Supporting Information:

Hierarchical On-Surface Synthesis of Graphene

Nanoribbon Heterojunctions

Christopher Bronner ${ }^{\ddagger, 1, *,}$ Rebecca A. Durr ${ }^{\ddagger, 2}$, Daniel J. Rizzo ${ }^{l}$, Yea-Lee Lee ${ }^{1,3}$, Tomas Marangoni ${ }^{2}$, Alin Miksi Kalayjian ${ }^{2}$, Henry Rodriguez ${ }^{1}$, William Zhao 1, Steven G. Louie ${ }^{1,4}$, Felix R. Fischer ${ }^{2,4,5, *}$, Michael F. Crommie ${ }^{1,4,5, *}$
${ }^{1}$ Department of Physics, University of California, Berkeley, CA 94720, USA. ${ }^{2}$ Department of Chemistry, University of California, Berkeley, CA 94720, USA. ${ }^{3}$ Department of Physics, Pohang University of Science and Technology, Pohang, Kyungbuk, 37673, Korea. ${ }^{4}$ Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ${ }^{5}$ Kavli Energy

NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley
National Laboratory, Berkeley, California 94720, USA.

* Corresponding authors
${ }^{\ddagger}$ These authors contributed equally to this work

1.	Control Experiments Demonstrating the Effect of Hierarchical Growth	S3
2.	Length Distribution of GNRs	S6

3.	Original STM image of GNR Heterostructures	S7
4.	Calculated Projected Density of States (PDOS) of GNR Heterojunction	S8
5.	Synthesis of Molecular Precursors	S10

1. Control Experiments Demonstrating the Effect of Hierarchical Growth

Supporting Figure S1. Control experiment omitting the linker molecule. (a) STM image of 1 on $\operatorname{Au}(111)(V=1.0 \mathrm{~V}, I=20 \mathrm{pA})$. (b) STM image of $\mathbf{1}$ and $\mathbf{3}$ co-adsorbed on $\mathrm{Au}(111)(V=2.0 \mathrm{~V}, I=20 \mathrm{pA})$. (c) Copolymer island after annealing to $230{ }^{\circ} \mathrm{C}(V=$ $1.0 \mathrm{~V}, I=20 \mathrm{pA})$. (d) GNRs observed after annealing to $320^{\circ} \mathrm{C}(V=0.3 \mathrm{~V}, I=40 \mathrm{pA})$. (e) Magnified GNR exhibiting four heterojunctions $(V=0.3 \mathrm{~V}, I=40 \mathrm{pA})$. Purple round markers indicate cGNR segments, orange square markers indicate binaphcGNR segments.

As described in the main text, two control experiments were conducted to assess the impact of the hierarchical growth strategy on the control of the copolymer growth sequence. The first control experiment is shown in Supporting Fig. S1. Monomers 1 and 3 were deposited onto a clean $\mathrm{Au}(111)$ surface (Supporting Figs. S1a,b) and annealed at $230{ }^{\circ} \mathrm{C}$ resulting in islands of
copolymers in which binaphthyl segments are evident as taller protrusions (Supporting Fig. 1c). Further annealing at $320^{\circ} \mathrm{C}$ induced cyclodehydrogenation (Supporting Figs. 1d,e). Fig. 4c in the main article shows that compared to the full hierarchical protocol using precursors $\mathbf{1}-\mathbf{3}$, significantly fewer GNRs possess only a single heterojunction, indicating that the linker molecule 2 (omitted in this first control experiment) increases the degree of control over the growth sequence.

7

3

Supporting Figure S2. Control experiment using only brominated precursors. (a) STM image of $\mathbf{7}$ deposited on $\mathrm{Au}(111)(V=$ $1.0 \mathrm{~V}, I=30 \mathrm{pA}$). (b) STM image of $\mathbf{7}$ and $\mathbf{3}$ co-deposited on $\mathrm{Au}(111)$ ($V=1.0 \mathrm{~V}, I=20 \mathrm{pA})$. (c) Copolymer island after annealing to $190^{\circ} \mathrm{C}(\mathrm{V}=1.0 \mathrm{~V}, I=20 \mathrm{pA})$. (d) STM image of GNRs obtained after annealing to $330^{\circ} \mathrm{C}(V=0.3 \mathrm{~V}, I=40 \mathrm{pA})$.
(e) Magnified image of GNR with six heterojunctions ($V=0.3 \mathrm{~V}, I=40 \mathrm{pA}$). Purple round markers indicate cGNR segments, orange square markers indicate binaph-cGNR segments.

The second control experiment shown in Supporting Fig. S2 uses only brominated precursors, namely 7 and 3. After sequential deposition (Supporting Figs. S2a,b) of the monomers on $\mathrm{Au}(111)$, they were annealed at $190^{\circ} \mathrm{C}$ resulting in islands of copolymers (Supporting Fig. S2c). Further annealing at $330^{\circ} \mathrm{C}$ leads to cyclodehydrogenation and yields GNRs (Supporting Figs. S2d,e). Fig. 4c in the main article shows that using precursors 7 and $\mathbf{3}$, there is a higher relative occurrence of GNRs with more than four heterojunctions and a dramatically reduced occurrence of singlejunction GNRs compared to both the preparation using $\mathbf{1}$ and $\mathbf{3}$ (partial hierarchical protocol) and the full hierarchical protocol using 1-3.

The comparison between the two control experiments demonstrates that substituting one of the monomers with iodine significantly increases the control over the growth sequence as indicated by the number of heterojunctions in a given GNR. The two control experiments combined demonstrate that the hierarchical growth strategy as implemented in the full hierarchical protocol using $\mathbf{1}-\mathbf{3}$ results in an increase of control in GNR heterojunction synthesis.

2. Length Distribution of GNRs

Supporting Figure S3. Length distribution of GNRs. (a) Length histograms for the three different heterojunction preparations on $\mathrm{Au}(111)$ using the three different growth protocols. (b) Integrated histogram for the three different growth protocols showing the fraction of GNRs longer than a given length. The median GNR length can be read as indicated.

Supporting Fig. S3a shows the length distribution of the GNR heterostructures that were obtained in the three different growth protocols using different combinations of precursors, namely using precursors 1-3 (full hierarchical protocol), $\mathbf{1}$ and $\mathbf{3}$ (partial hierarchical protocol) and $\mathbf{7}$ and $\mathbf{3}$ (random protocol). No significant differences in the length distribution can be observed for the three cases. The majority of GNRs possesses a length between 4 and 20 nm . In Supporting Fig. S3b, the histograms were integrated to show the fraction of GNRs which exceed a given length.

From this diagram, the median length can be directly obtained. In all three cases the median length is 8 or 9 nm .

3. Original STM image of GNR Heterostructures

Supporting Figure S4. Original STM images of GNR heterostructures. (a) STM image of GNR heterostructures shown in Fig. 4a without overlaid tinting ($V=0.3 \mathrm{~V}, I=20 \mathrm{pA}$). (b) STM image of the GNR heterostructure shown in Fig. 4b without overlaid tinting ($V=0.3 \mathrm{~V}, I=20 \mathrm{pA})$.

The STM images of GNR heterostructures in the main article were tinted to help identify cGNR and binaph-cGNR segments. Supporting Fig. S4 shows the original, unprocessed images that were used in Figs. 4a,b.

4. Calculated Projected Density of States (PDOS) of GNR Heterojunction

Supporting Figure S5. Electronic structure of cGNR and binaph-cGNR segments from DFT calculations. PDOS averaged in the cGNR (purple) and binaph-cGNR (orange) segment of a single molecular GNR heterojunction. The horizontal axis denotes the energy relative to the vacuum level. The band gap energies of cGNR and binaph-cGNR are given by 1.8 eV and 1.4 eV , respectively.

We have calculated the projected density of states (PDOS) using the Kohn-Sham states within LDA-DFT for a cGNR/binaph-cGNR heterojunction (the unit cell is shown in Supporting Fig. S5) in order to compare with the differential conductance spectra in Fig. 5 of the main text. To mimic the broadening of the STM tip, the PDOS is obtained over an average of eight carbon atoms in each area (as highlighted in purple and orange for cGNR and binaph-cGNR, respectively (Supporting Fig. S5, top)). The simulated PDOS spectral density (Supporting Fig. S5) is qualitatively similar to the experimental STS results (including a particularly large PDOS intensity for the $\mathrm{CB}+1$ band in the binaphthyl segment). In the LDA-DFT calculations the gap energies of the cGNR and binaph-cGNR segments in the heterojunction are given by 1.8 eV and 1.4 eV . If we include electron correlation effects to the self energy of the electron states within the GW
approximation, the band gap increases to the large values (3.63 eV for a cGNR). Furthermore, if we included the screening from the gold substrate, the band gap energy would be reduced again similar to the former study on 7-13 AGNR heterojunctions. ${ }^{1}$ These two effects account for the difference of the band gap magnitude between the LDA calculations and the STS experiments.

5. Synthesis of Molecular Precursors

Materials and General Methods. Unless otherwise stated, all manipulations of air and/or moisture sensitive compounds were carried out in oven-dried glassware, under an atmosphere of N_{2}. All solvents and reagents were purchased from Alfa Aesar, Spectrum Chemicals, Acros Organics, TCI America, and Sigma-Aldrich and were used as received unless otherwise noted. Organic solvents were dried by passing through a column of alumina and were degassed by vigorous bubbling of N_{2} through the solvent for 20 min . Flash column chromatography was performed on SiliCycle silica gel (particle size 40-63 $\mu \mathrm{m}$). Thin layer chromatography was carried out using SiliCycle silica gel 60 Å F-254 precoated plates (0.25 mm thick) and visualized by UV absorption. All ${ }^{1} \mathrm{H}$ and $\left\{{ }^{1} \mathrm{H}\right\}{ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AV-600, AV-500, and AVQ-400 spectrometers, and are referenced to residual solvent peaks $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}{ }^{1} \mathrm{H}\right.$ NMR $\delta=6.0$ $\mathrm{ppm},{ }^{13} \mathrm{C}$ NMR $\delta=73.8 \mathrm{ppm} ; \mathrm{CDCl}_{3}{ }^{1} \mathrm{H}$ NMR $\delta=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}$ NMR $\delta=77.2 \mathrm{ppm} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ ${ }^{1} \mathrm{H}$ NMR $\delta=2.50,{ }^{13} \mathrm{C}$ NMR $\delta=39.5$); ESI-HRMS mass spectrometry was performed on a Finnigan LTQ FT (Thermo) via direct injection using a flow rate of $5.0 \mu \mathrm{~L} \mathrm{~min}{ }^{-1}$. X-ray quality single crystals of 2 were obtained by recrystallization from a $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ solution. X-ray crystallography of $\mathbf{2}$ was performed on an APEX II QUAZAR, using a Microfocus Sealed Source (Incoatec; $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation), Kappa Geometry with DX (Bruker-AXS build) goniostat, a Bruker APEX II detector, QUAZAR multilayer mirrors as the radiation monochromator, and Oxford Cryostream 700 held at 100 K. Crystallographic data were resolved with SHELXT, refined with SHELXL-2014, and visualized with ORTEP-32. Compounds 6,11-diiodo-1,2,3,4tetraphenyltriphenylene (1), 6,11-dibromo-1,2,3,4-tetraphenyltriphenylene (7), and 2,7-dibromophenanthrene-9,10-dione were synthesized following previously reported literature procedures. ${ }^{2,3}$

2-Bromo-1,1'-binaphthyl (8): A 50 mL 2-neck round bottom flask was charged with 2,2'-dibromo-1, 1'-dinaphthyl ($0.98 \mathrm{~g}, 2.4 \mathrm{mmol}$) and dry THF (15 mL). The solution was cooled to $-40^{\circ} \mathrm{C},{ }^{\mathrm{n}} \mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, 2.4 mmol) was added dropwise and the reaction mixture was stirred for 1 h at $-40^{\circ} \mathrm{C}$. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}, \mathrm{HCl}(1 \mathrm{~N}, 11.8 \mathrm{mmol})$ added dropwise, and the reaction mixture was warmed to $25^{\circ} \mathrm{C}$. The solution was concentrated on a rotary evaporator. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and hydrolyzed with $1 \mathrm{~N} \mathrm{HCl}(50$ $\mathrm{mL})$. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the combined organic layers were washed
with saturated aqueous NaHCO_{3} solution, water, and saturated aqueous NaCl solution, and dried over MgSO_{4}. The reaction mixture was concentrated on a rotary evaporator to give $\mathbf{8}(0.72 \mathrm{~g}, 92 \%)$ as a colorless solid. Spectroscopic data is consistent with literature reports. ${ }^{4} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta=8.09(\mathrm{dd}, J=13.4,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.87(\mathrm{~m}, 2 \mathrm{H})$, $7.74(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.

2-ethynyl-1,1'-binaphthalene (9): A 25 mL sealable Schlenk flask was charged with $\mathbf{8}$ (305 mg , $0.75 \mathrm{mmol})$ in diisopropyl amine (11 mL) and THF (3 mL). $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(106 \mathrm{mg}, 0.08 \mathrm{mmol})$ and $\mathrm{CuI}(10 \mathrm{mg}, 0.04 \mathrm{mmol})$ were added, and the reaction mixture was degassed. TMSA (2 mL) was added, and the flask was sealed and stirred at $55^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was cooled to $25{ }^{\circ} \mathrm{C}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over MgSO_{4}, and concentrated on a rotary evaporator. Column chromatography (hexanes) yielded an inseparable mixture of partially deprotected 9. The intermediate was redissolved in THF (8 mL) and MeOH (8 $\mathrm{mL}) . \mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~g})$ was added, and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4}, and concentrated on a rotatory evaporator. Column chromatography (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:0-10:1) yielded 9 ($170 \mathrm{mg}, 81 \%$) as a colorless oil. Spectroscopic data is consistent with literature reports. ${ }^{5}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right) \delta=8.03-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.71(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.17(\mathrm{~m}, 4 \mathrm{H}), 2.8(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$.

2-([1,1'-binaphthalen]-2-yl)-6,11-dibromo-1,4-diphenyltriphenylene (3): A 2-neck 50 mL round bottom flask was charged with 2,7-dibromophenanthrene-9,10-dione ($1.0 \mathrm{~g}, 2.7 \mathrm{mmol}$) in $\mathrm{MeOH}(5.7 \mathrm{~mL})$. Diphenyl acetone ($5.1 \mathrm{~g}, 3.6 \mathrm{mmol}$) was added and the reaction mixture was heated to $75^{\circ} \mathrm{C} . \mathrm{KOH}(0.16 \mathrm{~g}, 2.9 \mathrm{mmol})$ in $\mathrm{MeOH}(9.8 \mathrm{~mL})$ was added drop-wise, and the reaction mixture was heated at $75^{\circ} \mathrm{C}$ for 2 h . The reaction was cooled to $25^{\circ} \mathrm{C}$, and filtered. The precipitate was washed with EtOH to yield the intermediate cyclopentadienone as a green solid, which was used without further purification. A 10 mL Schlenk flask was charged with the crude cyclopentadienone ($19 \mathrm{mg}, 0.036 \mathrm{mmol}$) and $9(11 \mathrm{mg}, 0.039 \mathrm{mmol})$ in $\mathrm{Ph}_{2} \mathrm{O}(0.7 \mathrm{~mL})$, and the reaction mixture was heated to $145^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was cooled to $25^{\circ} \mathrm{C}$, and the solvent was evaporated to yield a crude residue. Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.1: 10\right)$ yielded 3 ($21 \mathrm{mg}, 76 \%$) as a colorless solid. Variable temperature NMR in 1,1,2,2-tetrachloroethane- d_{2} at $110{ }^{\circ} \mathrm{C}$ was performed in order to resolve NMR spectroscopic signals (Supporting Fig. S6). Even at high temperature, a fully resolved NMR was not obtained due to the
high barrier to rotation within the molecule. Major NMR shifts at $22{ }^{\circ} \mathrm{C}$ reported as follows (Supporting Figs. S8, S9). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.13$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.93 (m, 1H), $7.91(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=143.5,141.6,138.6,137.7,137.2,133.7,133.5,132.8,131.7,130.2$, 129.9, 129.7, 129.6, 129.2, 128.0, 127.6, 127.6, 127.2, 127.0 (2C), 126.6, 126.2 (2C), 126.1, 125.7, 125.4, 124.7, 124.6120 .1 ppm . HRMS (EI) $m / z:\left[\mathrm{C}_{50} \mathrm{H}_{30} \mathrm{Br}_{2}\right]^{+}$, calcd. for $\left[\mathrm{C}_{50} \mathrm{H}_{30} \mathrm{Br}_{2}\right] 790.0681$; found 790.0694.

2-iodophenanthrene-9,10-dione (10): A 5 mL sealable flask was charged with 9,10-phenanthrene quinone $(0.25 \mathrm{~g}, 1.2 \mathrm{mmol})$ and cooled to $0^{\circ} \mathrm{C}$. Trifluoromethanesulfonic acid $(1.0 \mathrm{~mL})$ was added, and the reaction mixtures was stirred under N_{2} for 10 min . N-Iodosuccinimide ($0.54 \mathrm{~g}, 2.4 \mathrm{mmol}$) was added slowly to the suspension. The reaction was poured onto ice $(100 \mathrm{~mL})$ and the precipitate was filtered to yield $\mathbf{1 0}(0.07 \mathrm{~g}, 18 \%)$ as an orange solid. Spectroscopic data is consistent with literature reports. ${ }^{6}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}$, DMSO- d_{6}) $\delta=8.36-8.20(\mathrm{~m}, 2 \mathrm{H}), 8.10-8.03(\mathrm{~m}$, $3 \mathrm{H}), 7.78(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$; HRMS (EI) $\mathrm{m} / z:\left[\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{O}_{2}\right]^{+}$, calcd. for [$\left.\mathrm{C}_{14} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{I}\right]$ 333.9491; found 333.9487.

2-bromo-7-iodophenanthrene-9,10-dione (11): A 25 mL 3 -neck round bottom flask was charged with $10(50 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{SO}_{4}(1.5 \mathrm{~mL})$. N-Bromosuccinimide ($29 \mathrm{mg}, 0.16 \mathrm{mmol}$) was added, and the reaction was stirred at $25^{\circ} \mathrm{C}$ for 16 h . The reaction was poured over ice (100 mL), and the precipitate was filtered to yield $11(43 \mathrm{mg}, 70 \%)$ as an orange solid. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $25^{\circ} \mathrm{C}$, DMSO- d_{6}) $\delta=8.31-8.21(\mathrm{~m}, 2 \mathrm{H}), 8.18-8.03(\mathrm{~m}, 3 \mathrm{H}), 8.00-7.89(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. HRMS (EI) $m / z:\left[\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{BrI}\right]^{+}$, calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{BrI}\right] 411.8601$; found 411.8596 .

2-([1,1'-binaphthalen]-2-yl)-6-bromo-11-iodo-1,4-diphenyltriphenylene (2): A 2-neck 25 mL round bottom flask was charged with 11 ($83 \mathrm{mg}, 0.20 \mathrm{mmol}$) in $\mathrm{MeOH}(2 \mathrm{~mL}) .1,3$-diphenyl acetone ($55 \mathrm{mg}, 0.26 \mathrm{mmol}$) was added and the reaction mixture was heated to $75{ }^{\circ} \mathrm{C}$. $\mathrm{KOH}(12$ $\mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ was added drop-wise, and the reaction mixture was heated at 75 ${ }^{\circ} \mathrm{C}$ for 2 h . The reaction was cooled to $25^{\circ} \mathrm{C}$, and filtered. The precipitate was washed with EtOH to yield the intermediate cyclopentadienone as a green solid, which was used without further purification. A 10 mL Schlenk flask was charged with the crude cyclopentadienone ($30 \mathrm{mg}, 0.051$ $\mathrm{mmol})$ and $9(16 \mathrm{mg}, 0.056 \mathrm{mmol})$ in o-xylene $(1 \mathrm{~mL})$, and the reaction mixture was heated to 145 ${ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was cooled to $25^{\circ} \mathrm{C}$ and the solvent was evaporated to yield a
crude residue. Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.1: 10\right)$ to yield $2(20 \mathrm{mg}, 47 \%)$ as a colorless solid. Variable temperature NMR in 1,1,2,2-tetrachloroethane- d_{2} at $110{ }^{\circ} \mathrm{C}$ was performed in order to resolve NMR spectroscopic signals (Supporting Fig. S7). Even at high temperature, a fully resolved NMR was not obtained due to the high degree of rotational restriction within the molecule. Major NMR shifts at $20^{\circ} \mathrm{C}$ reported as follows (Supporting Figs. S10, S11). X-ray crystallography reveals that $\mathbf{2}$ crystallizes as a 1:1 mixture of regioisomers with respect to the position of the I / Br substituent at the $\mathrm{C} 6 / \mathrm{C} 11$ position of the triphenylene core. ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H})$, $7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.18-6.89(\mathrm{~m}$, $3 \mathrm{H}), 6.55-6.39(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, 1,1,2,2$-tetrachloroethane- d_{2}) $\delta=142.9,141.0$, $139.4,138.8,138.2,137.1,136.7,136.0,135.7,134.9,133.2,132.9,132.7,132.5,132.3,132.3$, $129.3,129.2,128.8,128.2,128.0,127.8,127.6,127.2,127.2,126.7,126.6,126.4,126.0,125.7$, 125.7, 125.3, 124.9, 124.2, 124.1, 124.0 ppm . HRMS (EI) $m / z:\left[\mathrm{C}_{50} \mathrm{H}_{30} \mathrm{BrI}\right]^{+}$, calcd. for $\left[\mathrm{C}_{50} \mathrm{H}_{30} \mathrm{BrI}\right]$ 838.0563; found 838.0555.

Supporting Figure S6. Variable Temperature ($22-110{ }^{\circ} \mathrm{C}$) NMR of $\mathbf{3},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1,1,2,2$-tetrachloroethane- \boldsymbol{d}_{2}).

Supporting Figure S7. Variable Temperature ($20-110{ }^{\circ} \mathrm{C}$) NMR of $\mathbf{2},{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1,1,2,2$-tetrachloroethane- \boldsymbol{d}_{2}).

Supporting Figure S8. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, 20^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) of $\mathbf{3}$; [*] indicate residual solvent signals.

Supporting Figure S9. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, 20^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$) of 3; [*] indicate residual solvent signals.

Supporting Figure S10. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 20^{\circ} \mathrm{C}, 1,1,2,2$-tetrachloroethane- d_{2}) of $\mathbf{2}$; [*] indicate residual solvent signals.

Supporting Figure S11. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, 20^{\circ} \mathrm{C}, 1,1,2,2$-tetrachloroethane- d_{2}) of 2; [*] indicate residual solvent signals.

Supporting Table S1. Crystal data and structure refinement for 2.

CDCC no.
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.000^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

1568277
$\mathrm{C}_{50} \mathrm{H}_{30} \mathrm{BrI}$
837.55

100(2) K
$0.71073 \AA$
Triclinic
P-1
$a=11.4073(4) \AA \quad \alpha=113.8930(10)^{\circ}$
$b=12.4337(5) \AA \quad \beta=91.728(2)^{\circ}$
$c=13.8759(5) \AA \quad \gamma=93.409(2)^{\circ}$
1793.07(12) \AA^{3}

2
$1.551 \mathrm{Mg} / \mathrm{m}^{3}$
$2.044 \mathrm{~mm}^{-1}$
836
$0.070 \times 0.050 \times 0.050 \mathrm{~mm}^{3}$
1.608 to 25.457°.
$-13 \leq h \leq 13,-14 \leq k \leq 15,-16 \leq l \leq 16$
97222
$6581[\mathrm{R}(\mathrm{int})=0.0414]$
99.9 \%

Semi-empirical from equivalents
0.745 and 0.643

Full-matrix least-squares on F^{2}
6581 / 0 / 476
1.086
$\mathrm{R} 1=0.0254, \mathrm{wR} 2=0.0579$
$\mathrm{R} 1=0.0315, \mathrm{wR} 2=0.0622$
n/a
0.514 and $-0.541 \mathrm{e}^{-3}$

Supporting Table S2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3. U(eq) is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y		z
			$\mathrm{U}(\mathrm{eq})$	
$\mathrm{C}(1)$	$4247(2)$	$5366(2)$	$6741(2)$	$15(1)$
$\mathrm{C}(2)$	$5406(2)$	$5749(2)$	$7140(2)$	$16(1)$
$\mathrm{C}(3)$	$6269(2)$	$4980(2)$	$7050(2)$	$15(1)$
$\mathrm{C}(4)$	$5979(2)$	$3751(2)$	$6464(2)$	$15(1)$
$\mathrm{C}(5)$	$6731(2)$	$2827(2)$	$6460(2)$	$16(1)$
$\mathrm{C}(6)$	$7571(2)$	$3042(2)$	$7294(2)$	$19(1)$
$\mathrm{C}(7)$	$8246(2)$	$2166(2)$	$7301(2)$	$23(1)$
$\mathrm{C}(8)$	$8121(2)$	$1037(2)$	$6491(2)$	$26(1)$
$\mathrm{C}(9)$	$7264(2)$	$798(2)$	$5694(2)$	$25(1)$
$\mathrm{C}(10)$	$6544(2)$	$1668(2)$	$5668(2)$	$20(1)$
$\mathrm{C}(11)$	$5607(2)$	$1408(2)$	$4848(2)$	$19(1)$
$\mathrm{C}(12)$	$5541(2)$	$374(2)$	$3907(2)$	$25(1)$
$\mathrm{C}(13)$	$4705(2)$	$169(2)$	$3104(2)$	$27(1)$
$\mathrm{C}(14)$	$3930(2)$	$1027(2)$	$3220(2)$	$22(1)$
$\mathrm{C}(15)$	$3949(2)$	$2039(2)$	$4130(2)$	$19(1)$
$\mathrm{C}(16)$	$4767(2)$	$2237(2)$	$4977(2)$	$17(1)$
$\mathrm{C}(17)$	$4876(2)$	$3385(2)$	$5888(2)$	$16(1)$
$\mathrm{C}(18)$	$3958(2)$	$4171(2)$	$6133(2)$	$15(1)$
$\mathrm{C}(19)$	$3399(2)$	$6306(2)$	$6976(2)$	$15(1)$
$\mathrm{C}(20)$	$3041(2)$	$6635(2)$	$6151(2)$	$19(1)$
$\mathrm{C}(21)$	$2343(2)$	$7537(2)$	$6331(2)$	$22(1)$
$\mathrm{C}(22)$	$1980(2)$	$8202(2)$	$7348(2)$	$20(1)$
$\mathrm{C}(23)$	$1253(2)$	$9150(2)$	$7558(2)$	$29(1)$
$\mathrm{C}(24)$	$934(2)$	$9790(2)$	$8558(2)$	$32(1)$
$\mathrm{C}(25)$	$1330(2)$	$9527(2)$	$9394(2)$	$29(1)$
$\mathrm{C}(26)$	$2022(2)$	$8612(2)$	$9227(2)$	$22(1)$
$\mathrm{C}(27)$	$2360(2)$	$7916(2)$	$8196(2)$	$17(1)$

$\mathrm{C}(28)$	$3061(2)$	$6934(2)$	$7990(2)$	$16(1)$
$\mathrm{C}(29)$	$3363(2)$	$6554(2)$	$8858(2)$	$16(1)$
$\mathrm{C}(30)$	$4289(2)$	$7162(2)$	$9636(2)$	$17(1)$
$\mathrm{C}(31)$	$4975(2)$	$8160(2)$	$9649(2)$	$21(1)$
$\mathrm{C}(32)$	$5896(2)$	$8681(2)$	$10381(2)$	$26(1)$
$\mathrm{C}(33)$	$6191(2)$	$8232(2)$	$11133(2)$	$29(1)$
$\mathrm{C}(34)$	$5532(2)$	$7295(2)$	$11159(2)$	$27(1)$
$\mathrm{C}(35)$	$4562(2)$	$6738(2)$	$10423(2)$	$21(1)$
$\mathrm{C}(36)$	$3877(2)$	$5756(2)$	$10438(2)$	$23(1)$
$\mathrm{C}(37)$	$2975(2)$	$5208(2)$	$9701(2)$	$22(1)$
$\mathrm{C}(38)$	$2725(2)$	$5604(2)$	$8898(2)$	$18(1)$
$\mathrm{C}(39)$	$7458(2)$	$5517(2)$	$7545(2)$	$17(1)$
$\mathrm{C}(40)$	$8478(2)$	$5220(2)$	$6992(2)$	$20(1)$
$\mathrm{C}(41)$	$9569(2)$	$5731(2)$	$7471(2)$	$26(1)$
$\mathrm{C}(42)$	$9654(2)$	$6551(2)$	$8516(2)$	$31(1)$
$\mathrm{C}(43)$	$8653(2)$	$6875(2)$	$9069(2)$	$26(1)$
$\mathrm{C}(44)$	$7558(2)$	$6356(2)$	$8585(2)$	$20(1)$
$\mathrm{C}(45)$	$2702(2)$	$3669(2)$	$5885(2)$	$17(1)$
$\mathrm{C}(46)$	$1887(2)$	$3934(2)$	$5257(2)$	$24(1)$
$\mathrm{C}(47)$	$744(2)$	$3408(2)$	$5052(2)$	$28(1)$
$\mathrm{C}(48)$	$395(2)$	$2619(2)$	$5481(2)$	$31(1)$
$\mathrm{C}(49)$	$1187(2)$	$2349(2)$	$6108(2)$	$29(1)$
$\mathrm{C}(50)$	$2329(2)$	$2868(2)$	$6307(2)$	$22(1)$
$\mathrm{Br}(1)$	$9444(8)$	$2520(7)$	$8466(5)$	$32(1)$
$\mathrm{I}(1)$	$2717(4)$	$855(3)$	$2022(3)$	$28(1)$
$\mathrm{Br}(1 \mathrm{~A})$	$2834(6)$	$720(5)$	$2047(5)$	$28(1)$
$\mathrm{I}(1 \mathrm{~A})$	$9394(5)$	$2617(5)$	$8601(3)$	$32(1)$

Supporting Table S3. Bond lengths [\AA] and angles [${ }^{\circ}$] for 2.

$\mathrm{C}(1)-\mathrm{C}(18)$	$1.391(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.396(3)$
$\mathrm{C}(1)-\mathrm{C}(19)$	$1.501(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.386(3)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9500
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.421(3)$
$\mathrm{C}(3)-\mathrm{C}(39)$	$1.492(3)$
$\mathrm{C}(4)-\mathrm{C}(17)$	$1.416(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.473(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.407(3)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.413(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.374(3)$
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.395(3)$
$\mathrm{C}(7)-\mathrm{Br}(1)$	$1.974(9)$
$\mathrm{C}(7)-\mathrm{I}(1 \mathrm{~A})$	$2.058(6)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.379(3)$
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.407(3)$
$\mathrm{C}(9)-\mathrm{H}(9)$	0.9500
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.459(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.409(3)$
$\mathrm{C}(11)-\mathrm{C}(16)$	$1.411(3)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.375(4)$
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.388(3)$
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.373(3)$
$\mathrm{C}(14)-\mathrm{Br}(1 \mathrm{~A})$	$18(6)$
$\mathrm{C}(14)-\mathrm{I}(1)$	

$\mathrm{C}(15)-\mathrm{C}(16)$	1.409(3)
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{C}(16)-\mathrm{C}(17)$	1.470(3)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.429(3)
$\mathrm{C}(18)$-C(45)	1.500(3)
$\mathrm{C}(19)-\mathrm{C}(28)$	1.385(3)
$\mathrm{C}(19)-\mathrm{C}(20)$	1.419(3)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.358(3)
$\mathrm{C}(20)-\mathrm{H}(20)$	0.9500
$\mathrm{C}(21)-\mathrm{C}(22)$	1.407(3)
$\mathrm{C}(21)-\mathrm{H}(21)$	0.9500
$\mathrm{C}(22)-\mathrm{C}(23)$	1.419(3)
$\mathrm{C}(22)-\mathrm{C}(27)$	1.423(3)
$\mathrm{C}(23)-\mathrm{C}(24)$	1.365(4)
$\mathrm{C}(23)-\mathrm{H}(23)$	0.9500
$\mathrm{C}(24)$-C(25)	1.396(4)
$\mathrm{C}(24)-\mathrm{H}(24)$	0.9500
$\mathrm{C}(25)-\mathrm{C}(26)$	1.370(3)
$\mathrm{C}(25)-\mathrm{H}(25)$	0.9500
C(26)-C(27)	1.419(3)
$\mathrm{C}(26)-\mathrm{H}(26)$	0.9500
C(27)-C(28)	1.434(3)
C(28)-C(29)	1.500(3)
$\mathrm{C}(29)$-C(38)	1.372(3)
$\mathrm{C}(29)$-C(30)	1.424(3)
$\mathrm{C}(30)-\mathrm{C}(31)$	1.420(3)
$\mathrm{C}(30)-\mathrm{C}(35)$	1.425(3)
$\mathrm{C}(31)-\mathrm{C}(32)$	1.370(3)
$\mathrm{C}(31)-\mathrm{H}(31)$	0.9500
$\mathrm{C}(32)-\mathrm{C}(33)$	1.410(4)
$\mathrm{C}(32)-\mathrm{H}(32)$	0.9500
$\mathrm{C}(33)-\mathrm{C}(34)$	1.363(4)
$\mathrm{C}(33)-\mathrm{H}(33)$	0.9500

$\mathrm{C}(34)-\mathrm{C}(35)$	$1.419(3)$
$\mathrm{C}(34)-\mathrm{H}(34)$	0.9500
$\mathrm{C}(35)-\mathrm{C}(36)$	$1.417(3)$
$\mathrm{C}(36)-\mathrm{C}(37)$	$1.362(3)$
$\mathrm{C}(36)-\mathrm{H}(36)$	0.9500
$\mathrm{C}(37)-\mathrm{C}(38)$	$1.416(3)$
$\mathrm{C}(37)-\mathrm{H}(37)$	0.9500
$\mathrm{C}(38)-\mathrm{H}(38)$	0.9500
$\mathrm{C}(39)-\mathrm{C}(44)$	$1.392(3)$
$\mathrm{C}(39)-\mathrm{C}(40)$	$1.397(3)$
$\mathrm{C}(40)-\mathrm{C}(41)$	$1.382(3)$
$\mathrm{C}(40)-\mathrm{H}(40)$	0.9500
$\mathrm{C}(41)-\mathrm{C}(42)$	$1.390(4)$
$\mathrm{C}(41)-\mathrm{H}(41)$	0.9500
$\mathrm{C}(42)-\mathrm{C}(43)$	$1.383(4)$
$\mathrm{C}(42)-\mathrm{H}(42)$	0.9500
$\mathrm{C}(43)-\mathrm{C}(44)$	$1.389(3)$
$\mathrm{C}(43)-\mathrm{H}(43)$	0.9500
$\mathrm{C}(44)-\mathrm{H}(44)$	0.9500
$\mathrm{C}(45)-\mathrm{C}(50)$	$1.397(3)$
$\mathrm{C}(45)-\mathrm{C}(46)$	$1.398(3)$
$\mathrm{C}(46)-\mathrm{C}(47)$	0.9500
$\mathrm{C}(46)-\mathrm{H}(46)$	$1.390(3)$
$\mathrm{C}(47)-\mathrm{C}(48)$	0.9500
$\mathrm{C}(47)-\mathrm{H}(47)$	$1.385(4)$
$\mathrm{C}(48)-\mathrm{C}(49)$	0.9500
$\mathrm{C}(48)-\mathrm{H}(48)$	$1.381(4)$
$\mathrm{C}(49)-\mathrm{C}(50)$	C

$\mathrm{C}(18)-\mathrm{C}(1)-\mathrm{C}(2)$	$119.24(19)$
$\mathrm{C}(18)-\mathrm{C}(1)-\mathrm{C}(19)$	$124.44(18)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(19)$	$116.28(18)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$122.92(19)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	118.5
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	118.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$118.40(19)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(39)$	$116.84(18)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(39)$	$124.71(18)$
$\mathrm{C}(17)-\mathrm{C}(4)-\mathrm{C}(3)$	$118.31(18)$
$\mathrm{C}(17)-\mathrm{C}(4)-\mathrm{C}(5)$	$117.64(18)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$123.97(19)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	$118.32(19)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$121.07(19)$
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(4)$	$120.33(19)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$120.8(2)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	119.6
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	119.6
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$118.98(19)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{Br}(1)$	$121.5(2)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{Br}(1)$	$119.4(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{I}(1 \mathrm{~A})$	$119.1(3)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{I}(1 \mathrm{~A})$	$115.7(2)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$122.8(2)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	$118.3(2)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	120.8
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.8
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	$121.8(2)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	119.1
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(11)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	119.1
C	
C	

$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$122.0(2)$
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(10)$	$119.22(19)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$121.9(2)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	119.1
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	119.1
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$118.6(2)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	120.7
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	120.7
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	$121.5(2)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{Br}(1 \mathrm{~A})$	$122.0(2)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{Br}(1 \mathrm{~A})$	$116.5(2)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{I}(1)$	$116.94(19)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{I}(1)$	$121.54(19)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$120.5(2)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.7
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.7
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	$118.62(19)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$119.76(19)$
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(17)$	$120.66(19)$
$\mathrm{C}(4)-\mathrm{C}(17)-\mathrm{C}(18)$	$120.02(18)$
$\mathrm{C}(4)-\mathrm{C}(17)-\mathrm{C}(16)$	$117.46(18)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$122.20(19)$
$\mathrm{C}(1)-\mathrm{C}(18)-\mathrm{C}(17)$	$118.60(19)$
$\mathrm{C}(1)-\mathrm{C}(18)-\mathrm{C}(45)$	$121.54(18)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(45)$	$119.09(18)$
$\mathrm{C}(28)-\mathrm{C}(19)-\mathrm{C}(20)$	$119.67(19)$
$\mathrm{C}(28)-\mathrm{C}(19)-\mathrm{C}(1)$	$121.65(18)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(1)$	$118.35(18)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$121.2(2)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	119.4
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	$\mathrm{C}(21)-\mathrm{C}(22)$
$\mathrm{C}(21)-\mathrm{H}(21)$	119.4
C	

$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	119.4
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	122.3(2)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(27)$	118.70(19)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(27)$	119.0(2)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	120.7(2)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	119.6
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$	119.6
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	120.3(2)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	119.9
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$	119.9
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	121.0(2)
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	119.5
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	119.5
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	120.4(2)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26)$	119.8
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26)$	119.8
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(22)$	118.55(19)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	121.8(2)
$\mathrm{C}(22)-\mathrm{C}(27)-\mathrm{C}(28)$	119.61(19)
$\mathrm{C}(19)-\mathrm{C}(28)-\mathrm{C}(27)$	119.57(19)
$\mathrm{C}(19)-\mathrm{C}(28)-\mathrm{C}(29)$	120.51(18)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	119.83(18)
$\mathrm{C}(38)-\mathrm{C}(29)-\mathrm{C}(30)$	119.8(2)
$\mathrm{C}(38)-\mathrm{C}(29)-\mathrm{C}(28)$	118.79(19)
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	121.36(19)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$	122.8(2)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(35)$	118.3(2)
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(35)$	118.9(2)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(30)$	120.9(2)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{H}(31)$	119.6
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31)$	119.6
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	120.7(2)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32)$	119.7

$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{H}(32)$	119.7
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	$119.9(2)$
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{H}(33)$	120.0
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{H}(33)$	120.0
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$121.1(2)$
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{H}(34)$	119.4
$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{H}(34)$	119.4
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(34)$	$121.6(2)$
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(30)$	$119.3(2)$
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(30)$	$119.0(2)$
$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{C}(35)$	$120.7(2)$
$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{H}(36)$	119.7
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{H}(36)$	119.7
$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$	$120.1(2)$
$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{H}(37)$	119.9
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{H}(37)$	119.9
$\mathrm{C}(29)-\mathrm{C}(38)-\mathrm{C}(37)$	$121.1(2)$
$\mathrm{C}(29)-\mathrm{C}(38)-\mathrm{H}(38)$	119.5
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{H}(38)$	119.5
$\mathrm{C}(44)-\mathrm{C}(39)-\mathrm{C}(40)$	$118.9(2)$
$\mathrm{C}(44)-\mathrm{C}(39)-\mathrm{C}(3)$	$119.16(19)$
$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(3)$	$121.98(19)$
$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(39)$	$120.8(2)$
$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{H}(40)$	119.6
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40)$	119.6
$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)$	$119.6(2)$
$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{H}(41)$	120.2
$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{H}(41)$	120.2
$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(41)$	$120.4(2)$
$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{H}(42)$	119.8
$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{H}(42)$	119.8
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	119.1
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{H}(43)$	120

$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{H}(43)$	120.1
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(39)$	$120.6(2)$
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{H}(44)$	119.7
$\mathrm{C}(39)-\mathrm{C}(44)-\mathrm{H}(44)$	119.7
$\mathrm{C}(50)-\mathrm{C}(45)-\mathrm{C}(46)$	$117.9(2)$
$\mathrm{C}(50)-\mathrm{C}(45)-\mathrm{C}(18)$	$117.30(19)$
$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(18)$	$124.83(19)$
$\mathrm{C}(47)-\mathrm{C}(46)-\mathrm{C}(45)$	$120.9(2)$
$\mathrm{C}(47)-\mathrm{C}(46)-\mathrm{H}(46)$	119.5
$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{H}(46)$	119.5
$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{C}(46)$	$120.1(2)$
$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{H}(47)$	120.0
$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{H}(47)$	120.0
$\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{C}(47)$	$119.9(2)$
$\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{H}(48)$	120.1
$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{H}(48)$	120.1
$\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(50)$	$120.1(2)$
$\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{H}(49)$	120.0
$\mathrm{C}(50)-\mathrm{C}(49)-\mathrm{H}(49)$	120.0
$\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{C}(45)$	$121.2(2)$
$\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{H}(50)$	119.4

Supporting Table S4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$15(1)$	$21(1)$	$11(1)$	$9(1)$	$3(1)$	$3(1)$
$\mathrm{C}(2)$	$19(1)$	$13(1)$	$13(1)$	$4(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(3)$	$14(1)$	$21(1)$	$12(1)$	$7(1)$	$2(1)$	$3(1)$
$\mathrm{C}(4)$	$15(1)$	$18(1)$	$14(1)$	$8(1)$	$5(1)$	$4(1)$
$\mathrm{C}(5)$	$15(1)$	$18(1)$	$20(1)$	$11(1)$	$7(1)$	$3(1)$
$\mathrm{C}(6)$	$17(1)$	$24(1)$	$22(1)$	$14(1)$	$7(1)$	$5(1)$
$\mathrm{C}(7)$	$17(1)$	$32(1)$	$28(1)$	$20(1)$	$6(1)$	$5(1)$
$\mathrm{C}(8)$	$20(1)$	$25(1)$	$41(1)$	$21(1)$	$11(1)$	$9(1)$
$\mathrm{C}(9)$	$23(1)$	$18(1)$	$33(1)$	$10(1)$	$11(1)$	$4(1)$
$\mathrm{C}(10)$	$17(1)$	$19(1)$	$27(1)$	$12(1)$	$11(1)$	$3(1)$
$\mathrm{C}(11)$	$17(1)$	$17(1)$	$22(1)$	$7(1)$	$8(1)$	$-1(1)$
$\mathrm{C}(12)$	$22(1)$	$16(1)$	$32(1)$	$5(1)$	$10(1)$	$2(1)$
$\mathrm{C}(13)$	$28(1)$	$18(1)$	$26(1)$	$-1(1)$	$9(1)$	$-5(1)$
$\mathrm{C}(14)$	$24(1)$	$22(1)$	$17(1)$	$5(1)$	$2(1)$	$-6(1)$
$\mathrm{C}(15)$	$20(1)$	$18(1)$	$17(1)$	$6(1)$	$5(1)$	$-2(1)$
$\mathrm{C}(16)$	$16(1)$	$18(1)$	$18(1)$	$7(1)$	$6(1)$	$0(1)$
$\mathrm{C}(17)$	$17(1)$	$17(1)$	$14(1)$	$8(1)$	$3(1)$	$1(1)$
$\mathrm{C}(18)$	$16(1)$	$20(1)$	$12(1)$	$7(1)$	$2(1)$	$3(1)$
$\mathrm{C}(19)$	$12(1)$	$16(1)$	$18(1)$	$7(1)$	$-1(1)$	$-1(1)$
$\mathrm{C}(20)$	$16(1)$	$24(1)$	$18(1)$	$10(1)$	$2(1)$	$-1(1)$
$\mathrm{C}(21)$	$16(1)$	$28(1)$	$29(1)$	$21(1)$	$-3(1)$	$-2(1)$
$\mathrm{C}(22)$	$12(1)$	$17(1)$	$33(1)$	$14(1)$	$-2(1)$	$-2(1)$
$\mathrm{C}(23)$	$22(1)$	$23(1)$	$45(2)$	$19(1)$	$-4(1)$	$4(1)$
$\mathrm{C}(24)$	$22(1)$	$20(1)$	$49(2)$	$9(1)$	$-1(1)$	$7(1)$
$\mathrm{C}(25)$	$20(1)$	$20(1)$	$38(1)$	$2(1)$	$2(1)$	$5(1)$
$\mathrm{C}(26)$	$15(1)$	$18(1)$	$26(1)$	$4(1)$	$0(1)$	$1(1)$
$\mathrm{C}(27)$	$11(1)$	$15(1)$	$25(1)$	$7(1)$	$0(1)$	$-1(1)$

$\mathrm{C}(28)$	$12(1)$	$16(1)$	$19(1)$	$7(1)$	$1(1)$	$0(1)$
$\mathrm{C}(29)$	$14(1)$	$15(1)$	$17(1)$	$4(1)$	$6(1)$	$6(1)$
$\mathrm{C}(30)$	$17(1)$	$17(1)$	$16(1)$	$4(1)$	$6(1)$	$6(1)$
$\mathrm{C}(31)$	$19(1)$	$20(1)$	$23(1)$	$7(1)$	$5(1)$	$4(1)$
$\mathrm{C}(32)$	$22(1)$	$22(1)$	$27(1)$	$2(1)$	$5(1)$	$2(1)$
$\mathrm{C}(33)$	$23(1)$	$32(1)$	$20(1)$	$-3(1)$	$-3(1)$	$5(1)$
$\mathrm{C}(34)$	$26(1)$	$32(1)$	$17(1)$	$4(1)$	$2(1)$	$13(1)$
$\mathrm{C}(35)$	$23(1)$	$22(1)$	$16(1)$	$7(1)$	$7(1)$	$11(1)$
$\mathrm{C}(36)$	$26(1)$	$28(1)$	$19(1)$	$12(1)$	$7(1)$	$11(1)$
$\mathrm{C}(37)$	$25(1)$	$22(1)$	$25(1)$	$13(1)$	$8(1)$	$5(1)$
$\mathrm{C}(38)$	$17(1)$	$17(1)$	$19(1)$	$7(1)$	$5(1)$	$3(1)$
$\mathrm{C}(39)$	$17(1)$	$16(1)$	$21(1)$	$11(1)$	$-1(1)$	$3(1)$
$\mathrm{C}(40)$	$20(1)$	$24(1)$	$21(1)$	$14(1)$	$2(1)$	$3(1)$
$\mathrm{C}(41)$	$16(1)$	$35(1)$	$35(1)$	$22(1)$	$3(1)$	$1(1)$
$\mathrm{C}(42)$	$20(1)$	$32(1)$	$39(1)$	$15(1)$	$-7(1)$	$-8(1)$
$\mathrm{C}(43)$	$25(1)$	$20(1)$	$27(1)$	$6(1)$	$-6(1)$	$-2(1)$
$\mathrm{C}(44)$	$19(1)$	$18(1)$	$23(1)$	$8(1)$	$1(1)$	$4(1)$
$\mathrm{C}(45)$	$17(1)$	$17(1)$	$13(1)$	$3(1)$	$2(1)$	$3(1)$
$\mathrm{C}(46)$	$23(1)$	$25(1)$	$23(1)$	$12(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(47)$	$20(1)$	$35(1)$	$29(1)$	$14(1)$	$-5(1)$	$2(1)$
$\mathrm{C}(48)$	$17(1)$	$41(2)$	$31(1)$	$12(1)$	$-2(1)$	$-5(1)$
$\mathrm{C}(49)$	$22(1)$	$35(1)$	$32(1)$	$18(1)$	$3(1)$	$-6(1)$
$\mathrm{C}(50)$	$20(1)$	$28(1)$	$20(1)$	$11(1)$	$0(1)$	$1(1)$
$\mathrm{Br}(1)$	$32(1)$	$44(1)$	$33(1)$	$26(1)$	$7(1)$	$19(1)$
$\mathrm{I}(1)$	$42(1)$	$25(1)$	$16(1)$	$8(1)$	$-8(1)$	$-4(1)$
$\mathrm{Br}(1 \mathrm{~A})$	$42(1)$	$25(1)$	$16(1)$	$8(1)$	$-8(1)$	$-4(1)$
$\mathrm{I}(1 \mathrm{~A})$	$32(1)$	$44(1)$	$33(1)$	$26(1)$	$7(1)$	$19(1)$

Supporting Table S5. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$.

x		y	Z	(eq)
$\mathrm{H}(2)$	5612	6573	7488	19
$\mathrm{H}(6)$	7673	3803	7859	23
$\mathrm{H}(8)$	8615	446	6487	31
$\mathrm{H}(9)$	7155	26	5148	30
$\mathrm{H}(12)$	6090	-198	3824	30
$\mathrm{H}(13)$	4659	-544	2485	32
$\mathrm{H}(15)$	3406	2609	4189	23
$\mathrm{H}(20)$	3294	6216	5460	23
$\mathrm{H}(21)$	2096	7721	5759	26
$\mathrm{H}(23)$	986	9341	6995	35
$\mathrm{H}(24)$	440	10417	8686	38
$\mathrm{H}(25)$	1117	9990	10089	34
$\mathrm{H}(26)$	2277	8441	9804	26
$\mathrm{H}(31)$	4793	8469	9144	25
$\mathrm{H}(32)$	6341	9352	10381	31
$\mathrm{H}(33)$	6849	8582	11620	35
$\mathrm{H}(34)$	5724	7009	11680	32
$\mathrm{H}(36)$	4048	5477	10967	27
$\mathrm{H}(37)$	2513	4559	9726	27
$\mathrm{H}(38)$	2105	5205	8379	21
$\mathrm{H}(40)$	8419	4660	6278	24
$\mathrm{H}(41)$	10257	5524	7089	31
$\mathrm{H}(42)$	10404	6892	8852	37
$\mathrm{H}(43)$	8714	7450	9777	31
$\mathrm{H}(44)$	6871	6576	8966	24
$\mathrm{H}(46)$	2117	4481	4966	28
$\mathrm{H}(47)$	203	3591	4617	33

```
H(48) -387 2264 5345 37
H(49) 948 1808 6402 35
H(50) 2866 2675 6737 27
```


References

[1] Chen, Y.-C.; Cao, T.; Chen, C.; Pedramrazi, Z.; Haberer, D.; de Oteyza, D. G.; Fischer, F. R.; Louie, S. G.; Crommie, M. F. Molecular Bandgap Engineering of Bottom-Up Synthesized Graphene Nanoribbon Heterojunctions. Nat. Nanotechnol. 2015, 10, 156160.
[2] Nguyen, G. D.; Tsai, H.-Z.; Omrani, A. A.; Marangoni, T.; Wu, M.; Rizzo, D. J.; Rodgers, G. F.; Cloke, R. R.; Durr, R. A.; Sakai, Y.; Liou, F.; Aikawa, A. S.; Chelikowsky, J. R.; Louie, S. G.; Fischer, F. R.; Crommie, M. F. Atomically Precise Graphene Nanoribbon Heterojunctions from a Single Molecular Precursor. Nat. Nanotechnol. 2017, 12, 1077-1082.
[3] Satapathy, R.; Wu, Y.-H.; Lin, H.-C. Novel Thieno-Imidazole Based Probe for Colorimetric Detection of Hg^{2+} and Fluorescence Turn-on Response of Zn^{2+}. Org. Lett. 2012, 14 (10), 2564-2567.
[4] Schilling, B.; Kaufmann, D. E. Suzuki Coupling of Chiral 1,1'-Binaphthyl Systems New Synthetic Routes to Functionalize the 2- and 2,2'-Positions. Eur. J. Org. Chem. 1998, 4, 701-109.
[5] Mamane, V.; Hannen, P.; Fürstner, A. Synthesis of Phenanthrenes and Polycyclic Heteroarenes by Transition-Metal Catalyzed Cycloisomerization Reactions. Chem. Eur. J. 2004, 10 (4), 4556-4575.
[6] Chaudhuri, D.; Wettach, H.; van Schooten, K. J.; Liu, S.; Sigmund, E.; Höger, S.; Lupton, J. M. Tuning the Singlet-Triplet Gap in Metal-Free Phosphorescent π Conjugated Polymers. Angew. Chem. Int. Ed. 2010, 49, 7714-7717.

