 4 mL glass sealed tube, substrate $4(0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{acac})_{2}(9.1 \mathrm{mg}, 0.03$ $\mathrm{mmol}, 15 \mathrm{~mol} \%$), dbm ($17.9 \mathrm{mg}, 0.08 \mathrm{mmol}, 40 \mathrm{~mol} \%$), norbornene ($37.6 \mathrm{mg}, 0.4$ mmol, 2 equiv.) and $\mathrm{KHCO}_{3}(40.0 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv.) were added in dry DMF $(1.0 \mathrm{~mL})$ under Ar atmosphere. Then $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}(120.6 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.) was added to the solution, and the mixture was stirred at room temperature for 5 minutes. The sealed tube was subsequently immersed in a preheated oil bath at $100{ }^{\circ} \mathrm{C}$ for 8 hours. After that, the mixture solution was cooled to room temperature and filtered through a thin pad of silica gel. The filter cake was washed with ethyl acetate and the combined filtrate was washed with water. Then the organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before concentration. The residue was purified by flash column chromatography to afford the product $\mathbf{5}$. The results of $\mathbf{5 a} \mathbf{- 5 w}$ were listed in Table 2-3.

2.3 Ligand Screening.

Table S1. Phosphine and Nitrogen Ligands Screening.

Nitrogen ligands

0

0

0

[^0]
2.4 Synthetic Application

To a mixture of acid $7(0.65 \mathrm{~g}, 5.13 \mathrm{mmol}), O$-(Benzotriazol-1-yl)- $N, N, N^{\prime}, N^{\prime}-$ tetramethyluronium hexafluorophosphate (HBTU, ($1.56 \mathrm{~g}, 4.10 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.43$
$\mathrm{mL}, 10.26 \mathrm{mmol})$ in DMF (7 mL), a solution of 5-(aminomethyl)-indole $\mathbf{6}$ ($0.5 \mathrm{~g}, 3.42$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.10 \mathrm{~mL}, 8.6 \mathrm{mmol})$ in DMF (7 mL) was added. The mixture was stirred at room temperature overnight. After that, the mixture was poured into brine, and extracted with ethyl acetate $(2 \times 30 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was concentrated in vacuo and the residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to give 8 ($0.68 \mathrm{~g}, 78 \%$ yield). Compound 8: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO) $\delta 11.06$ (br, $1 \mathrm{H}), 9.41(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H})$, $6.40(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, d_{6}$-DMSO) δ 163.7, $160.9,156.0,135.5,129.4,128.0,126.1,121.5,119.4,111.7,107.4,101.4,43.2,11.4$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, d_{6}$-DMSO) $\delta-63.7(\mathrm{t}, J=10.5 \mathrm{~Hz}$). HRMS: m / z (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}: 256.1081$, measured: 256.1083.

The reaction was conducted with general procedure in 0.2 mmol scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($8: 1$ to $4: 1$) to afford the product 3 in 68% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , d_{6}-Acetone) $\delta 10.22(\mathrm{br}, 1 \mathrm{H}), 8.27(\mathrm{br}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{q}$, $J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, d_{6}$-Acetone) $\delta 163.8,160.5$, 155.7, 136.2, 129.8, 128.4, 128.0, $125.7(\mathrm{q}, J=274.9 \mathrm{~Hz}), 122.1,119.5,111.1,106.8$, 103.1, 43.1, $32.7(\mathrm{q}, J=30.8 \mathrm{~Hz}), 10.3 .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-64.9(\mathrm{t}, J=$ 10.9 Hz). HRMS: m/z (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}: 338.1111$, measured: 338.1112 .

S1 was synthesized from commercial available 5-hydroxylindole (9) according to the reported procedure. ${ }^{5}$

Synthesis of compound 10: To a solution of $\mathbf{S 1}(1.30 \mathrm{~g}, 2.75 \mathrm{mmol})$ in THF (20 mL), a solution of tetrabutylammonium fluoride (TBAF, $3.4 \mathrm{~mL}, 3.4 \mathrm{mmol}, 1 \mathrm{M}$) in THF was added dropwisely under argon atmosphere. After stirring for 30 min , the reaction mixture was quenched with water and extracted with ethyl acetate $(2 \times 30 \mathrm{~mL})$. The combined organic layer was washed with water and brine, then was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtered, the filtrate was concentrated under reduced pressure to afford the crude indole product, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. Then pyridine ($0.30 \mathrm{~mL}, 3.58 \mathrm{mmol}$), $\mathrm{Boc}_{2} \mathrm{O}(0.78 \mathrm{~g}, 3.58 \mathrm{mmol})$, and DMAP $(0.037 \mathrm{~g}, 0.3$ mmol) were gradually added to above solution. The mixture was stirred for 24 h at room temperature. Aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added and the organic phase was separated. The aqueous phase was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was concentrated in vacuum and the residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate ($8: 1$ to $4: 1$) to afford Boc protected indole 10 ($0.83 \mathrm{~g}, 66 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.38(\mathrm{~m}, 4 \mathrm{H}), 1.65(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H})$, 1.34-1.18 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.2,152.5,149.6,136.3,132.2$, 126.5, 118.7, 118.1, 118.1, 109.4, 83.5, 83.2, 41.8, 41.5, 28.1, 24.9, 14.0, 13.4. HRMS:
m / z (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}: 459.2661$, measured: 459.2667 .
Synthesis of compound 11: CuTc ($19 \mathrm{mg}, 0.1 \mathrm{mmol}$), 1,10-phenanthroline (36 mg , 0.20 mmol), LiOH. $\mathrm{H}_{2} \mathrm{O}$ ($83 \mathrm{mg}, 2.0 \mathrm{mmol}$), indole $10(229 \mathrm{mg}, 0.5 \mathrm{mmol})$ and Togni's reagent ($248 \mathrm{mg}, 0.75 \mathrm{mmol}$) were placed into an oven-dried sealed tube equipped with a stirring bar under Ar. Freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ was added. The reaction mixture was stirred at $45^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the mixture was washed by brine $(10 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was concentrated in vacuum and the residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate (15:1 to 8:1) to afford trifluoromethylated indole (132 mg , 66% yield), which was dissolved in dichloromethane (10 mL). To a cooled solution, trifluoroacidic acid (2 mL) was added and the mixture was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$. After 3 h , saturated NaHCO_{3} aq was added slowly. The mixture was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the filtrate was concentrated under reduced pressure. The residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate (4:1) to give indole 11 ($80 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.06(\mathrm{br}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.99(\mathrm{~m}, 1 \mathrm{H})$, $6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.29(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.1, 142.6, 133.9, 127.3, 124.7 (q, $J=272.0 \mathrm{~Hz}), 124.4,117.2,115.4,112.9(\mathrm{q}, J=$ 31.1 Hz), 101.5, 42.2, 41.8, 13.8, 13.2. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.0(\mathrm{~s})$. HRMS: m/z (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}: 301.1396$, measured: 301.1403 .

Synthesis of compound 12: The trifluoroethylation of indole $\mathbf{1 1}$ was conducted with general procedure in 0.2 mmol scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (8:1 to 4:1) to afford the product 12 ($54 \mathrm{mg}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.03$ (br, 1H), 7.01 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.47 (q, $J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.0,142.8(\mathrm{q}, J=3.3 \mathrm{~Hz}), 134.5$,
$130.1,124.9(\mathrm{q}, J=276.8 \mathrm{~Hz}), 124.7(\mathrm{q}, J=271.9 \mathrm{~Hz}), 124.6,117.6,115.4,112.7(\mathrm{q}$, $J=30.9 \mathrm{~Hz}), 102.6(\mathrm{q}, J=3.6 \mathrm{~Hz}), 42.3,41.9,33.2(\mathrm{q}, J=31.3 \mathrm{~Hz}), 13.8,13.1 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.0(\mathrm{~s}),-65.5(\mathrm{t}, J=10.5 \mathrm{~Hz}$). HRMS: m/z (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}: 383.1189$, measured: 383.1190 .

Synthesis of compound $\mathbf{S 2}$: To a suspension of $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(129 \mathrm{mg}, 0.5 \mathrm{mmol})$ in THF (0.5 mL), a solution of $\mathbf{1 2}(38 \mathrm{mg}, 0.1 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added at room temperature. The resulting mixture was stirred at room temperature for overnight. The reaction mixture was quenched with $1 \mathrm{~N} \mathrm{HCl}(0.3 \mathrm{~mL})$, and then neutralized with saturated NaHCO_{3} aq. The mixture was extracted with EtOAc (3×20 $\mathrm{mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the filtrate was concentrated under reduced pressure to give a crude phenol ($21 \mathrm{mg}, 74 \%$ yield) which was dissolved in dry dichloromethane (1 mL) under Ar. To a cooled solution, $\mathrm{Et}_{3} \mathrm{~N}(30 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ and $\mathrm{Tf}_{2} \mathrm{O}(16 \mu \mathrm{~L}, 0.10 \mathrm{mmol})$ were added gradually at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed up to room temperature and stirred for 5 h . The reaction was quenched with water and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the filtrate was concentrated under reduced pressure. The residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate (4:1) to give triflate ester S2 ($26 \mathrm{mg}, 63 \%$ yield for two steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-Acetone) $\delta 11.35$ (br, 1 H), 7.90 (d, $J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{q}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, d_{6}$-Acetone) $\delta 139.0(\mathrm{q}, J=3.3 \mathrm{~Hz}), 136.2,135.5,125.3(\mathrm{q}, J=$ $274.2 \mathrm{~Hz}), 125.2,123.7(\mathrm{q}, J=271.7 \mathrm{~Hz}), 118.5(\mathrm{q}, J=317.7 \mathrm{~Hz}), 116.6,115.4$, $112.5(\mathrm{q}, J=31.4 \mathrm{~Hz}), 102.9(\mathrm{q}, J=3.6 \mathrm{~Hz}), 32.5(\mathrm{q}, J=31.0 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, d_{6}-Acetone) $\delta-51.5(\mathrm{~s}),-60.7(\mathrm{t}, J=10.5 \mathrm{~Hz}),-69.5(\mathrm{~d}, J=1.5 \mathrm{~Hz})$. HRMS: $\mathrm{m} / \mathrm{z}(\mathrm{ESI})$ calculated $[\mathrm{M}+\mathrm{H}]^{+}: 415.997$, measured: 416.000 .

Synthesis of compound 13: To a solution $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(6.4 \mathrm{mg}, 0.007 \mathrm{mmol} \%)$ and dppf ($7.7 \mathrm{mg}, 0.014 \mathrm{mmol}$) in mixture solvent of NMP and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL}, 8: 1)$, a solution of $\mathbf{S} 2(26 \mathrm{mg}, 0.068 \mathrm{mmol})$ in $\mathrm{NMP} / \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added under Ar. The mixture was stirred at room temperature for 15 min , then $\mathrm{Zn}(\mathrm{CN})_{2}(8 \mathrm{mg}, 0.068 \mathrm{mmol})$ was added under Ar. The reaction mixture was gradually heated to $80^{\circ} \mathrm{C}$ for 3 h . After
cooling to room temperature, the mixture was concentrated under reduced pressure, the residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate ($4: 1$ to $2: 1$) to give cynation product $13\left(16 \mathrm{mg}, 83 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, d_{6}-DMSO) $\delta 12.38(\mathrm{br}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.73(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{q}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, d_{6}$-DMSO) $\delta 139.4$, $134.5,126.8,125.8(\mathrm{q}, J=275.1 \mathrm{~Hz}), 124.7(\mathrm{q}, J=2.8 \mathrm{~Hz}), 124.2(\mathrm{q}, J=272.9 \mathrm{~Hz})$, $122.7(\mathrm{q}, J=32.1 \mathrm{~Hz}), 117.8,116.5,102.5,99.9(\mathrm{q}, J=3.1 \mathrm{~Hz}), 32.5(\mathrm{q}, J=30.4 \mathrm{~Hz})$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, d_{6}$-DMSO) $\delta-52.0(\mathrm{~s}),-58.9(\mathrm{t}, J=10.9 \mathrm{~Hz}) . \mathrm{HRMS}: \mathrm{m} / \mathrm{z}(\mathrm{EI})$ calculated $[\mathrm{M}]^{+}: 292.0435$, measured: 292.0437.

3. Mechanism Studies

3.1 Characterization of anionic palladacycle

To a dried 4 mL glass sealed tube, substrate $\mathbf{4 a}(11.7 \mathrm{mg}, 0.1 \mathrm{mmol}), \operatorname{Pd}(\mathrm{acac})_{2}$ ($45.5 \mathrm{mg}, 0.15 \mathrm{mmol}, 150 \mathrm{~mol} \%$), norbornene ($75.2 \mathrm{mg}, 0.8 \mathrm{mmol}, 8$ equiv) and KHCO_{3} ($80.0 \mathrm{mg}, 0.8 \mathrm{mmol}, 8$ equiv) were dissolved in d_{7}-DMF (1 mL) under Ar atmosphere. The sealed tube was subsequently immersed in a preheated oil bath at $100^{\circ} \mathrm{C}$ for 3 hours. After that, the reaction was cooled to room temperature, then most of norborene was removed under vacuum and the mixture was filtered through PTFE Syringe Filter to give a clear solution. The solution was analyzed by ${ }^{1} \mathrm{H}$ NMR using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard and ESI-MS to observe the Int.II-acac. The spectra of ${ }^{1}$ H NMR, COSY, NOESY and ESI-MS were listed in below. Unfortunately, we were failed to get pure palladacycle complex int.II-acac.
1H NMR

$\mathrm{Pd}(\mathrm{acac})_{2}$

Figure S1. Crude ${ }^{1} \mathrm{H}$ NMR, COSY and NOSEY Spectra of Reaction in d_{7}-DMF [containing extra $\mathrm{Pd}(\mathrm{acac})_{2}$].

Figure S2. The negative ion mode ESI-MS spectrum for the diluted reaction solution containing palladacycle complex int-II-acac.

3.2. Stoichiometric Reaction

The trifluoroethylation reaction of int.II-Phen

${ }^{a}$ Kacac $\cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ (50 equiv.) was used.
Complex int. II-Phen was prepared according to Bach's procedure. ${ }^{6}$
To a 4 mL sealed tube was weight into int. II-Phen ($12.4 \mathrm{mg}, 0.025 \mathrm{mmol}$) and MX ($0.5 \mathrm{mmol}, 20$ equiv), then the mixture was dissolved with DMF (1.0 mL) under N_{2}. After quickly addition of $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}(52.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 10$ equiv), the tube was sealed and subsequently immersed in a preheated oil bath at $120^{\circ} \mathrm{C}$ for 6 hours. After that, the mixture solution was cooled to room temperature and was filtered through a thin pad of celite. The filter was analyzed by ${ }^{19} \mathrm{~F}$ NMR with CF_{3}-DMA as internal standard. Results were listed above. No desired product 5a was observed in the absence or presence of $\mathrm{LiCl}, \mathrm{KOAc}, \mathrm{NaOPh}$ and $\mathrm{KO}_{2} \mathrm{CCF}_{3}$. However, the reaction provided product 5a in 10% yield in the presence of Kacac, and the yield was further increased to 15% by increasing Kacac loading to 50 equivalent.

With $\operatorname{Pd}(\mathbf{a c a c})_{2}$ (path b):

For above cooled mixture solution in 3.1, $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}$ ($148.7 \mathrm{mg}, 0.74 \mathrm{mmol}, 10$ equiv) and $\mathbf{d b m}$ (0 or 2 equiv.) were added, and the mixture was sealed in a 4 mL sealed tube, which was subsequently immersed in a preheated oil bath at $100{ }^{\circ} \mathrm{C}$ for 2 hours. After that, the mixture solution was cooled to room temperature and was filtered through a thin pad of silica gel. The filter cake was washed with ethyl acetate and the combined
filtrate was washed with water. Then the organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before concentration. The residue was analyzed by ${ }^{1} \mathrm{H}$ NMR with CF_{3}-DMA as internal standard. The reaction provided the desired product $\mathbf{5 a}$ in $\mathbf{7 8 \%}$ yield in the absence of dbm, and 85% yield with dbm (eq S2).

With $\operatorname{Pd}(\mathrm{OAc})_{2}$ and H -acac (path a):

To a dried 4 mL glass sealed tube, substrate $\mathbf{4 a}(11.7 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}$ ($33.7 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv), norbornene ($75.2 \mathrm{mg}, 0.8 \mathrm{mmol}, 8$ equiv) and KHCO_{3} ($80.0 \mathrm{mg}, 0.8 \mathrm{mmol}, 8$ equiv) were added in d_{7}-DMF $(0.5 \mathrm{~mL}$) under Ar atmosphere. Then the mixture was stirred at room temperature for 5 minutes and the sealed tube was subsequently immersed in a preheated oil bath at $100^{\circ} \mathrm{C}$ for 3 hours. After that, the reaction was cooled to room temperature and H -acac ($50 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added to stir for 30 minutes. Then $\mathrm{CH}_{2} \mathrm{Br}_{2}$ was added as an internal standard to determine the yield of int.II-acac by crude ${ }^{1} \mathrm{H}$ NMR (49% yield). After monitored by NMR, the mixture was filtered through PTFE Syringe Filter to remove the insoluble substance and vacuumed to remove most norbornene. Additional DMF (0.5 mL) and $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}(98.5 \mathrm{mg}, 0.49 \mathrm{mmol}, 10$ equiv) were added to the residue. The sealed tube was subsequently immersed again in a preheated oil bath at $100{ }^{\circ} \mathrm{C}$ for 2 hours. Then the reaction was cooled to room temperature with the work up procedure as above. The residue was analyzed by ${ }^{1} \mathrm{H}$ NMR with CF_{3}-DMA as internal standard to give $\mathbf{5 a}$ in 86% yield. It is mentioned that, however, the reaction provided trace amount of 5a in the absence of H -acac.

3.3 Deuterium Labeling Experiments

With the literature procedure, deuterium-labeled $\mathbf{4 a}-\boldsymbol{d}_{\mathbf{1}}{ }^{7}$ was synthesized in $\mathbf{9 4 \%}$ deuterium incorporation. To a dried 4 mL glass sealed tube, $\mathbf{4 a} \mathbf{a} \boldsymbol{d}_{\mathbf{1}}$ ($23.6 \mathrm{mg}, 0.2$ $\mathrm{mmol}), \operatorname{Pd}(\mathrm{acac})_{2}(9.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$, $\mathbf{d b m}(17.9 \mathrm{mg}, 0.08 \mathrm{mmol}, 40$ mol \%), norbornene ($37.6 \mathrm{mg}, 0.4 \mathrm{mmol}$, 2 equiv) and $\mathrm{KHCO}_{3}(40.0 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) were added in dry DMF (1.0 mL) under Ar atmosphere. Then $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}(120.6$ $\mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv) was added and the mixture was stirred at room temperature for 5 minutes. The sealed tube was subsequently immersed in a preheated oil bath at $100{ }^{\circ} \mathrm{C}$ for 2 hours. After that, the reaction was cooled to room temperature and the mixture was filtered through a thin pad of silica gel. The filter cake was washed with ethyl acetate and the combined filtrate was washed with water. Then the organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ before concentration. The residue was purified by flash column chromatography using PE:EA=20:1 to give $\mathbf{5 a}$ in 27% yield, and $\mathbf{4 a}-\boldsymbol{d}_{\boldsymbol{I}}$ was recovered in 60% yield with 93% D.

3.4 Kinetic Isotopic Effect.

3.4.1 Kinetic Isotope Effect of 2-C-H bond of Indole

The initial rate of the reaction was determined by measurement of five parallel individual experiment yields after running for 15 minutes, 30 minutes, 45 minutes, 60 minutes and 75 minutes respectively: To a dried 4 mL glass sealed tube, substrate $\mathbf{4 a}$ $(0.2 \mathrm{mmol}, 23.4 \mathrm{mg})$ or $\mathbf{4 a}-\boldsymbol{d}_{\boldsymbol{1}}(0.2 \mathrm{mmol}, 23.6 \mathrm{mg}), \mathrm{Pd}(\mathrm{acac})_{2}(9.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 15$ $\mathrm{mol} \%$), dbm ($17.9 \mathrm{mg}, 0.08 \mathrm{mmol}, 40 \mathrm{~mol} \%$), norbornene ($37.6 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) and KHCO_{3} ($40.0 \mathrm{mg}, 0.4 \mathrm{mmol}$, 2 equiv) were dissolved in dry DMF (1.0 mL)
under Ar atmosphere. Then $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}(120.6 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv) was added and the mixture was stirred at room temperature for 5 minutes. The sealed tube was subsequently immersed in a preheated oil bath at $100{ }^{\circ} \mathrm{C}$ for 15 minutes. After that, the reaction was immersed in an ice-water bath immediately to cool the mixture and then the mixture was filtered through a thin pad of silica gel. The filter cake was washed with ethyl acetate and the combined filtrate was concentrated. The residue was analyzed by ${ }^{19}$ F NMR with CF_{3}-DMA as internal standard. The results were shown in below.

Figure S3. The initial rate of indole (C-H) and 2-D-indole (C-D) in standard condition. $\operatorname{KIE}(\mathrm{C}-\mathrm{H})=k_{\mathrm{H}} / k_{\mathrm{D}}=0.514 / 0.482=1.1$

3.4.2 Kinetic Isotope Effect Study of N -H bond of indole.

Synthesis of 4a' $-d_{1}$:

N -deuterium labeled indole $4 \mathbf{a}^{\prime}-\boldsymbol{d}_{\mathbf{1}}$ was synthesized as following procedure: In a dried 10 mL schlenk tube, indole ($1.0 \mathrm{~g}, 8.55 \mathrm{mmol}$) was dissolved in MeOD (6 mL , 230 mmol) and the mixture was stirred in room temperature for 4 hours. Then the mixture was concentrated under vacuum to remove the solvent. MeOD (6 mL) was added into the schlenk tube again and the mixture was stirred in room temperature for another 4 hours. After that, the mixture was concentrated under vacuum to give quantitative yield of the product $\mathbf{4 a} \cdot \boldsymbol{a}_{\boldsymbol{l}}$ with $93 \% \mathrm{D}$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{4 a} \mathbf{a}^{\prime} \boldsymbol{d}_{\boldsymbol{1}}$ in CDCl_{3} (top) and ${ }^{2} \mathrm{H}$ NMR (bottom) in CHCl_{3}.

Measurement of KIE:

The initial rate of the reaction was determined by measurement of five parallel individual experiments yield. Notes: KHCO_{3} and dbm were added into the MeOD (6 mL) and the mixture was stirred for 4 hours in $60^{\circ} \mathrm{C}$. Then the solvent was removed and the procedure was repeated for twice to make sure the hydrogen of KHCO_{3} and
dbm could be replaced by deuterium if the H/D exchanged could happen in the system.

To a dried 4 mL glass sealed tube, substrate $\mathbf{4 a} \mathbf{a}^{\prime}-\boldsymbol{d}_{\boldsymbol{I}}(0.2 \mathrm{mmol}, 23.6 \mathrm{mg}), \operatorname{Pd}(\mathrm{acac})_{2}$ ($9.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%$), norbornene ($37.6 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) and pretreated $\mathrm{KHCO}_{3}(40.0 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) were added in dry DMF (1.0 mL) under Ar atmosphere. Then $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}(120.6 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv) was added and the mixture was stirred at room temperature for 5 minutes. The sealed tube was subsequently immersed in a preheated oil bath at $100{ }^{\circ} \mathrm{C}$ for 15 minutes or defined time. After that, the reaction was immersed in an ice-water bath immediately and then the mixture was filtered through a thin pad of celite. The filter cake was washed with ethyl acetateand the combined filtrate was concentrated. The residue was analysed by ${ }^{19} \mathrm{~F}$ NMR with CF_{3}-DMA as internal standard.

For the results of indole $(\mathrm{N}-\mathrm{H})$, the results were obtained with the same procedure as above with non-deuterium substrate and reagents. The KIE values were measured in the left of Figure S5. Furthermore, the reactions were also conducted in the presence of $\mathrm{dbm}(40 \mathrm{~mol} \%)$ with the same procedure, and the results were listed in the right of Figure S5.

Figure S5. The initial rate of $\mathbf{4 a}$ and $\mathbf{4 a}^{\boldsymbol{\prime}} \boldsymbol{d}_{\boldsymbol{l}}$ in standard condition: Left, without dbm, $\mathrm{KIE}(\mathrm{N}-\mathrm{H})=k_{\mathrm{H}} / k_{\mathrm{D}}=0.7415 / 0.3237=2.3$; Right, with dbm, $\mathrm{KIE}=k_{\mathrm{H}} / k_{\mathrm{D}}=2.1$.

3.5 Kinetic Studies

General Information:

The reaction between indole $4 \mathbf{a}$ and $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}$ under standard conditions was selected as the model reaction for kinetic studies. The kinetic of the 2-trifluoroethylation reaction was monitored by measurement of five parallel individual experiments with different reaction time, in which the conversation is the range of $0 \sim 20 \%$ and all the five reactions were conducted in the same preheated oil bath. The kinetic measurements were conducted by using different concentrations of each component. The procedure was the same as above in section 3.4.

3.5.1 Dependence of Initial-Rate on $\left[\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}\right]$

The plot showed that the initial rate has a zero-order dependence on $\left[\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}\right]$ (Figure S6).

Figure S6. Kinetic Data: Initial Rate Dependence on $\left[\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}\right]$: $\left[\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}\right]=$ $0.20-1.00 \mathrm{M},\left[\mathrm{Pd}(\mathrm{acac})_{2}\right]=0.03 \mathrm{M},[$ norbornene $]=0.40 \mathrm{M}$, [indole] $=0.20 \mathrm{M},[\mathrm{dbm}]$ $=0.08 \mathrm{M},\left[\mathrm{KHCO}_{3}\right]=0.40 \mathrm{M}$ in DMF, $100^{\circ} \mathrm{C}$.

3.5.2 Dependence of Initial-Rate on [Norbornene]

The plot showed that the initial rate has a zero-order dependence on [Norbornene] (Figure S7).

Figure S7. Kinetic Data: Initial Rate Dependence on [norbornene]: [norbornene] = $0.20-1.20 \mathrm{M},\left[\mathrm{Pd}(\mathrm{acac})_{2}\right]=0.03 \mathrm{M},\left[\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}\right]=0.60 \mathrm{M},[$ indole $]=0.20 \mathrm{M},[\mathrm{dbm}]=$ $0.08 \mathrm{M},\left[\mathrm{KHCO}_{3}\right]=0.40 \mathrm{M}$ in DMF, $100^{\circ} \mathrm{C}$.

3.5.3 Dependence of Initial-Rate on [Pd(acac) $\left.\mathbf{2}^{2}\right]$

The plot showed that the initial rate has a first-order dependence on $\left[\operatorname{Pd}(\mathrm{acac})_{2}\right]$ (Figure S8).

Figure S8. Kinetic Data: Initial Rate Dependence on $\left[\operatorname{Pd}(a c a c)_{2}\right]:\left[\operatorname{Pd}(a c a c)_{2}\right]=$ $0.01-0.05 \mathrm{M}$, [norbornene $]=0.40 \mathrm{M},\left[\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}\right]=0.60 \mathrm{M}$, [indole $]=0.20 \mathrm{M}$, [dbm] $=0.08 \mathrm{M},\left[\mathrm{KHCO}_{3}\right]=0.40 \mathrm{M}$ in DMF, $100^{\circ} \mathrm{C}$.

3.5.4 Dependence of Initial-Rate on [Indole]

The plot showed that the initial rate has saturation dependence on [indole] (Figure S9).

Figure S9. Kinetic Data: Initial Rate Dependence on [indole]: [indole] $=0.05-0.40 \mathrm{M}$, $\left[\mathrm{Pd}(\mathrm{acac})_{2}\right]=0.03 \mathrm{M},[$ norbornene $]=0.40 \mathrm{M},\left[\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}\right]=0.60 \mathrm{M},[\mathrm{dbm}]=0.08 \mathrm{M}$, $\left[\mathrm{KHCO}_{3}\right]=0.40 \mathrm{M}$ in DMF, $100^{\circ} \mathrm{C}$.

3.5.5 The initial rate of different concentrations of dbm

The experiments were conducted in the different concentrations of dbm. The procedure was same to that described in section 3.4. The plot showed that the initial rate was slightly increased with the decreasing amount of dbm (Figure S10).

Figure S10.The reaction rate dependence on the concentrations of dbm

3.6 ESI-Mass studies.

ESI-MS(/MS) spectra were recorded on a Thermo TSQ (Thermo Finnigan, Quantum Access TM) triple-quadrupole mass spectrometer equipped with a standard ESI ion source. ${ }^{8,9,10}$ The basic ESI conditions were: vacuum, 2.8×10^{-6} torr; spray voltage, $2500 \sim 3000 \mathrm{~V}$; capillary temperature, $270^{\circ} \mathrm{C}$; sheath gas pressure, 5 arb. units; aux gas pressure, 2 arb. units; the collision energy ranged from 5 to 30 eV depending on the dissociation capability of the precursor ions. Data acquisition and analysis were done with the Xcalibur (version 2.0, Thermoquest Finnigan) software package. The experimental results showed that the negative ion mode at $2500 \sim 3000 \mathrm{~V}$ is suitable for the characterization of the Pd-complexes of this research. When the reaction finished, the reaction solution was cooled to room temperature and released the high pressure vessel. The concentrated reaction solutions were first filtered by PTFE Syringe Filter and then diluted with 100 times with DMF before ESI-MS analysis. The injection speed of the reaction solution was set to $5 \mu \mathrm{~L} / \mathrm{min}$.
Notes: The ions containing Pd gave their representative isotopic clusters in ESI MS spectra, thus the m / z values of these Pd complex ions shown in this paper are the peaks with their highest abundance.

	\%	亏\%	ก	
		V		

Figure S11. The crude ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction in S9.
The reaction was conducted under standard condition but without dbm for 2 hours (eq S9). After that, the reaction solution was cooled to room temperature and filtered through PTFE Syringe Filter. The clear solution was analyzed by ${ }^{1} \mathrm{H}$ NMR and ESI-MS, which showed that the mixture contains product 5a in 28% yield and substrate 4 a in 68% yield. The crude ${ }^{1} H$ NMR spectrum and ESI-MS spectra are listed in Figure S11 and S12.

The proposed structures of the anionic Pd complex at $m / z 519$ from ESI studies of reaction solution and the proposed dissociation pathways for structural characterizations are listed in below (Scheme S1).

Scheme S1. The possible dissociation pathway of the anionic Pd complex at $\mathrm{m} / \mathrm{z} 519$ from ESI-MS studies of the reaction solution (eq S9).

In order to help understanding the catalytic system, alternative simple physical mixture of $0.06 \mathrm{mmol} 5 \mathrm{5a}$ (30% yield), $0.14 \mathrm{mmol} 4 \mathbf{4}$ (70% yield), $\mathrm{Pd}(\mathrm{acac})_{2}$ and KHCO_{3} in DMF was heated for two hours, then the mixture reaction solution was monitored by ESI-MS at the same condition, the obvious different spectra was observed, which listed in Figure S12. The significant observations between catalytic reaction and physical mixture solution revealed that $\operatorname{Pd}(\mathrm{acac})_{2}$ does not existed in the catalytic system.

ESI-MS Spectra:

Figure S12. (a) The negative ion mode ESI-MS spectrum for the diluted reaction solution (eq S9). (b) The isotopic distribution of the anionic Pd complex at $\mathrm{m} / \mathrm{z} 519$ in the expanded ESI-MS spectrum. (c) ESI-MS/MS spectrum for the anionic Pd complex at $m / z 519$.

To a dried 4 mL glass sealed tube, substrate $\mathbf{4 a}(16.4 \mathrm{mg}, 0.14 \mathrm{mmol}), \mathbf{5 a}(11.9 \mathrm{mg}$, $0.06 \mathrm{mmol}), \mathrm{Pd}(\mathrm{acac})_{2}(9.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ and $\mathrm{KHCO}_{3}(40.0 \mathrm{mg}, 0.4$ mmol, 2 equiv) were dissolved in dry DMF (1.0 mL)under Ar atmosphere. Then the mixture was stirred at room temperature for 5 minutes. The sealed tube was subsequently immersed in a preheated oil bath at $100{ }^{\circ} \mathrm{C}$ for 2 hours. After that, the reaction was cooled to room temperature and the mixture was filtered through PTFE Syringe Filter. The clear solution was diluted 100 times with DMF and then analyzed by ESI-MS. The ESI-MS analysis results are listed in below Figure S13.

ESI-MS Spectra:

Figure S13. (a) The negative ion mode ESI-MS spectrum for the diluted reaction solution (eq S10). (b) the isotopic distributions of the anionic Pd complexes in the expanded ESI-MS spectrum.

Scheme S2. The possible structures of the anionic Pd complexes at $m / z 420,437,502$, 519 and 601 from ESI-MS studies of the reaction solution (eq S10).

4. DFT Calculation

4.1. Complete Reference for Gaussian 09

Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

4.2. Computational Methods

Density functional theory (DFT) investigations were performed to delineate the detailed mechanism of this palladium-catalyzed C-H bond trifluoroethylation reaction. All density functional theory calculations were carried out with the Gaussian 09 programs. Geometry optimization and unscaled harmonic vibration frequency ${ }^{511}$ calculation were carried out using the B3LYP functional, ${ }^{12}$ and a mixed basis set (SDD^{13} for palladium and $6-31+\mathrm{G}(\mathrm{d})$ for other atoms). The solvent effects were considered by single point energy calculations on the gas-phase stationary points using M11-L ${ }^{14}$ functional with the $6-311+G(d, p)$ basis set (SDD for palladium atoms) in a SMD continuum solvation model. ${ }^{15}$ The energies given in this work are M11-L calculated Gibbs free energies in DMF solvent.

4.3. Absolute Calculation Energies, Enthalpies, and Free Energies

Geometry	$\mathrm{E}_{(\text {elec-B3LYP })}{ }^{1}$	$\mathrm{E}_{(\text {solv, M11-L) }}{ }^{2}$	$\mathrm{G}_{\text {(corr-B3LYP) }}{ }^{3}$	$\mathrm{H}_{\text {(corr-B3LYP) }}{ }^{4}$	IF ${ }^{5}$
int.V	-836.344691	-836.586992	0.185318	0.250071	-
int.VI	-1109.087971	-1109.361183	0.333847	0.412335	-
TS1	-1109.067382	-1109.340888	0.335262	0.411179	-245.25
int.I-dk	-1109.086484	-1109.352509	0.338359	0.414112	-
4 a	-363.809320	-363.809320	0.099648	0.137254	-
TS2	-1373.566555	-1373.948417	0.352876	0.440262	-545.76
5a	-740.164851	-740.164851	0.125784	0.175896	-
int.II-dk	-1108.591707	-1108.924370	0.324462	0.399947	-
TS3	-1496.944991	-1497.323363	0.356291	0.451012	-232.99
int.IV	-1485.424972	-1485.694704	0.362792	0.450778	-
TS4	-1485.402294	-1485.673166	0.363991	0.449656	-339.70
int.VII	-1485.450910	-1485.734179	0.366106	0.452414	-
TS5	-1485.420868	-1485.704810	0.362329	0.449689	-257.67
int.VIII	-1485.443950	-1485.723278	0.361288	0.450845	-
int.IX	-1576.548898	-1576.857348	0.335739	0.428136	-
TS6	-1576.505732	-1576.806328	0.331734	0.423167	-1422.4
int.XII	-836.347470	-836.598221	0.186752	0.249826	-
int.X	-1151.637169	-1151.940583	0.252033	0.330936	-
TS7	-1151.607627	-1151.909079	0.25335	0.329158	-205.45
int.XI	-1151.655070	-1151.958766	0.255607	0.330857	-
TS8	-1576.513167	-1576.799347	0.329763	0.422229	-1263.3
TS9	-1576.501166	-1576.799019	0.329441	0.329441	-1025.3
Norborn.	-272.722693	-272.760510	0.125198	0.159861	-
$\mathrm{HCO}_{3}{ }^{-}$	-264.420220	-264.583716	0.000483	0.030723	-
$\mathrm{H}_{2} \mathrm{O}$	-76.407024	-76.450265	0.003474	0.024919	-
CO_{2}	-188.577570	-188.592551	-0.009098	0.015204	-
acac	-345.208235	-345.356111	0.075945	0.118366	-
$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}$	-388.354364	-388.354364	0.010711	0.050002	-
I^{-}	-11.518910	-11.518910	-0.016848	0.00236	-

${ }^{1}$ The electronic energy calculated by B3LYP in gas phase. ${ }^{2}$ The electronic energy calculated by M11-L in toluene solvent. ${ }^{3}$ The thermal correction to Gibbs free energy calculated by B3LYP in gas phase. ${ }^{4}$ The thermal correction to enthalpy calculated by B3LYP in gas phase. ${ }^{5}$ The B3LYP calculated imaginary frequencies for the transition states.

4.4. B3LYP Geometries for All the Optimized Compounds and Transition States Attached in the end of SI.

5. New Compounds Characterization

5a
The reaction was conducted with general procedure in 0.2 mmol scale. The residue was purified by y column chromatography on silica gel with petroleum ether/ethyl acetate ($25: 1$ to $20: 1$) to afford the product 5 a in 78% yield (31.1 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{br}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{q}, J=$ $10.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.5,128.0,126.5,125.1(\mathrm{q}, J=275.2$ Hz), 122.5, 120.5, 120.2, 110.8, 104.4, 33.7 (q, $J=31.1 \mathrm{~Hz}$). ${ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-65.3(\mathrm{t}, J=10.5 \mathrm{~Hz}) . \mathrm{HRMS}: \mathrm{m} / \mathrm{z}(\mathrm{EI})$ calculated $\left[\mathrm{M}^{+}\right]: 199.0609$, measured: 199.0612.

The reaction was conducted with general procedure in 0.2 mmol scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($25: 1$ to $20: 1$) to afford the product $\mathbf{5 b}$ in 76% yield (32.4 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (br, 1H), 7.37 (s, 1H), 7.23 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.8,129.4,128.2,126.6,125.1(\mathrm{q}, J=276.0 \mathrm{~Hz}), 124.1$, 120.1, 110.4, 103.9, $33.8(\mathrm{q}, J=31.1 \mathrm{~Hz}), 21.4 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.4$ ($\mathrm{t}, J=10.2 \mathrm{~Hz}$). HRMS: m/z (EI) calculated $\left[\mathrm{M}^{+}\right]: 213.0765$, measured: 213.0769 .

The reaction was conducted with general procedure in 0.2 mmol scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($30: 1$ to $25: 1$) to afford the product $\mathbf{5 c}$ in 82% yield (37.8 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{br}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H})$, $6.87(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.3,131.6,128.4,127.3,125.1(\mathrm{q}, J=275.6 \mathrm{~Hz})$, $112.7,111.6,104.0,102.1,55.8,33.6(\mathrm{q}, J=31.5 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-65.4(\mathrm{t}, J=10.5 \mathrm{~Hz})$. HRMS: m/z (EI) calculated $\left[\mathrm{M}^{+}\right]: 229.0714$, measured: 229.0715.

5d

The reaction was conducted with general procedure in 0.2 mmol scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (20:1 to $15: 1$) to afford the product $\mathbf{5 d}$ in 75% yield $(45.7 \mathrm{mg})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{br}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.94(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.5,137.5,131.8,128.5,128.4,127.8,127.5,127.3$, $125.1(\mathrm{q}, ~ J=275.6 \mathrm{~Hz}), 113.5,111.6,104.2,103.8,70.8,33.7(\mathrm{q}, J=31.1 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.3\left(\mathrm{t}, J=10.5 \mathrm{~Hz}\right.$). HRMS: m/z (EI) calculated $\left[\mathrm{M}^{+}\right]$: 305.1027, measured: 305.1026 .

5e

The reaction was conducted with general procedure in 0.2 mmol scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($30: 1$ to $25: 1$) to afford the product $\mathbf{5 e}$ in 74% yield (31.7 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{br}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H})$, $6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.9,132.4,125.8,125.7,125.1$ (q, $\left.J=275.5 \mathrm{~Hz}\right), 121.9$, 120.1, 110.7, 104.2, $33.7(\mathrm{q}, J=31.1 \mathrm{~Hz}), 21.7 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.4$ (t, $J=10.2 \mathrm{~Hz}$). HRMS: m/z (EI) calculated $\left[\mathrm{M}^{+}\right]:$213.0765, measured: 213.0764.

The reaction was conducted with general procedure in 0.2 mmol scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($30: 1$ to $25: 1$) to afford the product $\mathbf{5 f}$ in 78% yield (33.9 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{br}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=$ $9.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dt}, J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{q}, J=10.4 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.0(\mathrm{~d}, J=233.8 \mathrm{~Hz}$), 133.0, 128.3, 128.2 $125.0(\mathrm{q}, ~ J=275.6 \mathrm{~Hz}), 111.5(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 110.9(\mathrm{~d}, J=26.2 \mathrm{~Hz}), 105.3(\mathrm{~d}, J=$ $23.5 \mathrm{~Hz}), 104.5(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 33.8(\mathrm{q}, J=31.1 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-65.3(\mathrm{t}, J=10.5 \mathrm{~Hz}),-124.2(\mathrm{dt}, J=9.4,4.5 \mathrm{~Hz}) . \mathrm{HRMS}: \mathrm{m} / \mathrm{z}(\mathrm{EI})$ calculated $\left[\mathrm{M}^{+}\right]$: 217.0515, measured: 217.0517 .

5 g
The reaction was conducted with general procedure in 0.2 mmol scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($25: 1$ to $20: 1$) to afford the product $\mathbf{5 g}$ in 80% yield (37.4 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{br}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16(\mathrm{dd}, J=8.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.8,129.0,128.0,125.9,125.0(\mathrm{q}, J=275.6 \mathrm{~Hz}), 122.9,119.9$, $111.8,104.1,33.7(\mathrm{q}, J=31.8 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.3(\mathrm{t}, J=10.2$ Hz). HRMS: m/z (EI) calculated [M ${ }^{+}$: 233.0219, measured: 233.0218.

5h
The reaction was conducted with general procedure in 0.2 mmol scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($30: 1$ to $25: 1$) to afford the product $\mathbf{5 h}$ in 66% yield (36.6 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15(\mathrm{br}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~s}$, $1 \mathrm{H}), 3.58(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.1,129.7,127.9$, 125.4, $124.9(\mathrm{q}, J=275.8 \mathrm{~Hz}), 123.0,113.4,112.2,104.0,33.7(\mathrm{q}, J=31.9 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.2\left(\mathrm{t}, J=10.9 \mathrm{~Hz}\right.$). HRMS: m/z (EI) calculated $\left[\mathrm{M}^{+}\right]$: 276.9714, measured: 276.9717.

$5 i$
The reaction was conducted with general procedure in 0.2 mmol scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($25: 1$ to $20: 1$) to afford the product $\mathbf{5 i}$ in 80% yield (37.3 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{br}, 1 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 1 \mathrm{H})$ 7.11-7.13 (m,2H), $6.60(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.1,127.2$, $126.9,125.8,124.9(\mathrm{q}, ~ J=275.7 \mathrm{~Hz}), 123.2,120.0,109.5,103.1,33.7(\mathrm{q}, J=31.8$ $\mathrm{Hz}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.3(\mathrm{t}, J=10.2 \mathrm{~Hz}$). HRMS: m/z (EI)
calculated $\left[\mathrm{M}^{+}\right]: 233.0219$, measured: 233.0225.

5j
The reaction was conducted with general procedure in 0.2 mmol scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($20: 1$ to $\mathbf{1 2 : 1}$) to afford the product $\mathbf{5 j}$ in 74% yield (38.0 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{br}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,139.1,128.1,127.6,124.9(\mathrm{q}, J=275.6 \mathrm{~Hz}), 123.9$, $123.5,122.3,110.6,105.6,51.9,33.7(\mathrm{q}, J=31.1 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-65.2(\mathrm{t}, J=10.2 \mathrm{~Hz})$. HRMS: m/z (EI) calculated $\left[\mathrm{M}^{+}\right]: 257.0664$, measured: 257.0671.

5k
The reaction was conducted with general procedure in 0.2 mmol scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($8: 1$ to $4: 1$) to afford the product $\mathbf{5 k}$ in 63% yield (44.2 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69(\mathrm{br}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{q}$, $J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.1,135.9,130.3$, 128.2, 127.4, $125.1(\mathrm{q}, J=275.6 \mathrm{~Hz}), 122.3,119.4,111.2,103.9,79.5,45.2,33.5(\mathrm{q}$, $J=31.0 \mathrm{~Hz}), 20.4 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.4(\mathrm{t}, J=10.5 \mathrm{~Hz}) . \mathrm{HRMS}: \mathrm{m} / \mathrm{z}$ (EI) calculated $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 351.1291$, measured: 351.1292 .

5I
The reaction was conducted with general procedure in 0.2 mmol scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($40: 1$ to $30: 1$) to afford the product $\mathbf{5 l}$ in $\mathbf{1 3 \%}$ yield (5.6 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99$ (br, 1H), 7.44 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07-7.00 $(\mathrm{m}, 2 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{q}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 136.1,127.5,126.2,125.1(\mathrm{q}, J=275.5 \mathrm{~Hz}), 123.0,120.4,120.0,118.2$, $105.0,33.8(\mathrm{q}, ~ J=31.1 \mathrm{~Hz}), 16.6 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.4(\mathrm{t}, J=10.2$ Hz). HRMS: m/z (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}: 213.0838$, measured: 214.0839 .

The reaction was conducted with general procedure in 0.2 mmol Scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($30: 1$ to $25: 1$) to afford the product $\mathbf{5 m}$ in 80% yield (34.1 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{br}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.8,128.7,128.5,125.4(\mathrm{q}, J=276.3$ $\mathrm{Hz}), 122.6,119.5,118.9,111.8,110.7,31.5(\mathrm{q}, ~ J=31.5 \mathrm{~Hz}), 8.39 .{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-65.1 (t, $J=10.5 \mathrm{~Hz}$). HRMS: m/z (EI) calculated [${ }^{+}$]: 213.0765, measured: 213.0766 .

5n

The reaction was conducted with general procedure in 0.2 mmol Scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($3: 1$ to $1: 1$) to afford the product $\mathbf{5 n}$ in 58% yield (28.2 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{br}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.55(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 136.0,127.6,125.2(\mathrm{q}, J=276.4 \mathrm{~Hz}), 124.2,122.7,119.8,118.8,112.2$, $110.9,62.6,31.4(\mathrm{q}, J=31.2 \mathrm{~Hz}), 27.5 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-64.9(\mathrm{t}, J=$ 10.5 Hz). HRMS: m/z (EI) calculated [M ${ }^{+}$]: 243.0871, measured: 243.0874.

50
The reaction was conducted with general procedure in 0.2 mmol Scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($10: 1$ to $5: 1$) to afford the product $\mathbf{5 0}$ in 66% yield (31.4 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-Acetone) $\delta 10.5$ (br, 1 H), 7.71 (dd, $J=8.0,0.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.21(\mathrm{dt}, J=7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dt}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ $(\mathrm{s}, 1 \mathrm{H}), 3.96(\mathrm{q}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, d_{6}$-Acetone) δ 136.2, 126.9, $125.8(\mathrm{q}, J=275.5 \mathrm{~Hz}), 125.2,122.7,119.8,118.2,118.0,111.4,104.4,30.5(\mathrm{q}, J=$ 31.1 Hz), 12.0. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, d_{6}$-Acetone) $\delta-65.7(\mathrm{t}, J=10.2 \mathrm{~Hz}$). HRMS: $\mathrm{m} / \mathrm{z}(\mathrm{EI})$ calculated $\left[\mathrm{M}^{+}\right]: 238.0718$, measured: 238.0721.

5p
The reaction was conducted with general procedure in 0.2 mmol Scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl
acetate ($15: 1$ to $8: 1$) to afford the product $\mathbf{5 p}$ in 76% yield (41.2 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17$ (br, 1H), $7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{dt}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dt}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,135.7$, 127.5, $125.2(\mathrm{q}, J=276.1 \mathrm{~Hz}), 124.5,122.8,120.1,118.8,110.9,108.6,52.1,31.4(\mathrm{q}$, $J=31.3 \mathrm{~Hz}$), 29.9. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.9(\mathrm{t}, J=10.5 \mathrm{~Hz}) . \mathrm{HRMS}: \mathrm{m} / \mathrm{z}$ (EI) calculated $\left[\mathrm{M}^{+}\right]: 271.0820$, measured: 271.0824 .

5q
The reaction was conducted with general procedure in 0.2 mmol Scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($8: 1$ to $4: 1$) to afford the product $\mathbf{5 q}$ in 58% yield (45.9 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17$ (br, 1H), $7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=6.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{td}, J=$ $10.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{q}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.88(\mathrm{~m}, 1 \mathrm{H})$, $1.65-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.84(\mathrm{~m}, 2 \mathrm{H}), 0.81-0.74(\mathrm{~m}, 1 \mathrm{H}), 0.80(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3,135.7,127.6,126.6(\mathrm{q}, J=276.1 \mathrm{~Hz}), 124.4,122.7,119.9$, $118.9,110.9,108.8,74.9,47.0,40.7,34.2,31.3,31.2(\mathrm{q}, ~ J=31.3 \mathrm{~Hz}), 30.4,26.1$, 23.3, 21.9, 20.6, 16.1. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.9(\mathrm{t}, J=10.5 \mathrm{~Hz}) . \mathrm{HRMS}:$ m / z (ESI) calculated $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 413.2410$, measured: 413.2414.

5r
The reaction was conducted with general procedure in 0.2 mmol Scale. The residue
was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($15: 1$ to $10: 1$) to afford the product $\mathbf{5 r}$ in 56% yield (33.5 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{br}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{q}, J=$ $10.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-2.02(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.1,135.9,127.6,125.3(\mathrm{q}, J=275.9 \mathrm{~Hz}$), 122.9 , $122.5,119.6,119.0,115.4,110.8,51.5,33.3,31.3(\mathrm{q}, J=30.4 \mathrm{~Hz}), 25.6,23.2 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.9\left(\mathrm{t}, J=10.5 \mathrm{~Hz}\right.$). HRMS: m/z (EI) calculated $\left[\mathrm{M}^{+}\right]$: 299.1133, measured: 299.1126.

The reaction was conducted with general procedure in 0.2 mmol Scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($8: 1$ to $4: 1$) to afford the product 5 s in 58% yield (36.5 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{br}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H})$, 6.88 (dd, $J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.59(\mathrm{~m}, 4 \mathrm{H}), 2.92(\mathrm{t}, J$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.4,154.1,131.2$, 127.9, $125.2(\mathrm{q}, J=275.7 \mathrm{~Hz}), 124.5,112.7,112.3,111.8,100.5,55.8,39.7,31.3(\mathrm{q}, J$ $=30.8 \mathrm{~Hz}), 30.8,24.1,23.1 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.8(\mathrm{t}, J=10.2 \mathrm{~Hz})$. HRMS: m/z (EI) calculated [$\left.\mathrm{M}^{+}\right]: 314.1242$, measured: 314.1238 .

The reaction was conducted with general procedure in 0.2 mmol Scale. The residue
was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($8: 1$ to $4: 1$) to afford the product $\mathbf{5 t}$ in 38% yield (27.8 mg).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{br}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=$ $10.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.56(\mathrm{~m}, 5 \mathrm{H}), 3.01(\mathrm{dd}, J=13.2$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,165.4,136.1,127.0,125.1(\mathrm{q}, J=276.1 \mathrm{~Hz}), 125.0,123.4$, $120.5,118.4,111.3,109.8,59.2,54.6,45.6,31.4(\mathrm{q}, ~ J=31.2 \mathrm{~Hz}), 28.3,25.5,22.6 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.6(\mathrm{t}, J=10.9 \mathrm{~Hz}$). HRMS: m/z (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}: 366.1424$, measured: 366.1425 .

The reaction was conducted with general procedure in 0.2 mmol Scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($8: 1$ to $4: 1$) to afford the product $\mathbf{5 u}$ in 33% yield (24.3 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO) $\delta 11.02(\mathrm{br}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 3.91-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.08(\mathrm{dd}, J=14.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 1 \mathrm{H}), 0.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, d_{6}$-DMSO) $\delta 168.0,166.8,136.1,128.6,126.2$ $(\mathrm{q}, ~ J=275.4 \mathrm{~Hz}), 125.9,121.9,119.7,119.2,111.2,109.4,59.7,55.7,31.9,30.6(\mathrm{q}, J$ $=29.6 \mathrm{~Hz}), 28.0,18.7,16.5 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, d_{6}$-DMSO) $\delta-63.7(\mathrm{t}, J=10.5 \mathrm{~Hz}$). HRMS: m/z (ESI) calculated $[\mathrm{M}+\mathrm{H}]^{+}: 368.1850$, measured: 368.1850 .

The reaction was conducted with general procedure in 0.2 mmol Scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($15: 1$ to $10: 1$) to afford the product $\mathbf{5 v}$ in 56% yield ($44.8 \mathrm{mg}, 98 \%$ ee).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{br}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, 2 H), $1.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,155.1,135.8,127.7,125.2$ $(\mathrm{q}, ~ J=275.7 \mathrm{~Hz}), 124.7,122.6,119.8,118.8,110.9,110.0,80.0,54.0,52.3,31.2(\mathrm{q}, J$ $=30.8 \mathrm{~Hz}$), 27.0. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.5(\mathrm{t}, J=10.5 \mathrm{~Hz}$). HRMS: m/z (EI) calculated $\left[\mathrm{M}^{+}\right]: 400.1610$, measured: 400.1604.

HPLC (AD-H, $0.46 * 25 \mathrm{~cm}, 5 \mu \mathrm{~m}$, hexane $/$ isopropanol $=8 / 2$, flow $0.7 \mathrm{~mL} / \mathrm{min}$, detection at 214 nm) retention time $=17.73 \mathrm{~min}($ minor $)$ and 9.29 min (major).

No.	Ret.Time \min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	7.72	n.a.	1347.324	269.592	49.78	n.a.	MB*
2	9.31	n.a.	1108.929	272.014	50.22	n.a.	BMB*
Total:			2456.253	541.606	100.00	0.000	

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	7.73	n.a.	28.354	5.151	1.00	n.a.	MB*
2	9.29	n.a.	1916.224	512.130	99.00	n.a.	BMB
Total:			1944.578	517.281	100.00	0.000	

5w
The reaction was conducted with general procedure in 0.2 mmol Scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($8: 1$ to $4: 1$) to afford the product $\mathbf{5 w}$ in 51% yield (61.0 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17$ (br, 1H), $7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31 (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.62-4.57 (m, 1H), $3.71(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.02-1.94 (m, 2H), 1.85-1.82 (m, 3H), 1.60-0.96 (m, 21H), $1.01(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.8,139.5,135.7,127.6,125.3(\mathrm{q}, J=276.6 \mathrm{~Hz}), 124.3,122.8,122.7,120.0,119.0$, $110.8,108.9,74.7,56.6,56.1,49.9,42.3,39.7,39.5,37.9,36.9,36.5,36.2,35.8,31.9$, $31.8,31.4$ (q, $J=31.0 \mathrm{~Hz}$), 30.5, 28.2, 28.0, 27.7, 24.2, 23.8, 22.8, 22.5, 21.0, 19.3, 18.7, 11.8. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-64.8(\mathrm{t}, J=10.2 \mathrm{~Hz}$). HRMS: m/z (ESI) calculated $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 643.4445$, measured: 643.4445 .

The reaction was conducted with general procedure in 0.2 mmol Scale. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate ($30: 1$ to $25: 1$) to afford the product 5 s in 30% yield (14.0 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{br}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{q}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.8,129.3,127.4,124.9(\mathrm{q}, J=275.5 \mathrm{~Hz}), 121.9,121.0,119.1$, 116.3, 105.4, $33.7(\mathrm{q}, J=31.2 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.3(\mathrm{t}, J=10.5$

Hz). HRMS: m/z (EI) calculated [M $\left.{ }^{+}\right]: 233.0219$, measured: 233.0213 .

6. Reference

(1) Trabbic, C. J.; Overmeyer, J. H.; Alexander, E. M.; Crissman, E. J.; Kvale, H. M.; Smith, M. A.; Erhardt, P. W.; Maltese, W. A. J. Med. Chem. 2015, 58, 2489-2512.
(2) Vázquez-Arredondo, R. M.; Suárez-Castillo, O. R.; Meléndez-Rodríguez, M.; Sánchez-Zavala, M.; Cano-Escudero, I. C.; Bautista-Hernández, C. I.; J. Cruz-Borbolla, J.; Morales-Ríos, M. S.; Joseph-Nathan, P. Tetrahedron: Asymmetry 2012, 23, 1279-1293.
(3) Perregaard, J.; Moltzen, E. K.; Meier, E.; Sanchez, C. J. Med. Chem. 1995, 38, 1998-2008.
(4) Kieffer, M. E.; Chuang, K. V.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 5557-5560.
(5) Morin, J.; Zhao, Y.; Snieckus, V. Org. Lett. 2013, 15, 4102-4105.
(6) Jiao, L.; Herdtweck, E.; Bach, T. J. Am. Chem. Soc. 2012, 134, 14563-14572.
(7) Ibaceta-Lizana, J. S. L.; Jackson, A. H.; Prasitpan, N.; Shannon, P. V. R. J. Chem. Soc., Perkin Trans. 2 1987, 1221-1226.
(8) Wang, H.-Y.; Zhang, J.-T.; Zhang, S.-S.; Guo, Y.-L. Org. Chem. Front. 2015, 2, 990-994.
(9) Zhang, J.-T.; Wang, H.-Y.; Zhu, W.; Cai, T.-T.; Guo, Y.-L. Anal. Chem. 2014, 86, 8937-8942.
(10) Gao, Y.; Wang, H.-Y.; Zhang, X.; Cheng, J.-S.; Zhang, F.; Guo, Y.-L. J. Mass Spectrom. 2014, 49, 481-489.
(11) (a) Yang, Y.-F.; Chen, G.; Hong, X.; Yu, J.-Q.; Houk, K. N. J. Am. Chem. Soc. 2017, 139, 8514-8521. (b) Jiang, Y.-Y.; Zhang, Q.; Yu, H.-Z.; Fu, Y. ACS Catal. 2015, 5, 1414-1423. (c) Jiang, Y.-Y.; Yan, L.; Yu, H.-Z.; Zhang, Q.; Fu, Y. ACS Catal. 2016, 6, 4399-4410.
(12) (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785-789. (b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
(13) (a) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 866-872. (b) Dolg, M.; Stoll, H.; Preuss, H. J. Chem. Phys. 1989, 90, 1730-1734.
(14) (a) Peverati, R.; Truhlar, D. G. J. Phys. Chem. Lett. 2012, 3, 117-124. (b) Zhao, Y.; Ng, H. T.; Peverati, R.; Truhlar, D. G. J. Chem. Theory Comput. 2012, 8, 2824-2834. (c) Peverati, R.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2012, 14, 11363-11370.
(15) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396.

Appendix for DTF calculation:

4.3. B3LYP Geometries for All the Optimized Compounds and Transition States int. V

C	-3.42698900	-0.05482500	-0.60443500
C	-2.28978200	-0.23540000	0.23048400
C	-2.28787400	0.18280600	1.56078600
C	-3.44475300	0.78796900	2.06100800
C	-4.58059400	0.95117600	1.25303700

C	-4.58405500	0.52757900	-0.07926800
C	-3.05174900	-0.57175600	-1.90042400
C	-1.76036700	-1.01746100	-1.78744700
H	-1.41322700	0.03587900	2.18966600
H	-3.46789100	1.12556800	3.09353200
H	-5.47247900	1.40975800	1.67178200
H	-5.47227400	0.65168800	-0.69390600
H	-3.67696400	-0.63033700	-2.78225500
H	-1.13736900	-1.47768800	-2.54366500
N	-1.27739300	-0.87855400	-0.49170900
Pd	0.64846000	-0.79150000	-0.04497900
C	3.49910300	-0.26127800	0.48907100
O	2.56386300	-1.12906800	0.54446900
C	3.37407900	1.05754700	0.01354900
H	4.26571700	1.67213600	0.03070500
C	2.20497700	1.65269800	-0.47963000
O	1.04407900	1.11738700	-0.58829500
C	2.24358400	3.09040600	-0.95701600
H	3.23650500	3.53296000	-0.85085400
H	1.93942400	3.13207200	-2.00860100
H	1.51949700	3.68220900	-0.38675600
C	4.84105800	-0.74571900	0.99397800
H	5.14844800	-1.62787400	0.42152800
H	5.61563600	0.02060800	0.91810800
H	4.74419200	-1.05708800	2.04014900
int, VI			
C	3.76453500	-0.49378800	-0.59368200
C	2.54777500	-0.40977100	0.15721000
C	2.55883700	-0.38784500	1.56103100
C	3.78545300	-0.47462200	2.21159800
C	4.98951600	-0.58372300	1.48444800
C	4.98651500	-0.59500200	0.09477100
C	3.38797400	-0.45585500	-1.97461800
C	2.01372800	-0.36077300	-2.00044800
H	1.63462500	-0.28554700	2.12618600
H	3.81688700	-0.45509000	3.29814800
H	5.93164600	-0.65606400	2.02207700
H	5.92044600	-0.67730300	-0.45716800
H	4.04226300	-0.51604400	-2.83476000
H	1.35709200	-0.29882600	-2.86027800
N	1.48592000	-0.37595200	-0.72468100
C	-2.52079100	2.18544500	0.38587900
C	-1.65113600	3.27233200	0.22639300

H	-2.06132100	4.26249700	0.38303000
C	-0.29263700	3.18814600	-0.12010100
O	0.36880700	2.11915200	-0.34844400
C	0.52605300	4.45436600	-0.25227700
H	-0.06677000	5.35385700	-0.07040900
H	1.36024900	4.41996700	0.45707500
H	0.96056100	4.50205300	-1.25666900
C	-3.96716300	2.44512600	0.75444500
H	-4.21102500	1.91257300	1.68049400
H	-4.17806100	3.50867100	0.88719000
H	-4.62147200	2.04689300	-0.02961200
Pd	-0.37188300	0.22086300	-0.24902300
O	-2.23012600	0.94467600	0.25018900
C	-3.44268900	-1.77176400	-0.36509200
C	-2.34791800	-2.62061900	-1.07397200
C	-1.76953200	-2.76269700	1.10864900
C	-3.04023200	-1.86343300	1.13873100
H	-3.47313700	-0.74263700	-0.72170100
H	-4.42240100	-2.22779100	-0.54613600
H	-2.84873600	-0.88269000	1.57403400
H	-3.81720500	-2.35735500	1.73265600
C	-2.16458600	-3.75811400	-0.02369500
H	-1.36628600	-4.46204400	-0.28069900
H	-3.08736600	-4.31383900	0.18448900
C	-0.96578300	-1.97543900	-0.93893800
H	-0.28701800	-1.84977600	-1.77442400
C	-0.61181500	-2.06491000	0.39040400
H	0.39311900	-2.01562400	0.79359300
H	-2.60026000	-2.91819500	-2.09424800
H	-1.49671400	-3.18870600	2.07658700
TS1			
C	-3.24467100	-1.18671500	-0.71853600
C	-2.17000600	-0.65329800	0.04891900
C	-2.12049700	-0.83669700	1.43541500
C	-3.18951600	-1.47832800	2.05715500
C	-4.28302600	-1.95837700	1.31276600
C	-4.31114300	-1.82898700	-0.07228800
C	-2.91360000	-0.95387000	-2.10120600
C	-1.70829500	-0.31428700	-2.11268000
H	-1.25364400	-0.52253900	2.00822900
H	-3.16809200	-1.62628600	3.13362900
H	-5.10104800	-2.45794000	1.82512400
H	-5.13693000	-2.23816300	-0.64945700

H	-3.49497800	-1.24339900	-2.96718100
H	-1.12677200	0.01895500	-2.96297200
N	-1.23478700	-0.06726900	-0.81659800
C	3.59429200	-0.63719600	0.18313900
C	3.28946800	-1.99819900	0.31884800
H	4.11505300	-2.65853000	0.55713600
C	2.01859100	-2.59780400	0.18049500
O	0.92830800	-2.00340900	-0.09429800
C	1.89183700	-4.09692100	0.37283400
H	2.84915200	-4.57543000	0.59388100
H	1.19060800	-4.29916000	1.19025100
H	1.46593400	-4.54289900	-0.53279900
C	5.02774100	-0.18195900	0.37482000
H	5.07114600	0.56006400	1.18018000
H	5.70036600	-1.00900900	0.61410600
H	5.37853400	0.31232300	-0.53833800
Pd	0.79336400	0.05197000	-0.42690800
O	2.78296400	0.31771600	-0.09427400
C	0.43644100	2.61875500	1.65999200
C	0.82685000	3.15427100	0.26010300
C	-1.44409800	3.01595900	0.13785500
C	-1.11906100	2.52943500	1.57514800
H	0.90688600	1.65508500	1.87091500
H	0.74926500	3.32198100	2.44047700
H	-1.51335300	1.53391100	1.76598600
H	-1.59749400	3.21243100	2.28534800
C	-0.35099200	4.13316600	-0.01888500
H	-0.31564600	4.58193500	-1.01759200
H	-0.47685300	4.93020600	0.72526100
C	0.53580800	2.09547900	-0.82977400
H	1.09858200	2.19123900	-1.76267800
C	-0.89844800	2.09814800	-0.93487400
H	-1.43730300	2.00713100	-1.86818400
H	1.83461600	3.57059000	0.20664000
H	-2.48547400	3.30787800	-0.01089000
int.I-dk			
C	2.45793900	2.06913900	-0.63470600
C	1.92179700	0.96765100	0.07149100
C	1.82053700	1.00234100	1.46293400
C	2.38083200	2.08488000	2.14145900
C	2.98621500	3.14506700	1.44908600
C	3.00713100	3.15563700	0.05858500
C	2.22848100	1.83449200	-2.04252600

C 1.586446000 .6			
H	1.27677400	0.24359100	2.00976800
H	2.32010200	2.11530000	3.22562000
H	3.40700100	3.97903000	2.00390100
H	3.41894100	4.00077600	-0.48635900
H	2.49359000	2.49675800	-2.85632500
H	1.25248300	0.13249300	-3.04234000
N	1.36626900	0.03491900	-0.88327600
C	-3.62092200	-0.31099400	0.29651300
C	-3.70016400	1.08759000	0.32758000
H	-4.66938200	1.50880300	0.56863300
C	-2.65612400	2.00833000	0.07646100
O	-1.45588700	1.71997500	-0.21754400
C	-2.96397000	3.49312200	0.15715100
H	-4.00446900	3.69709700	0.42286300
H	-2.30539400	3.95967900	0.89845500
H	-2.74258700	3.96132800	-0.80883900
C	-4.86795200	-1.12168800	0.59812400
H	-4.67773000	-1.77860400	1.45454200
H	-5.73423200	-0.49228800	0.81616300
H	-5.09945300	-1.76661900	-0.25719900
Pd	-0.75827800	-0.27965400	-0.40618100
O	-2.59450600	-1.03699700	0.03629100
C	0.75896400	-2.65401500	1.66532500
C	0.34038300	-3.20615200	0.27675400
C	2.44693000	-2.38610200	-0.06955400
C	2.24597200	-2.23070900	1.45025000
H	0.11694500	-1.81747400	1.96087700
H	0.67520800	-3.42436200	2.44035900
H	2.50136500	-1.24729800	1.83496000
H	2.92059500	-2.93915600	1.94612500
C	1.69807000	-3.73915800	-0.27041600
H	1.64269500	-4.07132800	-1.31351100
H	2.14193200	-4.54205400	0.33060300
C	0.11125800	-2.07227300	-0.73771000
H	-0.34991200	-2.45962000	-1.65488600
C	1.52533800	-1.52056700	-0.97368100
H	1.87541100	-1.66931400	-1.99747000
H	-0.47888200	-3.92755900	0.31950100
H	3.49608200	-2.36355000	-0.37830200
4a			
C	-0.25013900	0.75234700	0.00002100
C	-0.24802700	-0.67201100	-0.00005500

C	0.93523300	-1.41910900	0.00002800
C	2.13635300	-0.71890000	0.00018800
C	2.15977500	0.69168200	0.00026300
C	0.98279600	1.42924700	0.00018100
C	-1.62641200	1.16725200	-0.00007400
C	-2.39074000	0.03025400	-0.00031500
H	0.91841700	-2.50612900	-0.00002800
H	3.07354500	-1.26884600	0.00026200
H	3.11669200	1.20665700	0.00039200
H	1.01225000	2.51600000	0.00024700
H	-1.99888700	2.18248100	-0.00003700
H	-3.46558600	-0.08722600	-0.00048700
H	-1.88121200	-2.03865200	-0.00023300
N	-1.56689300	-1.08126700	-0.00022100
TS2			
C	-2.95457700	-1.87072400	-0.26240000
C	-3.21873100	-0.47719900	-0.46452000
C	-4.47858200	-0.02711800	-0.89539800
C	-5.47532400	-0.97376300	-1.09588200
C	-5.23952900	-2.35093300	-0.87598600
C	-3.99406200	-2.80143800	-0.46316800
C	-1.58617900	-1.96978700	0.10999300
C	-1.03909200	-0.68663600	0.15630000
H	-4.67187500	1.03040900	-1.05312100
H	-6.46081600	-0.64875900	-1.42268900
H	-6.04742600	-3.06138400	-1.03619200
H	-3.81431500	-3.86222000	-0.30184800
H	-1.04756700	-2.86644900	0.38671900
H	-0.40440300	-0.48803700	1.23352100
N	-2.07464800	0.22074300	-0.18882100
C	3.61666000	0.23674600	-1.58545000
C	3.95255400	-1.05937400	-1.16187300
H	4.98080000	-1.36830200	-1.31838000
C	3.09530500	-2.00402600	-0.54926400
O	1.86891500	-1.85990600	-0.28202900
C	3.68428300	-3.35290300	-0.15440900
H	4.72250200	-3.47801800	-0.47746400
H	3.63607300	-3.45476000	0.93617600
H	3.07368100	-4.15652200	-0.58154400
C	4.70274100	1.08560900	-2.23443800
H	4.85188300	1.99525200	-1.64077200
H	5.65745200	0.55862100	-2.32353300
H	4.37315000	1.40149600	-3.23133800

Pd	0.80591600	-0.01272200	-0.56237400
O	2.48760800	0.82156200	-1.50009700
C	0.18247500	2.77133900	1.33415600
C	0.15553400	3.00027300	-0.19434400
C	-2.04241300	2.74986300	0.32705500
C	-1.32269900	2.52458200	1.67810100
H	0.82815700	1.93944600	1.62343600
H	0.55121300	3.67598400	1.83841400
H	-1.49062900	1.52352200	2.08282100
H	-1.68946400	3.24401000	2.42158800
C	-1.15168500	3.82810700	-0.33423400
H	-1.42887800	4.04589800	-1.37459600
H	-1.13300700	4.77064400	0.22993100
C	-0.23122300	1.70309600	-0.94472200
H	-0.07200600	1.83539200	-2.02364100
C	-1.76061500	1.57064900	-0.64250900
H	-2.34497600	1.73409400	-1.55859700
H	1.06517000	3.46426700	-0.58633200
H	-3.10813500	2.98922100	0.42237700
C	1.03695800	-0.43044300	3.05723500
O	1.27536400	-0.97778600	4.31951000
H	2.20644400	-0.74776800	4.47735600
O	1.98254500	0.14951500	2.50216800
O	-0.16111100	-0.61232800	2.66584600
5a			
C	-1.75848500	0.84891700	0.05738400
C	-1.50454800	-0.54245800	0.21549100
C	-2.51342000	-1.50469500	0.09836800
C	-3.80002900	-1.05405600	-0.17474200
C	-4.07694800	0.32083300	-0.32787700
C	-3.07165300	1.27241000	-0.21423800
C	-0.50046000	1.52042700	0.22620000
C	0.44971600	0.56188400	0.47493300
H	-2.30156100	-2.56404000	0.21769800
H	-4.60736000	-1.77483000	-0.27109700
H	-5.09489800	0.63654900	-0.53936500
H	-3.29409200	2.32937200	-0.33644200
H	-0.32050700	2.58618300	0.17837500
H	0.34271500	-1.55932200	0.53715600
N	-0.15809500	-0.68554000	0.48664600
C	1.90854800	0.72468500	0.76767000
C	2.82230800	-0.07726400	-0.14267300
H	2.15271600	0.42195800	1.79467700

H	2.18474400	1.77749400	0.66432700
F	2.64400800	0.21668900	-1.44174800
F	4.11812000	0.14501500	0.15797700
F	2.60617500	-1.41488900	0.00211000
int.II-dk			
C	4.05609500	0.24208500	-0.27794500
O	2.94187400	0.82403800	-0.44751300
C	4.27511000	-1.10334700	0.07880600
H	5.30864600	-1.41973100	0.17842700
C	3.28430900	-2.08250400	0.32065800
O	2.03017800	-1.93486600	0.26161700
C	3.74813100	-3.48721900	0.69829200
H	4.83784200	-3.58248800	0.74278800
H	3.32553700	-3.75775400	1.67316000
H	3.35606200	-4.20590100	-0.03109000
C	5.27737400	1.13158500	-0.49419200
H	6.22407100	0.60505500	-0.33684700
H	5.25818300	1.53308900	-1.51456600
H	5.22793000	1.98867800	0.18807700
Pd	1.00694000	-0.08658200	-0.23849000
C	-2.82715600	-1.88988300	0.07048600
C	-3.08862000	-0.52502500	-0.28884100
C	-4.38709100	-0.05080300	-0.49884400
C	-5.44992000	-0.94356100	-0.34410700
C	-5.21725000	-2.28470100	0.01628000
C	-3.92250600	-2.75873900	0.22285600
C	-1.40509800	-2.02296200	0.18480900
C	-0.82746600	-0.79286600	-0.09567500
H	-4.56721800	0.98521000	-0.77607700
H	-6.46924700	-0.59660500	-0.50277100
H	-6.06284700	-2.96055900	0.13430800
H	-3.75816700	-3.79969100	0.49773700
H	-0.85643000	-2.92100600	0.43755700
N	-1.86669800	0.10809000	-0.36822100
C	-1.54611400	1.46459700	-0.75352600
C	-2.04152000	2.59388400	0.19831200
C	0.01592500	1.63361200	-0.73228400
H	-1.95685700	1.65261500	-1.75850700
C	-1.03844400	3.71336300	-0.16185600
C	-1.63850400	2.26328100	1.65392900
H	-3.10299300	2.83874600	0.07977300
C	0.21166700	2.86439700	0.18956000
H	0.37233200	1.88887200	-1.74044300

H	-1.15819200	4.61179900	0.46073200
H	-1.07891500	4.01041900	-1.21805100
H	-2.15158700	2.93622100	2.35320900
H	-1.90790500	1.23815100	1.92326400
C	-0.09364200	2.49788100	1.66125200
H	1.18158900	3.35207700	0.05281600
H	0.17436700	3.32726400	2.33156700
H	0.46333600	1.60984000	1.97239300
TS3			
C	2.05945000	3.07400600	0.54123700
O	1.01830000	2.70991800	-0.09618100
C	2.62522300	2.46037700	1.67394800
H	3.53631500	2.90434200	2.05987200
C	2.13533200	1.32806200	2.36579700
O	1.09264300	0.66158100	2.08947600
C	2.93053400	0.81443600	3.55574200
H	3.71535000	1.50710400	3.87388200
H	2.25089800	0.62089800	4.39245600
H	3.39390200	-0.14066800	3.27996000
C	2.74249100	4.31071200	-0.02494300
H	2.02259200	5.13667400	-0.06167900
H	3.61477600	4.62044100	0.55776400
H	3.05527800	4.11038000	-1.05648100
Pd	-0.19325700	1.00522500	0.36506300
C	-2.70100500	-2.25545100	1.38933000
C	-3.34876800	-1.63295200	0.27358800
C	-4.54208600	-2.12934000	-0.26237900
C	-5.10062800	-3.26452700	0.32339000
C	-4.48349100	-3.88940600	1.42531300
C	-3.29623500	-3.39499900	1.95865500
C	-1.51259700	-1.49776400	1.65986300
C	-1.45848900	-0.46185800	0.74383900
H	-5.01828200	-1.64872500	-1.11311800
H	-6.02574300	-3.67321400	-0.07736200
H	-4.94271700	-4.77356700	1.86285500
H	-2.82703200	-3.88931700	2.80708300
H	-0.78196500	-1.68745800	2.43489200
N	-2.57593700	-0.54945500	-0.08747400
C	-2.74191600	0.40139800	-1.16444100
C	-3.98397800	1.33831100	-1.07103600
C	-1.53673100	1.40623700	-1.13253600
H	-2.77496600	-0.14359900	-2.11836900
C	-3.48603700	2.53992900	-1.90502800

C	-4.07058500	1.95096400	0.34482900
H	-4.91517100	0.87015100	-1.40724700
C	-2.23180900	2.78366100	-1.02480300
H	-0.96931700	1.35639600	-2.06439000
H	-4.19294100	3.38103000	-1.90814600
H	-3.24254200	2.28091800	-2.94295000
H	-5.03454300	2.45683200	0.48037100
H	-3.98665800	1.18813200	1.12377900
C	-2.88576300	2.96935400	0.36698300
H	-1.58349800	3.61280800	-1.32026700
H	-3.25115000	3.99836800	0.48458900
H	-2.17954100	2.77359200	1.18030700
C	1.09629200	-0.74976500	-2.07339700
C	1.50668900	-0.58928400	-0.62636600
H	2.12478500	0.24842700	-0.35909500
H	1.11749700	-1.27113300	0.10810400
F	-0.17789400	-1.20136300	-2.17563900
F	1.16374800	0.44180600	-2.72234100
F	1.84132900	-1.60781900	-2.79498900
I	3.87148100	-1.98058800	-0.32325500
int.IV-dk			
C	-3.99639600	0.43020500	-0.28578900
O	-2.89656100	0.87313000	0.19763800
C	-4.16173500	-0.69439600	-1.11162500
H	-5.17455600	-0.91759400	-1.42563900
C	-3.15075100	-1.55371700	-1.59173100
O	-1.90402700	-1.47528800	-1.33928300
C	-3.54427600	-2.69754000	-2.50735800
H	-4.62106700	-2.74589800	-2.68726700
H	-3.02516200	-2.58593100	-3.46617200
H	-3.20861900	-3.64457900	-2.07006400
C	-5.22010100	1.23973100	0.09772800
H	-6.14317000	0.83601000	-0.32518700
H	-5.30869600	1.27086100	1.18969400
H	-5.09210600	2.27358700	-0.24304300
Pd	-0.96538800	0.02777500	-0.10048400
C	2.86340200	-1.39475500	-1.10678900
C	3.10942800	-0.22593400	-0.32099500
C	4.40533900	0.24027900	-0.06707100
C	5.46679100	-0.48619500	-0.59580200
C	5.24757600	-1.64661300	-1.36886600
C	3.96235500	-2.10277400	-1.62914000
C	1.44182800	-1.57471700	-1.17233100

C	0.87959200	-0.53345500	-0.46336100
H	4.57939600	1.13024200	0.53088900
H	6.48464200	-0.15507400	-0.40786500
H	6.10165100	-2.18875200	-1.76591100
H	3.80308900	-2.99634400	-2.22747600
H	0.90071700	-2.37233900	-1.66147300
N	1.88102700	0.27157900	0.06788800
C	1.53560600	1.50701600	0.73808000
C	1.90372600	2.82139500	-0.01555000
C	-0.02609200	1.60006100	0.83863300
H	1.98819900	1.51517900	1.73693700
C	0.84468300	3.78216100	0.56986100
C	1.45772300	2.72331500	-1.49189000
H	2.94802300	3.11828500	0.11319300
C	-0.36642200	2.92060000	0.12454400
H	-0.37182800	1.60548200	1.87239200
H	0.85909100	4.77397100	0.10214700
H	0.91292800	3.90531000	1.65703400
H	1.86288800	3.56481700	-2.06391000
H	1.80678800	1.80488100	-1.97079400
C	-0.09973100	2.80371700	-1.40017700
H	-1.35885000	3.30035600	0.37447500
H	-0.48963400	3.68723400	-1.91851600
H	-0.59130200	1.93482600	-1.86029900
C	-0.03960900	-1.39858800	2.54765500
C	-1.16672000	-1.10006400	1.59128800
H	-1.95304400	-0.55980300	2.12058300
H	-1.54133600	-2.03931100	1.18137300
F	0.53490500	-0.28928200	3.07030100
F	-0.56058800	-2.09273800	3.59592900
F	0.93679900	-2.15522700	2.02479500
TS4			
C	-3.65879500	1.23366100	-0.46807300
O	-2.54722500	1.50452800	0.11038000
C	-3.96454700	0.09634500	-1.22938900
H	-4.96690400	0.04282100	-1.63787900
C	-3.09946400	-0.97636100	-1.53761500
O	-1.89189800	-1.10826200	-1.16374300
C	-3.62433200	-2.10643900	-2.40384100
H	-4.65562200	-1.94780800	-2.72895500
H	-2.98189900	-2.21637700	-3.28469400
H	-3.56528200	-3.04573600	-1.84223100
C	-4.72558700	2.29584500	-0.28047600

H	-5.66321900	2.04460400	-0.78230000
H	-4.91775000	2.43304000	0.78982400
H	-4.35745700	3.25321900	-0.66681200
Pd	-0.85851300	0.26985000	0.10017800
C	2.81788500	-1.50318000	-0.88673400
C	3.16267600	-0.36757800	-0.08381700
C	4.49416200	0.04967400	0.06488000
C	5.47666900	-0.68741000	-0.58334700
C	5.15659800	-1.81301700	-1.37736800
C	3.84306600	-2.22273900	-1.53589000
C	1.40372800	-1.65106900	-0.82626100
C	0.91965100	-0.62110900	-0.02632400
H	4.75366100	0.90749100	0.67632500
H	6.51730500	-0.39436400	-0.47406300
H	5.95650800	-2.36057200	-1.86779300
H	3.59918900	-3.08676200	-2.14822600
H	0.80195800	-2.42507300	-1.27797900
N	1.99413800	0.15162600	0.42945700
C	1.74739800	1.40763300	1.13004600
C	2.34671200	2.68969600	0.48125100
C	0.20557100	1.70718100	1.11901600
H	2.12830000	1.31847300	2.15724700
C	1.40322400	3.75713400	1.08085800
C	1.98111100	2.75085700	-1.02015000
H	3.41201000	2.82606700	0.68580900
C	0.11404600	3.11799900	0.50440400
H	-0.20623800	1.71159200	2.13513400
H	1.59955800	4.76368400	0.69243200
H	1.42262000	3.79391700	2.17664600
H	2.55899800	3.54053400	-1.51250800
H	2.20364800	1.81610600	-1.54175600
C	0.45551800	3.08472700	-1.00563500
H	-0.82767100	3.61932900	0.73347500
H	0.25918900	4.06501400	-1.45581500
H	-0.14231500	2.34982100	-1.55313400
C	-0.99024000	-2.44408700	1.57537000
C	-0.07690800	-1.23768700	1.61886600
H	0.90661800	-1.57358100	1.93717800
H	-0.45356600	-0.55364300	2.38007800
F	-0.72830900	-3.29811600	0.57195000
F	-0.82658300	-3.13364900	2.73665600
F	-2.29676000	-2.11121900	1.50960100
int.VII			

C	-2.98441500	2.03375500	-0.59787200
O	-1.87078400	1.91528900	0.02511200
C	-3.57790700	1.11489500	-1.47387900
H	-4.52791400	1.40398300	-1.907
C	-3.06193300	-0.14128600	-1.85718400
O	-1.97130300	-0.66202400	-1.46433500
C	-3.85835000	-0.98277900	-2.83861800
H	-4.78748900	-0.50046500	-3.15274200
H	-3.24445500	-1.18744200	-3.72326200
H	-4.09398300	-1.94914800	-2.37839600
C	-3.69792100	3.34456000	-0.32166600
H	-4.6338500	3.43696700	-0.87800700
H	-3.90969700	3.42440500	0.75076900
H	-3.03968700	4.18038700	-0.58408700
Pd	-0.64466400	0.25255900	-0.03985000
C	1.80429800	-1.43141000	-1.37151700
C	2.67826100	-0.80083000	-0.45159700
C	3.99061200	-0.47883600	-0.81817900
C	4.399457	-0.78648000	200
C	3.5319030	-1.40060700	03730600
C	2.2309460	-1.72850400	-2.67376100
C	0.58558900	-1.72193000	-0.65580300
C	0.76262600	-1.31384400	0.67092100
H	4.67288800	-0.01571600	-0.11338800
H	5.41860800	-0.55754600	-2.41281300
H	3.89054400	-1.63128200	-4.03616900
H	1.55964600	-2.21758600	-3.37429700
H	-0.21309200	-2.35670700	-1.01155300
N	2.03796700	-0.66925700	0.78455400
C	1.93690500	0.58860400	1.57528000
C	2.83824000	1.81281300	1.2721080
C	0.48925900	1.18750600	1.424056
H	2.12541500	0.31365300	2.620
C	2.05252400	2.86024500	2.1044900
C	2.65485400	2.39770900	-0.15698200
H	3.88394400	1.66773800	1.5602870
C	0.73799400	2.70594100	1.29171300
H	-0.11117600	0.98578700	2.32156800
H	2.48637300	3.86487600	2.0313100
H	1.95673300	2.59678800	3.16444800
H	3.43886100	3.14359400	-0.33351200
H	2.74299800	1.65643400	-0.94897400
C	1.24162100	3.05397400	-0.12376800

H	-0.10919200	3.31032100	1.61946100
H	1.30466600	4.14185400	-0.25022500
H	0.57714700	2.66605700	-0.89918100
C	-1.15638800	-2.54280200	1.92830300
C	0.24420100	-1.95754700	1.94403300
H	0.91802900	-2.78610900	2.19999000
H	0.28030900	-1.25266200	2.77880300
F	-1.34919600	-3.39987100	0.90078900
F	-1.36026300	-3.23635700	3.07184800
F	-2.12547300	-1.60556000	1.86000600
TS5			
C	-3.29261400	-0.23092000	0.73840700
C	-2.04079200	0.41803300	0.92067100
C	-1.77273200	1.13888500	2.08923300
C	-2.79246600	1.27876400	3.02837500
C	-4.05443800	0.68968100	2.82721200
C	-4.30727500	-0.07767300	1.69474800
C	-3.17187400	-1.00649900	-0.46566300
C	-1.90906900	-0.81240700	-0.95336900
H	-0.78223200	1.53760700	2.28256600
H	-2.60078300	1.83470100	3.94221800
H	-4.82864000	0.81299300	3.57978100
H	-5.26668400	-0.57172900	1.56267600
H	-3.91764600	-1.66661300	-0.89026800
N	-1.19598200	0.11053300	-0.15807000
C	3.67824700	-0.32743700	0.70976300
C	3.30482300	-1.22773500	1.71565500
H	4.10946300	-1.69264800	2.27303600
C	1.98918500	-1.58716500	2.08393900
O	0.91436000	-1.15526500	1.56032800
C	1.79017300	-2.58158900	3.21142700
H	2.73373800	-2.91640000	3.64943200
H	1.17059200	-2.12639100	3.99204500
H	1.24132800	-3.45050300	2.83131700
C	5.15126000	-0.05878200	0.47247100
H	5.35277100	1.01130500	0.59684400
H	5.79368500	-0.62464900	1.15132000
H	5.40697500	-0.31731300	-0.56143000
Pd	0.87618100	0.17498400	-0.04496500
O	2.90251500	0.33197100	-0.07305300
C	1.10278700	3.48358500	-0.12160200
C	1.23325900	2.93920200	-1.56419600
C	-1.02218200	3.13054900	-1.29543000

C	-0.44083300	3.62073900	0.05647700
H	1.55766400	2.80895200	0.60751100
H	1.59862600	4.45716300	-0.03282600
H	-0.83654900	3.06161400	0.90043100
H	-0.73503000	4.66698100	0.19365400
C	0.07186800	3.69712400	-2.27205900
H	-0.06831500	3.40011100	-3.31723200
H	0.13186200	4.79177300	-2.21895200
C	0.68438200	1.49472800	-1.65973100
H	1.06725100	0.90096700	-2.49509800
C	-0.74789800	1.66916900	-1.58973600
H	-1.45488800	1.14908700	-2.22291500
H	2.22942000	3.05403800	-1.99578000
H	-2.05577900	3.43347000	-1.47346200
C	-1.29385700	-1.47972700	-2.14930400
C	-0.81936200	-2.90272800	-1.88786000
H	-0.42531400	-0.93077800	-2.52140100
H	-2.02039800	-1.55065100	-2.96696300
F	-1.83272100	-3.70752400	-1.50688600
F	-0.28871500	-3.42930800	-3.01775800
F	0.13120200	-2.96500500	-0.93384400
int. VIII			
C	-3.51582600	-1.23860200	0.01248500
C	-2.17726200	-1.32081800	-0.48180600
C	-1.88958000	-2.01357500	-1.67030300
C	-2.93342400	-2.65151300	-2.33206200
C	-4.25168600	-2.60669100	-1.83187400
C	-4.54834000	-1.90618700	-0.66962700
C	-3.45025700	-0.42417900	1.18269300
C	-2.12918900	-0.06007900	1.35351300
H	-0.88233500	-2.02999600	-2.07995600
H	-2.72992700	-3.19028400	-3.25410900
H	-5.04402200	-3.12088700	-2.36982300
H	-5.56843200	-1.86678000	-0.29401200
H	-4.26660300	-0.16000600	1.84368100
N	-1.33121500	-0.64123700	0.37635200
C	2.41606800	1.74117100	-1.64893300
C	1.39075900	2.57562800	-2.11018500
H	1.67999900	3.44258500	-2.69139600
C	0.01682900	2.37506800	-1.89550700
O	-0.51635500	1.41130900	-1.25076500
C	-0.98444900	3.36166200	-2.45508900
H	-0.50640200	4.16724900	-3.01734800

H	-1.69225400	2.83392000	-3.10335300
H	-1.56085300	3.78675700	-1.62597300
C	3.85246400	2.07537600	-1.99569400
H	4.30181000	1.23870400	-2.54255000
H	3.93359900	2.98143200	-2.60044100
H	4.43030700	2.20757100	-1.07391700
Pd	0.49838700	-0.04117200	-0.24164500
O	2.28509100	0.68140800	-0.93852900
C	3.78697000	-1.12824900	0.96559500
C	2.74381400	-1.72045800	1.95659000
C	2.46769500	-2.99411500	0.10725300
C	3.59089100	-2.00021100	-0.31262800
H	3.62627900	-0.06860800	0.77081700
H	4.79121200	-1.25366800	1.38548700
H	3.31672000	-1.40202700	-1.18154000
H	4.49753500	-2.56507100	-0.55610100
C	2.85807300	-3.23326500	1.59780100
H	2.14396000	-3.86378600	2.13779600
H	3.86996600	-3.63761100	1.72479200
C	1.3120750	-1.48702300	1.46565600
H	0.52298200	-1.11263400	2.10449700
C	1.14112900	-2.26888500	0.34490400
H	0.19853800	-2.60719500	-0.06862600
H	2.90599300	-1.44040200	2.99992900
H	2.38197800	-3.87327900	-0.53510600
C	-1.61901800	0.77524900	2.49317200
C	-1.14776700	2.18843700	2.17101600
H	-0.79619900	0.29783600	3.04044900
H	-2.43847200	0.89717200	3.20808100
F	-1.97022000	2.83747100	1.32861800
F	-1.06595900	2.92077000	3.30788500
F	0.09702400	2.21369300	1.61821400
int.IX			
C	-2.21115600	2.39775200	0.67319000
C	-1.26482800	1.87209200	-0.26433500
C	-1.02836900	2.52114500	-1.48990100
C	-1.76269300	3.66574900	-1.78729300
C	-2.71798700	4.17466100	-0.88153700
C	-2.94047300	3.55396900	0.34136800
C	-2.16918300	1.52406100	1.79959200
C	-1.24782700	0.53428100	1.51141100
H	-0.26028800	2.15983800	-2.17087600
H	-1.58747000	4.18420000	-2.72690200

H	-3.27644500	5.06997200	-1.14264400
H	-3.66957200	3.95980100	1.03945700
H	-2.76173100	1.58949200	2.70364900
N	-0.71670700	0.71539900	0.24634100
C	3.68158800	-0.69411800	-1.34273900
C	4.12090400	0.36369200	-0.53883500
H	5.18944600	0.53761100	-0.50285400
C	3.31271800	1.22936400	0.22657800
O	2.04217500	1.20272900	0.32339600
C	3.96773700	2.32588200	1.03991700
H	5.05307200	2.34689300	0.91676200
H	3.54867000	3.29417100	0.74579500
H	3.72552000	2.17827900	2.09816600
C	4.69791200	-1.51782400	-2.10515800
H	4.45791200	-1.49874200	-3.17417400
H	5.71866000	-1.15700200	-1.96041200
H	4.63863700	-2.56249900	-1.77873400
Pd	0.86476400	-0.18946300	-0.61200800
O	2.46640800	-1.07252200	-1.52143300
C	-0.93578800	-0.64023800	2.39178100
C	0.44412500	-0.68601700	3.02999600
H	-1.06830800	-1.59030300	1.86232300
H	-1.64502800	-0.63563500	3.22520000
F	0.82711400	0.49434300	3.54769500
F	0.46128400	-1.59603200	4.03529300
F	1.41482700	-1.07519200	2.15691100
C	-1.53737500	-2.31192200	-0.92780300
C	-2.46840300	-1.37212600	-1.43095100
C	-3.80549000	-1.36155100	-1.02859100
C	-4.20730900	-2.34744500	-0.13179900
C	-3.30563000	-3.31651000	0.35021400
C	-1.96915500	-3.30501300	-0.03743400
C	-0.25133900	-1.98745900	-1.51726900
C	-0.48109800	-0.90684500	-2.39563100
H	-4.50447100	-0.61946400	-1.40224400
H	-5.24202900	-2.37370900	0.19787200
H	-3.66054800	-4.07881400	1.03765300
H	-1.27240800	-4.04726600	0.34338700
H	0.60422500	-2.64768200	-1.56629400
H	0.15838800	-0.52450100	-3.17959900
H	-2.14712800	0.34990700	-2.62784200
N	-1.81203900	-0.56717600	-2.35616100
TS6			

C	-1.03734900	-0.32627200	1.68904100
C	-1.86566600	-1.34477800	1.16845000
C	-2.05209500	-2.55335100	1.83591900
C	-1.39720100	-2.72533400	05628600
C	-0.57670900	-1.71651800	3.58873600
C	-0.3870070	-0.5107170	.91313900
C	-1.0833530	773	0.71755600
C	-2.06453700	0.35336800	-0.23
H	-2.7015270	-3.32340600	43085500
H	-1.53125000	-3.65141200	3.60843800
H	-0.08777500	-1.8777550	4.54567500
H	0.24827500	0.26847200	32403700
H	-0.97484800	1.81336500	00383100
N	-2.45982400	-0.91542800	-0.04280900
C	3.73615100	1.546954	54
C	3.57669600	2.47025800	0.49600200
H	4.44414500	06358000	0758723
C	2.40588200	2.70021300	
O	1.27901300	2.11541500	
C	2.42727600	744	
H	1.66802700	506	
H	2.1607470	3.2745	
H	. 4021280	227	
C	5.08671900	1.43753200	-1.23
H	4.9719590	1.63967100	-2.30211500
H	5.82315400	2.12821900	-0.81375600
H	5.46168500	0.41239000	-1.134
Pd	0.88442500	0.63644400	-0.32739800
O	2.85024100	0.75437600	-1.01975400
C	-2.67225500	1.18651400	-1.33035900
C	-3.70054700	2.17602400	-0.79702800
H	-3.18993900	0.55111100	-2.05522900
H	-1.91743100	1.7783610	-1.855
F	-3.13465100	3.07668900	0.03
F	-4.25557400	2.86642800	-1.8168330
F	-4.69376100	1.56670800	-0.12532900
C	1.09233200	-2.22961400	-1.27651100
C	-0.17349200	-2.85675300	-1.22505400
C	-0.33929100	-4.12642000	-0.67608800
C	0.79466100	-4.77048600	-0.17728400
C	2.05840100	-4.15969100	-0.22812000
C	2.22007600	-2.88671900	-0.77746600
	0.8773960	-0.9261240	1.92

C	-0.49841600	-0.96151700	-2.29961900
H	-1.31412500	-4.60449700	-0.65500000
H	0.69914800	-5.76506900	0.24977300
H	2.92310000	-4.69030400	0.16112400
H	3.19780200	-2.41485400	-0.81810500
H	1.63545900	-0.43911400	-2.52452200
H	-1.02013600	-0.19971200	-2.86480800
H	-2.13784300	-1.64936500	-1.04606200
N	-1.15281700	-2.03249300	-1.83496700
int.XII			
C	-2.83471800	1.02837300	-0.22274500
C	-3.28965700	-0.28848500	-0.39075300
H	-4.33459200	-0.41218400	-0.64880900
C	-2.52900400	-1.46458100	-0.25019000
O	-1.29060500	-1.53923200	0.04766000
C	-3.20335700	-2.80563800	-0.46375400
H	-4.26524800	-2.70794900	-0.70173700
H	-2.70054400	-3.33851100	-1.27873700
H	-3.09144000	-3.41668200	0.43885000
C	-3.81069200	2.17435700	-0.40510000
H	-3.44942900	2.83659000	-1.19983900
H	-4.81659900	1.82939200	-0.65560600
H	-3.85257500	2.76714400	0.51551000
Pd	-0.09351200	0.11310600	0.38398900
O	-1.64925600	1.40657500	0.07969200
C	2.12294400	0.31863300	0.62696900
C	2.80462500	0.49358500	-0.62912500
C	3.36964500	-0.58628900	-1.27129400
C	3.20657400	-1.87670200	-0.70306500
C	2.48242500	-2.07284500	0.46021100
C	1.89821600	-0.97336700	1.15599100
C	1.42775200	1.55655700	0.87654700
C	1.90148600	2.41487600	-0.23024800
H	3.89216100	-0.45498500	-2.21424900
H	3.65018000	-2.73161400	-1.20569000
H	2.37757200	-3.07212600	0.87186200
H	1.49717900	-1.12120100	2.15570500
H	1.15234700	1.95863300	1.84764900
H	1.63864900	3.46230200	-0.35117600
N	2.69218900	1.82124700	-1.08238600
int. X			
C	3.62847200	-1.68374900	-0.76066200
C	3.71592200	-0.67369000	0.24562600

C	4.90714800	-0.40649800	0.93023400
C	6.02929100	-1.15967600	0.59616100
C	5.96778500	-2.15539300	-0.39990800
C	4.78320600	-2.42131600	-1.07746500
C	2.27179300	-1.69503200	-1.23642400
C	1.58471600	-0.72660900	-0.53005400
H	4.95808600	0.36081600	1.69789900
H	6.96841500	-0.97549000	1.11139100
H	6.86279100	-2.72417700	-0.63892700
H	4.74668800	-3.19431600	-1.84151400
H	1.86508900	-2.33887600	-2.00541700
N	2.46226100	-0.10352900	0.35437000
C	1.95899200	0.91190400	1.24221700
C	2.52568400	2.35089500	1.07205900
C	0.43077000	1.10713200	0.94617700
H	2.10554000	0.59320800	2.28485300
C	1.35408400	3.16937300	1.65834000
C	2.48958000	2.75744200	-0.41775800
H	3.49889600	2.49474800	1.54966500
C	0.30253100	2.61314600	0.65656100
H	-0.18423400	0.80587700	1.80269700
H	1.49573900	4.25278300	1.56667800
H	1.13084700	2.93161600	2.70530400
H	3.06045500	3.67934300	-0.57334900
H	2.92551200	1.98766100	-1.06012000
C	0.96771900	2.97837100	-0.69338900
H	-0.71647600	2.99486900	0.77027000
H	0.75798500	4.02522400	-0.94449600
H	0.59770100	2.35187200	-1.51057400
Pd	-0.29597300	-0.15703500	-0.49556300
I	-2.98964700	0.55333500	-0.93625700
C	-4.24619900	-0.75415000	0.31774200
C	-3.44931900	-1.65187300	1.24370200
H	-4.83573500	-1.35661100	-0.37102400
H	-4.88401700	-0.08930200	0.89763500
F	-2.69387600	-0.94918700	2.10713200
F	-2.64367400	-2.49026200	0.56750900
F	-4.31312900	-2.39825900	1.96280400
TS7			
C	3.38987600	-1.43149600	-1.03229900
C	3.48503800	-0.51911100	0.06287900
C	4.68850000	-0.29132800	0.73976700
C	5.81344800	-0.98907500	0.30988500

C	5.74403700	-1.89035300	-0.77283600
C	4.54870800	-2.11483900	-1.44474300
C	2.02322700	-1.42407700	-1.47439800
C	1.33706800	-0.53559700	-0.66508700
H	4.74603100	0.40272000	1.57363400
H	6.76216200	-0.83553800	0.81719500
H	6.64251700	-2.41684300	-1.08387600
H	4.50617700	-2.81232400	-2.27776300
H	1.60934900	-2.00125800	-2.29128700
N	2.22414000	0.01145100	0.25541300
C	1.72820900	0.95413700	1.22259000
C	2.25152900	2.41669300	1.12928000
C	0.19125600	1.12790300	0.97814500
H	1.90914100	0.57285200	2.23799400
C	1.07119100	3.16000600	1.79336300
C	2.16696900	2.91430000	-0.33090900
H	3.23140000	2.55828300	1.59332800
C	0.00920000	2.63929300	0.78047700
H	-0.40547300	0.74079600	1.80831000
H	1.17591500	4.25082900	1.76612000
H	0.88014100	2.85074300	2.82764000
H	2.70944600	3.85934800	-0.44094500
H	2.60700400	2.19959800	-1.03164800
C	0.63364600	3.11033600	-0.55658000
H	-1.01717200	2.97957900	0.94034400
H	0.38874300	4.16503200	-0.72829800
H	0.25678000	2.53819000	-1.40992900
Pd	-0.57154500	-0.01711100	-0.56737900
I	-3.23906300	0.26631300	-0.98899400
C	-2.33893000	-1.81979300	0.14443500
C	-2.14106900	-1.79054500	1.64609900
H	-1.53498400	-2.33609200	-0.37639900
H	-3.29734000	-2.26783800	-0.09241600
F	-2.71506600	-2.89962400	2.16992300
F	-0.84226300	-1.81460500	2.00068100
F	-2.70809600	-0.72515200	2.24226500
int.XI			
C	3.11308900	-0.55608400	-1.47294300
C	3.17232300	0.11649500	-0.21429600
C	4.38439800	0.52162400	0.35698400
C	5.55161800	0.23143400	-0.34081800
C	5.51739700	-0.43851100	-1.58283800
C	4.31472200	-0.83128400	-2.15325100

C	1.73017300	-0.81195800	-1.75882500
C	1.00715200	-0.28710900	-0.70576100
H	4.41818700	1.03155900	1.31527900
H	6.50950900	0.52346300	0.08058400
H	6.45067900	-0.64831600	-2.09789600
H	4.29684500	-1.34506000	-3.11075500
H	1.33131800	-1.33627500	-2.61676900
N	1.87159700	0.25511900	0.23439900
C	1.32885900	1.00548100	1.33894500
C	1.55614200	2.54663100	1.32126000
C	-0.23220200	0.90719900	1.27750100
H	1.68956900	0.58704500	2.28687100
C	0.32916600	3.00680400	2.13900300
C	1.23628700	3.11167400	-0.08025200
H	2.53281000	2.84332500	1.71138700
C	-0.71719900	2.35201600	1.18751600
H	-0.66887600	0.34570600	2.10189100
H	0.21824600	4.09608600	2.18082300
H	0.30120400	2.61134500	3.16072700
H	1.55496200	4.15709900	-0.14495000
H	1.74970200	2.56525700	-0.87570800
C	-0.31792000	2.99096300	-0.17049800
H	-1.76868000	2.47491300	1.45042700
H	-0.79781500	3.97039900	-0.26810400
H	-0.64862500	2.39725100	-1.03227100
Pd	-0.93697600	-0.16539500	-0.36284600
I	-3.58728500	0.13229400	-0.74029300
C	-1.07833400	-2.02007700	0.50379600
C	0.04596800	-2.60738300	1.32227500
H	-1.27812900	-2.66123800	-0.35898000
H	-1.96933000	-1.94305200	1.12638200
F	-0.39921600	-3.76166900	1.87914600
F	1.14456200	-2.90999100	0.61404000
F	0.42736500	-1.80458500	2.34791300
TS8			
C	-2.25552400	-2.69381900	0.12440500
C	-1.57443600	-1.95184000	-0.86684500
C	-2.04679500	-1.86875700	-2.17576300
C	-3.23130700	-2.54020200	-2.48317600
C	-3.92431900	-3.27375700	-1.50509700
C	-3.44445800	-3.36000900	-0.19973400
C	-1.45804200	-2.59193300	1.32382400
C	-0.36935400	-1.82417200	1.04446100

H	-1.51553500	-1.29737800	-2.93126300
H	-3.62282500	-2.49358900	-3.49555200
H	-4.84507200	-3.78430500	-1.77418600
H	-3.97909500	-3.93710100	0.55029200
H	-1.66694100	-3.06426400	2.27596600
N	-0.39644200	-1.38180800	-0.31121000
C	-0.99576500	3.57225000	-0.59535800
C	-2.07529300	3.34691700	0.26878300
H	-2.64842600	4.21625200	0.56750200
C	-2.49492900	2.10483100	0.78545900
O	-1.96467100	0.96906000	0.55658900
C	-3.69190500	2.05579700	1.71277100
H	-4.13930400	3.03998400	1.87033000
H	-4.44462300	1.37709800	1.29714500
H	-3.38020100	1.64179100	2.67818200
C	-0.70384100	4.98489400	-1.05898900
H	-0.73763900	5.02416400	-2.15355800
H	-1.41215400	5.71042900	-0.65272300
H	0.31089700	5.26606700	-0.75533400
Pd	-0.30685900	0.72102000	-0.63120200
O	-0.18347000	2.69807700	-1.06811300
C	0.78378900	-1.51788400	1.95590400
C	0.60842700	-0.32109400	2.88157800
H	1.71174000	-1.36140800	1.39762800
H	0.94831200	-2.37436400	2.61836000
F	-0.55728300	-0.36601300	3.55701200
F	1.60608300	-0.29703700	3.79560800
F	0.65110900	0.86370600	2.22739300
C	3.42381700	0.35350000	-1.10303500
C	2.92998600	-1.00605700	-1.10529200
C	3.70448900	-2.04397000	-0.52473500
C	4.93722200	-1.71801200	-0.00083100
C	5.43930200	-0.38095400	-0.01580600
C	4.69961300	0.64743600	-0.55249900
C	2.41178900	1.12684900	-1.68610100
C	1.34348500	0.24226000	-2.00813400
H	3.33916600	-3.06713900	-0.52372600
H	5.55577500	-2.50024500	0.43194400
H	6.42071400	-0.18404100	0.40600700
H	5.08008100	1.66559500	-0.56036100
H	2.41638200	2.19219500	-1.87595200
H	0.69458400	0.38756400	-2.87375700
H	0.65174100	-1.52675600	-0.98524500

N	1.70617900	-1.08878100	-1.67437100
TS9			
C	-1.36996400	-2.43396000	0.17084600
C	-0.25353500	-3.03550000	-0.45424100
C	-0.40191400	-3.98188400	-1.46756200
C	-1.70096600	-4.35286500	-1.81948300
C	-2.81845900	-3.78909000	-1.17917200
C	-2.66640400	-2.82370900	-0.18383400
C	-0.82416100	-1.44354100	1.09979900
C	0.58352200	-1.62511400	1.04603300
H	0.46372100	-4.42697800	-1.94930400
H	-1.85100200	-5.09855800	-2.59542400
H	-3.81574500	-4.11010100	-1.46735600
H	-3.53195700	-2.37816900	0.29864500
H	-1.35327200	-1.04896900	1.95679500
N	0.93694100	-2.51905200	0.08820400
C	-2.38878800	2.65456000	-1.34278800
C	-3.31376100	2.61888400	-0.28882200
H	-4.11406500	3.34824900	-0.31670400
C	-3.30965500	1.72211500	0.79345100
O	-2.47506000	0.78004500	1.00541400
C	-4.39334300	1.83851500	1.84771800
H	-5.09434100	2.64935000	1.63670800
H	-4.94432000	0.89358700	1.91149200
H	-3.92929800	2.00935900	2.82551000
C	-2.57542900	3.67259500	-2.45062900
H	-2.68318800	3.15150000	-3.40856500
H	-3.44973600	4.30698000	-2.28799300
H	-1.68237500	4.30327400	-2.52351300
Pd	-0.83823800	0.37375300	-0.21353000
O	-1.36335400	1.90462300	-1.49411700
C	1.66990000	-1.01743300	1.88704900
C	1.26628500	0.08248900	2.84849800
H	2.47180600	-0.62548800	1.25094600
H	2.11957700	-1.81205300	2.49548900
F	0.27478100	-0.30333700	3.68403000
F	2.32433600	0.42820200	3.61293300
F	0.84608300	1.20429600	2.22126900
C	2.79776300	1.30150300	-1.30633900
C	3.06873200	-0.11429700	-1.21133800
C	4.36824400	-0.56723900	-0.86734500
C	5.34826800	0.37898000	-0.64870900
C	5.08937600	1.77900100	-0.75117700

C	3.83374300	2.24348600	-1.07128500
C	1.44265700	1.40252500	-1.64300700
C	0.92473500	0.06859200	-1.70396400
H	4.58224700	-1.63028300	-0.79894400
H	6.35411900	0.05356000	-0.39491300
H	5.90129500	2.47832700	-0.57332300
H	3.63542100	3.30939300	-1.15144400
H	0.87915500	2.29776800	-1.85820700
H	0.12703900	-0.23685800	-2.38200900
H	1.63026300	-1.97461800	-0.71497200
N	1.96063500	-0.84715000	-1.47494500

Norborn.

C	-1.19086200	-0.78133300	-0.51656100
C	0.08826400	-1.12847000	0.32322100
C	0.08733700	1.12862200	0.32288800
C	-1.19151000	0.78044300	-0.51648600
H	-1.14549300	-1.20728500	-1.52326900
H	-2.08827200	-1.17865300	-0.02837200
H	-1.14688000	1.20643900	-1.52322000
H	-2.08925700	1.17693100	-0.02818700
C	0.04090600	0.00017800	1.38075100
H	0.91202200	0.00069300	2.04344900
H	-0.87869500	-0.00004500	1.97961900
C	1.27947800	-0.67004800	-0.50750200
H	1.92145000	-1.32836400	-1.08505400
C	1.27893000	0.67072600	-0.50776600
H	1.92047700	1.32934800	-1.08542500
H	0.12043500	-2.15753300	0.68983400
H	0.11895200	2.15776300	0.68935600
$\mathrm{HCO}_{3}{ }^{-}$			
C	-0.15850200	0.07287100	-0.00002400
O	0.14149200	1.29172500	0.00002000
O	-1.24203100	-0.53011400	-0.00019300
O	1.00482900	-0.79896200	0.00015900
H	1.71669600	-0.13842000	0.00025600
$\mathrm{H}_{2} \mathrm{O}$			
O	0.00000000	0.00000000	0.11942600
H	0.00000000	0.76261700	-0.47770500
H	0.00000000	-0.76261700	-0.47770500
CO_{2}			
C	0.00000000	0.00000000	0.00000000
O	0.00000000	0.00000000	1.16958400
O	0.00000000	0.00000000	-1.16958400

C	-1.27643300	0.08950800	0.00015400
C	-0.00001000	-0.54185800	0.00048400
H	0.00001200	-1.63052800	0.00050900
C	1.27642600	0.08950900	0.00003600
O	1.54887900	1.30471000	-0.00029900
C	2.49505600	-0.87591300	-0.00004200
H	2.23150400	-1.94131900	0.00014500
H	3.11843800	-0.66863600	-0.88068600
H	3.11877200	-0.66842300	0.88031900
C	-2.49504400	-0.87590300	-0.00032500
H	-3.11840000	-0.66822900	-0.88088600
H	-2.23150500	-1.94131900	-0.00062600
H	-3.11878200	-0.66884000	0.88011900
O	-1.54888000	1.30469500	0.00020700
$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{I}$			
C	-1.74696900	-0.00671500	0.00000000
C	-0.57949900	0.95977000	0.00000700
H	-0.61679000	1.57789800	-0.89488800
H	-0.61678600	1.57789000	0.89490800
F	-1.76238800	-0.79452000	-1.08799900
F	-1.76239000	-0.79454100	1.08798600
F	-2.89174400	0.71491300	0.00000700
I	1.37624700	-0.01899600	0.00000000
I^{-}			
I	0.00000000	0.00000000	0.00000000

[^0]: ${ }^{\text {a }}$ Reactions were run in sealed tube on 0.2 mmol with respect to indole. ${ }^{\mathrm{b}}$ yields are determined by ${ }^{1} \mathrm{H}$ NMR and ${ }^{19} \mathrm{~F}$ NMR using N,N-Dimethyltrifluoroacetamide as an internal standard.

