SUPPORTING INFORMATION

Redox-Responsive Core Cross-Linked Block Copolymer Micelles for Overcoming Multidrug Resistance in Cancer Cells

Chiranjit Maiti[†], Sheetal Parida[‡], Shibayan Kayal[†], Saikat Maiti[†], Mahitosh Mandal[‡] and Dibakar Dhara^{†*}

[†]Department of Chemistry
[‡]School of Medical Science and Technology
Indian Institute of Technology Kharagpur
West Bengal 721302 India

Email: dibakar@chem.iitkgp.ernet.in, dibakar@live.in

Synthesis of Poly(PEGMA)-Based Macro-Chain Transfer Agent (CTA) (Scheme 1).

Figure S1: ¹HNMR spectra (in DMSO-d₆) of PEG macro- CTA.

Figure S2: ¹H NMR spectra (in CDCl₃) of LAHEMA.

Figure S3: ¹³C NMR spectra (in CDCl₃) of LAHEMA.

Figure S4: Hydrodynamic size distribution profiles of the cross-linked micelles BCP26 (a) and BCP83 (b) measured by DLS due to swelling in response to 10 mM GSH with time in PB (pH 7.4, 10 mM) at 37 °C.

Figure S5: Variation of loading content and loading efficiency of DOX with varying DOX concentration in nanocarrier (BCP26) having fixed concentration of 1 mg/mL with maintaining cross-linking GSH concentration in PB (pH 7.4, 10 mM) at 37 °C. DOX loading efficiency was calculated based on the equation LE (%) = $\frac{Weight\ of\ DOX\ into\ the\ micelle}{Weight\ of\ DOX\ feed}$ × 100.