Supporting Information

CO₂ Reduction Promoted by Imidazole Supported on a Phosphonium-Type Ionic Liquid-Modified Au Electrode at a Low Overpotential

Go Iijima,[†] Tatsuya Kitagawa,[¶] Akira Katayama,[¶] Tomohiko Inomata,[¶] Hitoshi Yamaguchi,[†] Kazunori Suzuki,[†] Kazuki Hirata,[†] Yoshimasa Hijikata,[†] Miho Ito,[†] and Hideki Masuda^{¶*}

[†] Advanced Research and Innovation Center, DENSO CORPORATION, 500-1 Minamiyama, Komenoki-cho, Nisshin 470-0111, Japan

[¶]Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa, Nagoya 466-8555, Japan

*Corresponding email: masuda.hideki@nitech.ac.jp

Contents

Figure S1. Characterization of IL, (a) ¹ H-NMR and (b) FT-IR spectra.	S3
Figure S2. Electrochemical desorption of IL modified on the Au(111) electrode.	S4
Figure S3. FT-IR spectrum of imidazole@IL/Au by RAS measurement.	S4
Figure S4. XPS analysis of imidazole@IL/Au. (a) Wide range spectrum as measured at -120 °C	,
(b) spectrum in the range of 390 - 408 eV as measured at −120 °C, (c) spectrum in the	;
range of 390 - 408 eV as measured at room temperature, (d) spectrum in the range of 124	
-140eV as measured at -120 °C, (e) peak intensity ratio of N1s to P2p as performed at	
each temperature.	S5
Figure S5. CV measurements of IL/imidazole/Au under (a) Ar and (b) CO ₂ at various sweep rates.	S6
Figure S6. CV measurements of the ANH@IL/Au systems containing (a) 2-methylimidazole, (b)	I
1-methylimidazole, (c) 1,2-dimethylimidazole and (d) imidazole as ANH, as measured	
with a sweep rate of 10 mV/sec.	S7
Figure S7. Current efficiencies of formate, methanol and CO produced using several different	
ANH@IL/Au electrodes (imidazole, 1-methylimidazole, 2-methylimidazole and	L
1,2-dimethylimidazole as ANH) as measured at -0.8 V vs. Ag/AgCl.	S8
Figure S8. Current efficiencies of formate, methanol and CO produced using the imidazole@IL/Au	L
electrode as measured at various electrochemical potentials.	S8
Figure S9. GC-MS spectra of (a) ¹² CH ₃ OH and (b) ¹³ CH ₃ OH as analyzed at a retention time of 7	'
minutes performed at -0.8 V vs. Ag/AgCl under CO ₂ or ¹³ CO ₂ , respectively. (c), (d) and	

(e) are GC-MS spectra performed using IL/Au electrode, homogeneous system of imidazole at -0.8 V vs. Ag/AgCl or using **imidazole@IL/Au** electrode at -0.4 V vs. Ag/AgCl under CO₂. All spectra obtained from (c), (d) and (e) did not give any peaks derived from CH₃OH as analyzed at a retention time of 7 minutes (other peaks of (c), (d) and (e) are attributed to contamination from instruments).

S9

- Figure S10. (a) Current density vs. time of imidazole@IL/Au under CO₂ at -0.8 V vs. Ag/AgCl, (b)
 CV measurement of imidazole@IL/Au under CO₂ before and after electrolysis and (c)
 XPS analysis of imidazole@IL/Au after electrolysis, in the range of 390 408 eV as measured at -120 °C.
- Figure S11. Potential dependent *in-situ* ATR-SEIRAS (a) at -0.8 V using the bare Au electrode under CO₂ in D₂O solutions containing imidazole-d₄ (brown) and imidazole (red), (b) using the IL/Au electrode in 0.1 M NaClO₄ under Ar (blue) and CO₂ (red), (c) using the IL/Au electrode under Ar in the range of 2775 3000 cm⁻¹.

Figure S12. SEIRAS spectra coupled with constant potential electrolysis (-0.4V, -0.6V, -0.8V) at 600 sec. (a) using the IL/Au electrode in 0.1 M NaClO₄ D₂O solution under CO₂, (b) using the bare Au electrode in 0.1 M NaClO₄ D₂O solution containing 0.01 M imidazole under CO₂, and (c) wide range spectra (1200-3200cm⁻¹) using the imidazole@IL/Au electrode in 0.1 M NaClO₄ D₂O solution under CO₂.

Figure S13. Cyclic voltammogram measured with SEIRAS for Au film prepared on a Si ATR prismin 0.1 M H_2SO_4 aqueous solution. Scan rate is 20 mV s⁻¹. Active surface area wascalculated by integrating the charge of Au oxide reduction peak with a theoretical valueof 444 μ C/cm² required for reducing a monolayer of Au oxide. The roughness factor ofAu film employed for SEIRAS measurement was estimated as 4.18.Scheme S1. Possible CO adsorption sites on Au, (a) atop and (b) 2-fold bridgeS14Scheme S2. Synthetic scheme of the ionic liquid containing the disulfide group, IL.

Scheme S3. Preparation of the prism for SEIRAS measurements. S15

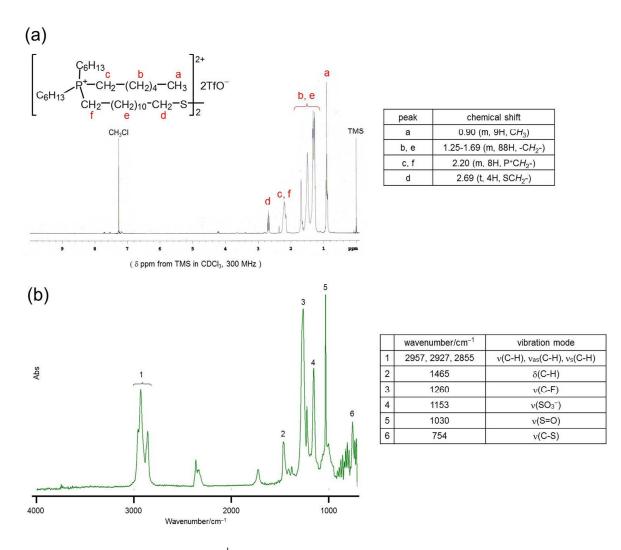


Figure S1. Characterization of IL, (a) ¹H-NMR and (b) FT-IR spectra.

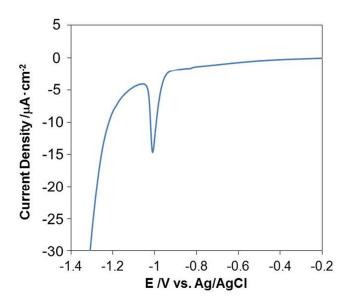


Figure S2. Electrochemical desorption of IL modified on the Au(111) electrode.

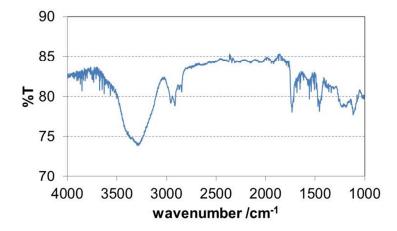
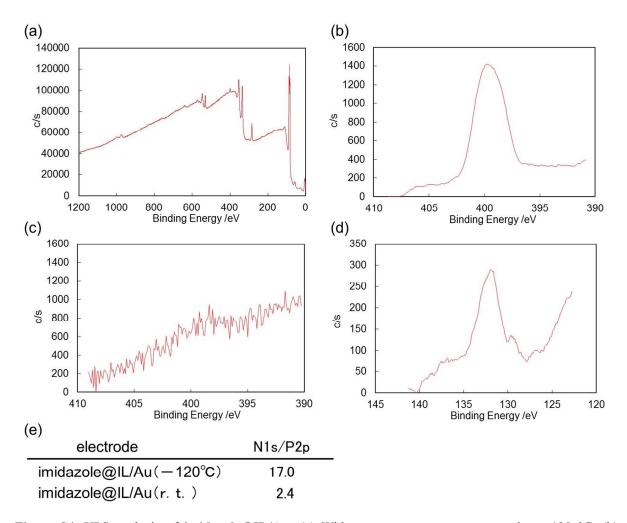
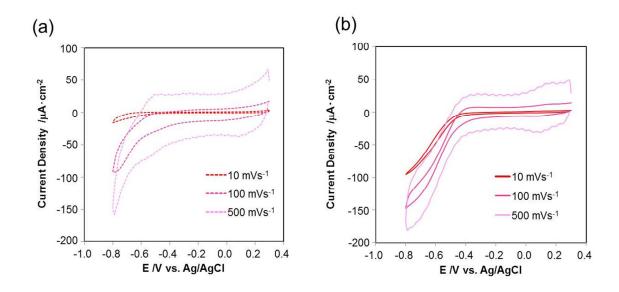
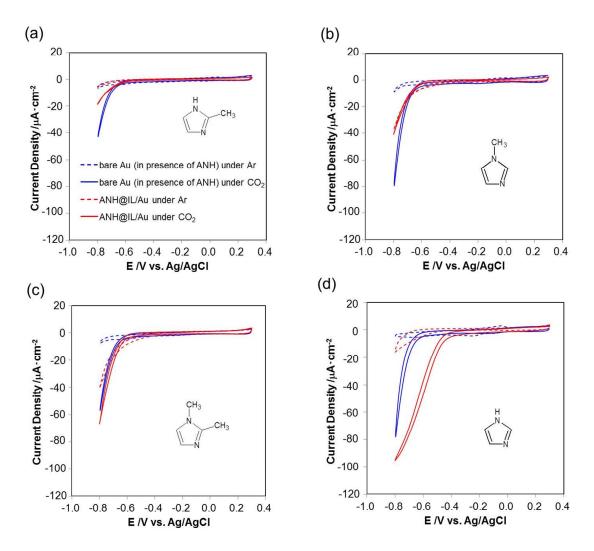
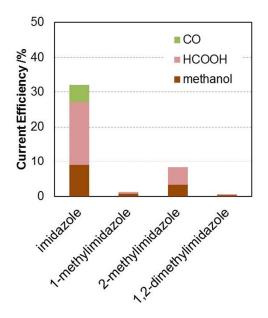
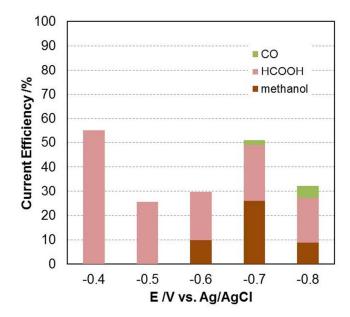
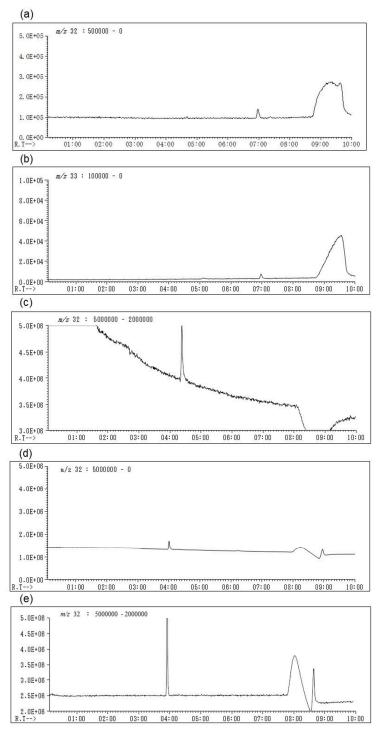



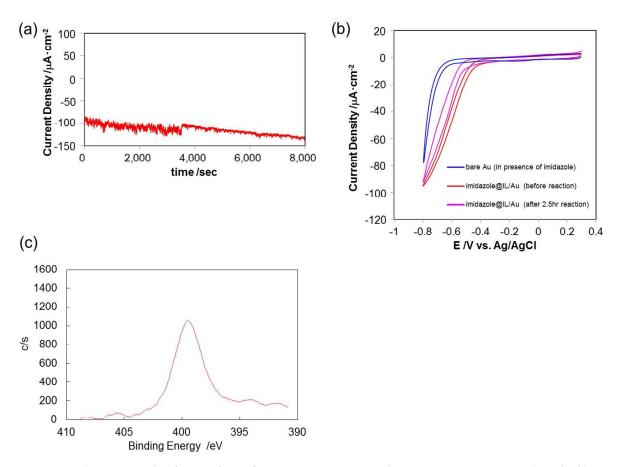
Figure S3. FT-IR spectrum of imidazole@IL/Au by RAS measurement.

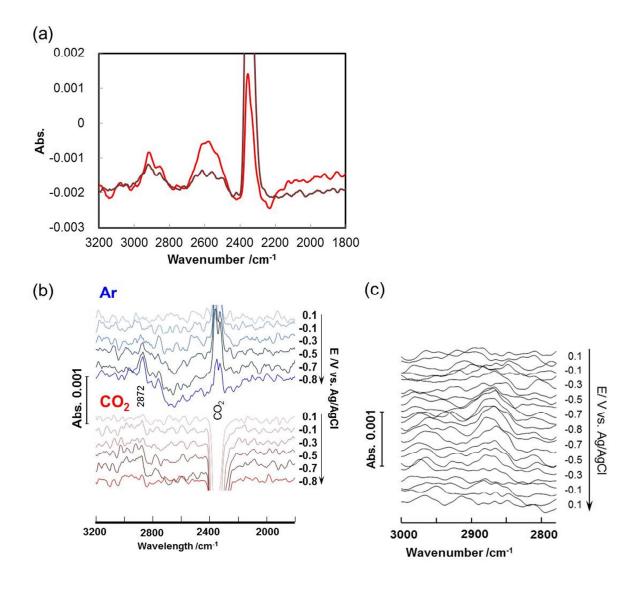
Figure S4. XPS analysis of **imidazole@IL/Au.** (a) Wide range spectrum as measured at -120 °C, (b) spectrum in the range of 390 - 408 eV as measured at -120 °C, (c) spectrum in the range of 390 - 408 eV as measured at room temperature, (d) spectrum in the range of 124 - 140 eV as measured at -120 °C, (e) peak intensity ratio of N1s to P2p as performed at each temperature.

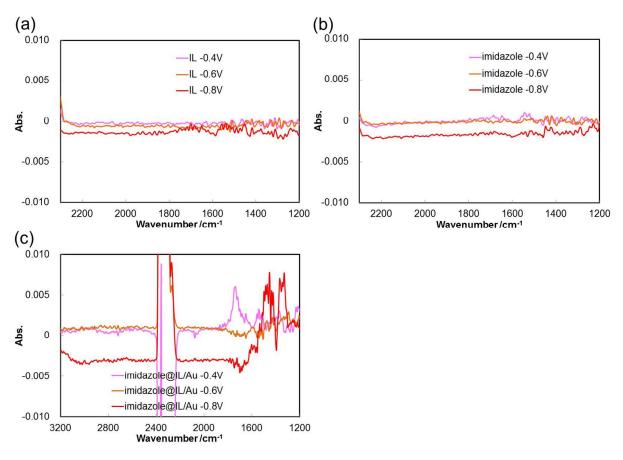




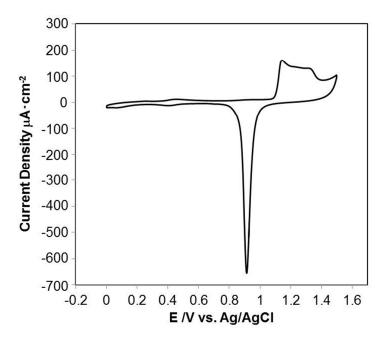

Figure S5. CV measurements of imidazole@IL/Au under (a) Ar and (b) CO₂ at various sweep rates.

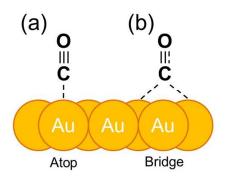

Figure S6. CV measurements of the **ANH@IL/Au** systems containing (a) 2-methylimidazole, (b) 1-methylimidazole, (c) 1,2-dimethylimidazole and (d) imidazole as ANH, as measured with a sweep rate of 10 mV/sec.

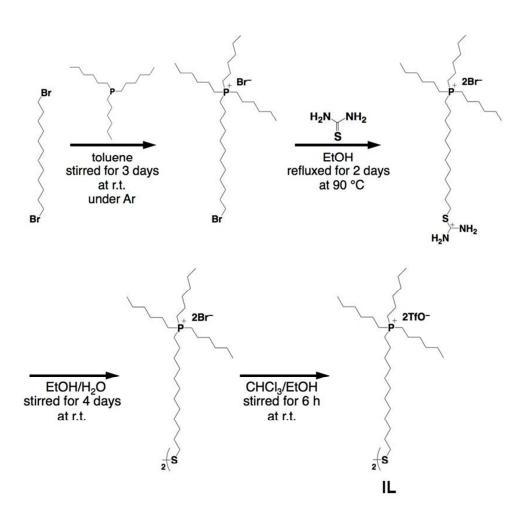

Figure S7. Current efficiencies of formate, methanol and CO produced using several different **ANH@IL/Au** electrodes (imidazole, 1-methylimidazole, 2-methylimidazole and 1,2-dimethylimidazole as ANH) as measured at -0.8 V vs. Ag/AgCl.

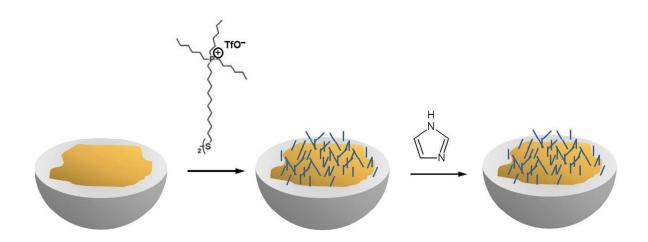

Figure S8. Current efficiencies of formate, methanol and CO produced using the **imidazole**@**IL**/**Au** electrode as measured at various electrochemical potentials.


Figure S9. GC-MS spectra of (a) ¹²CH₃OH and (b)¹³CH₃OH as analyzed at a retention time of 7 minutes performed at -0.8 V vs. Ag/AgCl under CO₂ and ¹³CO₂, respectively. (c), (d) and (e) are GC-MS spectra performed using IL/Au electrode, homogeneous system of imidazole at -0.8 V vs. Ag/AgCl or using **imidazole@IL/Au** electrode at -0.4 V vs. Ag/AgCl under CO₂. All spectra obtained from (c), (d) and (e) did not give any peaks derived from CH₃OH as analyzed at a retention time of 7 minutes (other peaks of (c), (d) and (e) are attributed to contamination from instruments.).


Figure S10. (a) Current density vs. time of **imidazole@IL/Au** under CO₂ at -0.8 V vs. Ag/AgCl, (b) CV measurement of **imidazole@IL/Au** under CO₂ before and after electrolysis and (c) XPS analysis of **imidazole@IL/Au** after electrolysis, in the range of 390 - 408 eV as measured at -120 °C.


Figure S11. Potential dependent *in-situ* ATR-SEIRAS (a) at -0.8 V using the bare Au electrode under CO₂ in D₂O solutions containing imidazole-d₄ (brown) and imidazole (red), (b) using the IL/Au electrode in 0.1 M NaClO₄ under Ar (blue) and CO₂ (red), (c) using the IL/Au electrode under Ar in the range of 2775 - 3000 cm⁻¹.


Figure S12. SEIRAS spectra coupled with constant potential electrolysis (-0.4V, -0.6V, -0.8V) at 600 sec. (a) using the IL/Au electrode in 0.1 M NaClO₄ D₂O solution under CO₂, (b) using the bare Au electrode in 0.1 M NaClO₄ D₂O solution containing 0.01 M imidazole under CO₂, and (c) wide range spectra (1200-3200cm⁻¹) using the **imidazole@IL/Au** electrode in 0.1 M NaClO₄ D₂O solution under CO₂.


Figure S13. Cyclic voltammogram measured with SEIRAS for Au film prepared on a Si ATR prism in 0.1 M H_2SO_4 aqueous solution. Scan rate is 20 mV s⁻¹. Active surface area was calculated by integrating the charge of Au oxide reduction peak with a theoretical value of 444 μ C/cm² required for reducing a monolayer of Au oxide. The roughness factor of Au film employed for SEIRAS measurement was estimated as 4.18.

Scheme S1. Possible CO adsorption sites on Au, (a) atop and (b) 2-fold bridge.

Scheme S2. Synthetic scheme of the ionic liquid containing the disulfide group, IL.

Scheme S3. Preparation of the prism for SEIRAS measurements.