## Facile and Efficient Decontamination of Thorium from Rare Earths based on Selective Selenite Crystallization

Yaxing Wang<sup>&, † △</sup>, Huangjie Lu<sup>†, △</sup>, Xing Dai<sup>†, △</sup>, Tao Duan<sup>#</sup>, Xiaojing Bai<sup>§</sup>, Yawen Cai<sup>†</sup>, Xuemiao Yin<sup>†</sup>, Lanhua Chen<sup>†</sup>, Juan Diwu<sup>†</sup>, Shiyu Du<sup>§</sup>, Ruhong Zhou<sup>†</sup>, Zhifang Chai<sup>†</sup>, Thomas E. Albrecht-Schmitt<sup>#</sup>, Ning Liu<sup>& \*</sup>, Shuao Wang<sup>† \*</sup>

<sup>&</sup>Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, P. R. China

<sup>†</sup>State Key Laboratory of Radiation Medicine and Protection, School for Radiological and

Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of

Jiangsu Higher Education Institutions, Soochow University, 215123, Suzhou, P. R. China

<sup>#</sup>School of National Defence Science & Technology, Southwest University of Science and Technology,

Mianyang 621010, China

<sup>§</sup> Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of

Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China

<sup>#</sup>Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee,

Florida 32306, United States

 $^{\triangle}$  These authors contribute equally

\*Corresponding authors. Email: nliu720@scu.edu.cn (NING LIU) & shuaowang@suda.edu.cn (SHUAO WANG); Tel: +86-512-65882573; Fax: +86-512-65883945.

Ten SI pages containing 4 tables and 12 figures, as cross referenced through the main article:

- 1. Table S1. Crystallographic data for lanthanide selenite/selenate.
- 2. Figure S1 to S5. PXRD for unitary lanthanide elements reaction with SeO<sub>2</sub>.
- 3. Figure S6. PXRD for binary lanthanide except for Ce elements reaction with SeO<sub>2</sub>.
- 4. Figure S7. PXRD for binary lanthanide La/Ce reaction with SeO<sub>2</sub>.
- 5. Figure S8 and S9 PXRD for binary lanthanide Ce/Pr reaction with SeO<sub>2</sub>. PXRD for binary Th/La, Th/Eu Th/Yb reaction with SeO<sub>2</sub>.
- 6. Figure S10. PXRD for  $Th^{4+}Ce^{4+}$ /simulated monazite solid products at different reaction conditions.
- 7. Table S2. Result summary of  $Ln_1/Ln_2$  separation experiment.
- 8. Table S3. Result summary of simulated monazite separation experiment.
- 10. Figure S11. Separation factor for binary La/Ce and Ce/Pr under different amounts of SeO<sub>2</sub>.
- 11. Table S4. The coordination bond populations in LnSeO-2 and ThSeO-2.
- 12. Figure S12. The calculated incorporation energies of different center atoms in LnSeO-2.

|                                    | $La_2(SeO_3)_3$  | $Ce(SeO_3)_2$ | $Pr_2(SeO_3)_3$     | $Eu_3(SeO_3)_4(OH)$ | $Nd_2(SeO_4)(SeO_3)_2(H_2O)_2$ |
|------------------------------------|------------------|---------------|---------------------|---------------------|--------------------------------|
| Compound                           | (LnSeO-1)        | (LnSeO-2)     | $(LnSeO-3)^*$       | (LnSeO-4)           | (LnSeO-5)                      |
| Mass                               | 658.70           | 394.04        | 658.70              | 979.72              | 721.39                         |
| Color and habit                    | Colorless, Sheet | Orange, Rod   | Colorless,<br>Sheet | Colorless, Pole     | Purple, Rod                    |
| Space group                        | Pnma             | $P2_{1}/n$    | I4/mcm              | $P6_3mc$            | C2/c                           |
| <i>a</i> (Å)                       | 8.4508(5)        | 7.0232(7)     | 15.956(4)           | 10.4435(9)          | 12.276(1)                      |
| <i>b</i> (Å)                       | 14.2493(8)       | 10.5912(10)   | 15.956(4)           | 10.4435(9)          | 7.0783(5)                      |
| <i>c</i> (Å)                       | 7.1024(5)        | 7.3081(7)     | 21.395(5)           | 6.9878(6)           | 13.329(1)                      |
| $\alpha(deg)$                      | 90               | 90            | 90                  | 90                  | 90                             |
| $\beta(deg)$                       | 90               | 107.077(3)    | 90                  | 90                  | 104.276(7)                     |
| y(deg)                             | 90               | 90            | 90                  | 120                 | 30                             |
| $V(\text{\AA}^3)$                  | 855.26(9)        | 519.64(9)     | 5447(3)             | 660.03(13)          | 1122.4(2)                      |
| Ζ                                  | 4                | 4             | 4                   | 2                   | 4                              |
| T(K)                               | 296(2)           | 296(2)        | 153(2)              | 296(2)              | 293                            |
| $\lambda$ (Å)                      | 0.71073          | 0.71073       | /                   | 0.71073             | 0.71073                        |
| Maximum<br>2θ(deg)                 | 27.417           | 27.465        | /                   | 27.467              | 58.7                           |
| $\rho$ calcd (g cm <sup>-3</sup> ) | 5.116            | 5.037         | /                   | 4.930               | 4.27                           |
| μ(Mo Ka)                           | 22.647           | 22.720        | /                   | 25.169              | 189                            |
| R <sub>1</sub>                     | 0.0290           | 0.0194        | /                   | 0.0170              | 0.022                          |
| wR <sub>2</sub>                    | 0.0993           | 0.0460        | /                   | 0.0431              | 0.029                          |

**Table S1.** Crystallographic data for La<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub> (LnSeO-1), Ce(SeO<sub>3</sub>)<sub>2</sub> (LnSeO-2), Pr<sub>2</sub>(SeO<sub>3</sub>)<sub>3</sub> (LnSeO-3), Eu<sub>3</sub>(SeO<sub>3</sub>)<sub>4</sub>(OH) (LnSeO-4), and Nd<sub>2</sub>(SeO<sub>4</sub>)(SeO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub> (LnSeO-5)

<sup>\*</sup> The crystals of  $Ln_2(SeO_3)_3$  (**LnSeO-3**) are seriously twinning, even after we tried many synthetic modifications. The unit cell data is available at the present work, and a rough structure model can be resolved and provided in the main text.



Figure S1. Simulated PXRD pattern for LnSeO-1 and experimental PXRD pattern for LaSeO solid product.



Figure S2. Simulated PXRD pattern for LnSeO-2 and experimental PXRD pattern for CeSeO solid product.



**Figure S3.** Simulated PXRD patterns for **LnSeO-3**, **LnSeO-5** and experimental PXRD patterns for LnSeO (Ln = Pr, Nd, and Sm) solid products.



Figure S4. Simulated PXRD patterns for LnSeO-4, LnSeO-5 and experimental PXRD pattern for EuSeO solid product.



**Figure S5.** Simulated PXRD pattern for **LnSeO-5** and experimental PXRD patterns for LnSeO (Ln = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) solid products.



**Figure S6.** Simulated PXRD pattern for **LnSeO-5** and binary Nd/Dy, Eu/Dy, La/Lu, La/Pr, La/Eu, Nd/Eu experimental PXRD patterns.



**Figure S7.** Simulated PXRD pattern for **LnSeO-2** and experimental PXRD patterns for La/Ce solid products at different reaction conditions (the reactant of SeO<sub>2</sub>: 0.2 mmol, 0.4 mmol, 0.6 mmol, 0.8 mmol, or 1.0 mmol).



**Figure S8.** Simulated PXRD pattern for **LnSeO-2** and experimental PXRD patterns for Ce/Pr solid products at different reaction conditions (the reactant of SeO<sub>2</sub>: 0.2 mmol, 0.4 mmol, 0.6 mmol, 0.8 mmol, or 1.0 mmol).



**Figure S9.** Simulated PXRD pattern for LnSeO-2 and experimental PXRD patterns for (a) Th/La (b) Th/Eu (c) Th/Yb solid products at different reaction conditions (the reactant of SeO<sub>2</sub>: 0.2 mmol, 0.4 mmol, 0.6 mmol, 0.8 mmol, 1.0 mmol).



**Figure S10.** Simulated PXRD pattern for LnSeO-2 and experimental PXRD patterns for  $Th^{4+}Ce^{4+}$ /simulated monazite solid products at different reaction conditions (the reactant of SeO<sub>2</sub>: 0.2 mmol, 0.4 mmol, 0.6 mmol, 0.8 mmol, or 1.0 mmol).

**Table S2.** Result summary of  $Ln_1/Ln_2$  separation experiment (the separation factors were calculated using the solid/aqueous model and the molar ratio of  $Ln_1$ :  $Ln_2$ : Se in original reactions is 1:1:n, n = 2, 4, 6, 8, 10).

| SeO <sub>2</sub> | Element | The molar mass in reactants / mmol | The molar mass<br>in products /<br>mmol | The molar mass in<br>wash solutions /<br>mmol | Crystallization<br>purity | Crystallization<br>yield | Separation<br>factor |
|------------------|---------|------------------------------------|-----------------------------------------|-----------------------------------------------|---------------------------|--------------------------|----------------------|
|                  | La      | 0.1±0.01                           | 0.0007±2.9E-5                           | 0.0951±0.0013                                 | 0.9915±0.000              | 0.7867 0.0072            | 515.65±28            |
| 0.2              | Ce      | 0.1±0.01                           | 0.0750±0.0015                           | 0.0213±0.0007                                 | 2                         | $0.7867\pm0.0073$        | .67                  |
| 0.2mmoi          | Ce      | 0.1±0.01                           | 0.0367±0.0010                           | 0.0627±0.0019                                 | 0.9886±0.001<br>5         | 0.3730±0.0196            | 128.47±13<br>.26     |
|                  | Pr      | 0.1±0.01                           | 0.0004±6.1E-5                           | 0.0924±0.0011                                 |                           |                          |                      |
|                  | La      | 0.1±0.01                           | 0.0007±4.2E-5                           | 0.0926±0.0011                                 | 0.9921±0.000<br>3         | 0.9341±0.0034            | 1746.05±3            |
| 0.4              | Ce      | 0.1±0.01                           | 0.0912±0.0015                           | 0.0066±0.0003                                 |                           |                          | 8.30                 |
| 0.4mmoi          | Ce      | 0.1±0.01                           | $0.0632 \pm 0.0008$                     | 0.0346±0.0008                                 | 0.9794±0.001              | 0.6538±0.0075            | 125.75±3.            |
|                  | Pr      | 0.1±0.01                           | 0.0013±7.8E-5                           | 0.0906±0.0018                                 | 1                         |                          | 24                   |
|                  | La      | 0.1±0.01                           | 0.0010±6.2E-5                           | 0.0915±0.0020                                 | 0.9884±0.002              | 0.0760+0.0012            | 3677.22±3            |
| 0.6mmal          | Ce      | 0.1±0.01                           | $0.0942 \pm 0.0004$                     | 0.0024±0.0001                                 | 7                         | $0.9760\pm0.0012$        | 06.36                |
| 0.01111101       | Ce      | 0.1±0.01                           | 0.0828±0.0026                           | 0.0159±0.0007                                 | 0.9831±0.001              | 0.8410±0.0066            | 339.12±11<br>.34     |
|                  | Pr      | 0.1±0.01                           | 0.0014±7.8E-5                           | 0.0918±0.0011                                 | 0                         |                          |                      |
|                  | La      | 0.1±0.01                           | 0.0010±0.0002                           | 0.0904±0.0002                                 | 0.9896±0.001              | 0.0827+0.0005            | 5078.55±2            |
| 0.8mm.al         | Ce      | 0.1±0.01                           | 0.0941±0.0042                           | 0.0017±0.0002                                 | 1                         | 0.9837±0.0003            | 21.65                |
| 0.8111101        | Ce      | 0.1±0.01                           | 0.0817±0.0020                           | 0.0119±0.0002                                 | 0.9826±0.000              | 0 2205 0 0012            | 433.46±25            |
|                  | Pr      | 0.1±0.01                           | 0.0014±5.2E-5                           | 0.0907±0.0021                                 | 8                         | 0.8805±0.0018            | .22                  |
|                  | La      | 0.1±0.01                           | 0.0012±0.0001                           | 0.0906±0.0020                                 | 0.9878±0.001              | 0.0855 \ 0.0010          | 5038.02±3            |
| 1.0mm.cl         | Ce      | 0.1±0.01                           | 0.0965±0.0011                           | 0.0015±0.0001                                 | 0                         | 0.9855±0.0010            | 29.95                |
|                  | Ce      | 0.1±0.01                           | 0.0843±0.0024                           | 0.0066±4.5E-5                                 | 0.9817±0.000              | 0.0226+0.0004            | 740.92±39            |
|                  | Pr      | 0.1±0.01                           | 0.0016±5.9E-5                           | 0.0894±0.0007                                 | 8 0.933                   | 0.9330±0.0004            | .91                  |



Figure S11. Separation factors for binary La/Ce and Ce/Pr under different amounts of SeO<sub>2</sub>.

**Table S3.** Result summary of simulated monazite separation experiment (the separation factors were calculated using the solid/aqueous model and the molar ratio of (Ln+An): Se in original reactions is 1: n, n = 1, 2, 3, 4, 5). (Solid samples treatment with dilute nitric acid)

| SeO <sub>2</sub> | Element | The molar mass<br>in reactants /<br>mmol | The molar mass<br>in products /<br>mmol | The molar mass in<br>wash solutions /<br>mmol | Crystallization<br>purity | Crystallization<br>yield | Separation<br>factor |
|------------------|---------|------------------------------------------|-----------------------------------------|-----------------------------------------------|---------------------------|--------------------------|----------------------|
|                  | La      | $0.04 \pm 0.004$                         | 0.0013                                  | $0.0393 \pm 0.0008$                           |                           |                          |                      |
|                  | Ce      | 0.086±0.0086                             | 0.0485                                  | 0.0413±0.0022                                 |                           |                          |                      |
|                  | Pr      | 0.009±0.0009                             | 0.0005                                  | $0.0085 \pm 0.0006$                           |                           |                          |                      |
|                  | Nd      | 0.032±0.0032                             | 0.0010                                  | 0.0326±0.0020                                 |                           |                          |                      |
|                  | Sm      | 0.006±0.0006                             | 0.0007                                  | $0.0059 \pm 0.0001$                           |                           |                          |                      |
| 0.2mmal          | Eu      | $0.0002 \pm 0.0001$                      | 1.8E-5                                  | 0.0002±1.6E-5                                 | 0.9434±0.001              | 0 6100 + 0 0211          | 31.96±1.5            |
| 0.21111101       | Gd      | 0.003±0.0003                             | 0.0005                                  | 0.0023±0.0001                                 | 1                         | $0.0100\pm0.0211$        | 2                    |
|                  | Dy      | 0.0012±0.0006                            | 0.0002                                  | 0.0013±0.0002                                 |                           |                          |                      |
|                  | Er      | $0.0004 \pm 0.0002$                      | 3.8E-6                                  | 0.0004±6.2E-5                                 |                           |                          |                      |
|                  | Yb      | $0.0002 \pm 0.0001$                      | 7.4E-5                                  | 0.0001±7.6E-6                                 |                           |                          |                      |
|                  | Y       | 0.005±0.0005                             | 0.0006                                  | 0.0041±9.3E-5                                 |                           |                          |                      |
|                  | Th      | 0.02±0.002                               | 0.0195                                  | 1.3E-5±9.0E-7                                 |                           |                          |                      |

| SeO <sub>2</sub> | Element | The molar mass<br>in reactants /<br>mmol | The molar mass<br>in products /<br>mmol | The molar mass in<br>wash solutions /<br>mmol | Crystallization<br>purity | Crystallization<br>yield | Separation<br>factor |
|------------------|---------|------------------------------------------|-----------------------------------------|-----------------------------------------------|---------------------------|--------------------------|----------------------|
|                  | La      | 0.04±0.004                               | 0.0019±0.0001                           | 0.0369±0.0003                                 |                           |                          |                      |
|                  | Ce      | 0.086±0.0086                             | 0.0789±0.0036                           | 0.0117±0.0004                                 |                           |                          |                      |
|                  | Pr      | 0.009±0.0009                             | 0.0009±0.0002                           | 0.0084±0.0001                                 |                           |                          | 78.26±6.1            |
|                  | Nd      | 0.032±0.0032                             | 0.0034±0.0007                           | 0.0289±0.0003                                 |                           |                          |                      |
|                  | Sm      | 0.006±0.0006                             | 0.0010±0.0001                           | 0.0055±6.6E-5                                 |                           |                          |                      |
| 0.4              | Eu      | 0.0002±0.0001                            | 1.9E-5±6.3E-6                           | 0.0002±3.1E-5                                 | 0.9217±0.004              |                          |                      |
| 0.4mmoi          | Gd      | 0.003±0.0003                             | 0.0007±6.6E-5                           | 0.0021±6.6E-5                                 | 1                         | 0.8892±0.0041            | 2                    |
|                  | Dy      | 0.0012±0.0006                            | 0.0005±9.8E-5                           | 0.0011±0.0002                                 |                           |                          |                      |
|                  | Er      | 0.0004±0.0002                            | 2.0E-5±2.4E-6                           | 0.0004±8.8E-5                                 |                           |                          |                      |
|                  | Yb      | 0.0002±0.0001                            | 7.5E-5±2.5E-5                           | 0.0001±1.1E-5                                 |                           |                          |                      |
|                  | Y       | 0.005±0.0005                             | 0.0008±0.0001                           | 0.0040±0.0002                                 |                           |                          |                      |
|                  | Th      | 0.02±0.002                               | 0.0195±0.0002                           | 4.8E-6±2.7E-7                                 |                           |                          |                      |
| SeO <sub>2</sub> | Element | The molar mass<br>in reactants /<br>mmol | The molar mass<br>in products /<br>mmol | The molar mass in<br>wash solutions /<br>mmol | Crystallization<br>purity | Crystallization<br>yield | Separation<br>factor |
|                  | La      | 0.04±0.004                               | 0.0028±0.0001                           | 0.0360±0.0008                                 |                           |                          |                      |
|                  | Ce      | 0.086±0.0086                             | 0.0867±0.0013                           | 0.0014±0.0001                                 |                           |                          |                      |
|                  | Pr      | 0.009±0.0009                             | 0.0012±0.0002                           | 0.0080±7.2E-5                                 |                           |                          |                      |
|                  | Nd      | 0.032±0.0032                             | $0.0057 \pm 0.0007$                     | 0.0258±0.0034                                 | ]                         |                          |                      |
|                  | Sm      | 0.006±0.0006                             | 0.0019±8.5E-6                           | 0.0045±2.0E-5                                 |                           |                          |                      |
| 0.6              | Eu      | $0.0002 \pm 0.0001$                      | 1.9E-5±8.7E-6                           | 0.0002±4.6E-5                                 | 0.8918±0.002              | 0.0200.00012             | 435.62±26            |
| 0.01111101       | Gd      | 0.003±0.0003                             | 0.0009±5.2E-6                           | 0.0019±4.7E-5                                 | 8                         | $0.9809\pm0.0012$        | .86                  |
|                  | Dy      | 0.0012±0.0006                            | 0.0005±5.8E-6                           | 0.0011±0.0001                                 |                           |                          |                      |
|                  | Er      | $0.0004 \pm 0.0002$                      | 5.7E-5±9.3E-6                           | 0.0004±4.7E-5                                 |                           |                          |                      |
|                  | Yb      | $0.0002 \pm 0.0001$                      | 8.5E-5±4.1E-5                           | 0.0001±1.1E-5                                 |                           |                          |                      |
|                  | Y       | 0.005±0.0005                             | 0.0012±0.0001                           | 0.0035±9.7E-5                                 |                           |                          |                      |
|                  | Th      | 0.02±0.002                               | 0.0193±0.0003                           | 2.5E-6±1.5E-7                                 |                           |                          |                      |
| SeO <sub>2</sub> | Element | The molar mass<br>in reactants /         | The molar mass<br>in products /         | The molar mass in wash solutions /            | Crystallization<br>purity | Crystallization<br>yield | Separation<br>factor |

|                  |         | mmol                                     | mmol                                    | mmol                                          |                           |                          |                      |
|------------------|---------|------------------------------------------|-----------------------------------------|-----------------------------------------------|---------------------------|--------------------------|----------------------|
|                  | La      | $0.04 \pm 0.004$                         | 0.0031±0.0002                           | 0.0351±0.0007                                 |                           | 0.9964±0.0002            | 1466.78±6<br>5.07    |
|                  | Ce      | 0.086±0.0086                             | 0.0899±0.0012                           | 0.0004±2.0E-5                                 |                           |                          |                      |
|                  | Pr      | 0.009±0.0009                             | 0.0011±0.0002                           | 0.0083±0.0002                                 |                           |                          |                      |
|                  | Nd      | 0.032±0.0032                             | 0.0064±0.0003                           | 0.0240±0.0010                                 |                           |                          |                      |
|                  | Sm      | 0.006±0.0006                             | 0.0021±3.0E-5                           | 0.0043±9.2E-5                                 |                           |                          |                      |
| 0.8mmol          | Eu      | 0.0002±0.0001                            | 2.2E-5±4.1E-6                           | 0.0002±4.5E-5                                 | 0.8859±0.005              |                          |                      |
| 0.01111101       | Gd      | 0.003±0.0003                             | 0.0011±4.3E-5                           | 0.0018±5.6E-5                                 | 9                         |                          |                      |
|                  | Dy      | 0.0012±0.0006                            | 0.0005±8.2E-5                           | 0.0011±0.0002                                 |                           |                          |                      |
|                  | Er      | $0.0004 \pm 0.0002$                      | 5.7E-5±8.5E-6                           | 0.0004±9.7E-7                                 |                           |                          |                      |
|                  | Yb      | $0.0002 \pm 0.0001$                      | 7.0E-5±5.0E-5                           | 0.0001±1.6E-5                                 |                           |                          |                      |
|                  | Y       | 0.005±0.0005                             | 0.0012±0.0003                           | 0.0037±0.0005                                 |                           |                          |                      |
|                  | Th      | 0.02±0.002                               | 0.0197±0.0005                           | 4.2E-6±2.1E-6                                 |                           |                          |                      |
| SeO <sub>2</sub> | Element | The molar mass<br>in reactants /<br>mmol | The molar mass<br>in products /<br>mmol | The molar mass in<br>wash solutions /<br>mmol | Crystallization<br>purity | Crystallization<br>yield | Separation<br>factor |
|                  | La      | $0.04 \pm 0.004$                         | 0.0037±0.0003                           | 0.0349±0.0002                                 |                           |                          |                      |
|                  | Ce      | 0.086±0.0086                             | 0.0894±0.0036                           | 0.0003±9.3E-6                                 |                           |                          |                      |
|                  | Pr      | 0.009±0.0009                             | 0.0016±0.0003                           | 0.0077±0.0002                                 |                           |                          |                      |
|                  | Nd      | 0.032±0.0032                             | 0.0071±0.0002                           | 0.0235±0.0016                                 |                           |                          |                      |
|                  | Sm      | 0.006±0.0006                             | 0.0021±6.0E-5                           | 0.0043±0.0001                                 |                           |                          |                      |
| 1.0mmol          | Eu      | $0.0002 \pm 0.0001$                      | 4.9E-5±6.1E-5                           | 0.0002±6.5E-5                                 | 0.8732±0.002              | 0.0076±0.1E.5            | 1886.73±9            |
| 1.01111101       | Gd      | 0.003±0.0003                             | 0.0011±4.8E-5                           | 0.0017±3.4E-5                                 | 4                         | 0.9970±9.1E-3            | 9.09                 |
|                  | Dy      | 0.0012±0.0006                            | $0.0004 \pm 0.0002$                     | 0.0010±5.1E-5                                 |                           |                          |                      |
|                  | Er      | $0.0004 \pm 0.0002$                      | 5.5E-5±1.8E-5                           | 0.0004±8.3E-5                                 |                           |                          |                      |
|                  | Yb      | $0.0002 \pm 0.0001$                      | 9.0E-5±3.5E-5                           | 0.0001±5.1E-6                                 |                           |                          |                      |
|                  | Y       | 0.005±0.0005                             | 0.0015±0.0002                           | 0.0034±0.0002                                 |                           |                          |                      |
|                  | Th      | 0.02±0.002                               | 0.0197±0.0005                           | 1.8E-6±8.5E-7                                 |                           |                          |                      |



Figure S12. The calculated incorporation energies of different metal centers in LnSeO-2.

| O1—La         0.22         O1-Ce           O2—La         0.27         O2-Ce           O3—La         0.26         O3-Ce           O4—La         0.23         O4-Ce           O5—La         0.33         O5-Ce           O6—La         0.18         O6-Ce           O7—La         0.24         O7-Ce | 0.36<br>0.35<br>0.29<br>0.17<br>0.36<br>0.31<br>0.35 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| O2—La       0.27       O2-Ce         O3—La       0.26       O3-Ce         O4—La       0.23       O4-Ce         O5—La       0.33       O5-Ce         O6—La       0.18       O6-Ce         O7—La       0.24       O7-Ce                                                                              | 0.35<br>0.29<br>0.17<br>0.36<br>0.31<br>0.35         |
| O3—La       0.26       O3-Ce         O4—La       0.23       O4-Ce         O5—La       0.33       O5-Ce         O6—La       0.18       O6-Ce         O7—La       0.24       O7-Ce                                                                                                                   | 0.29<br>0.17<br>0.36<br>0.31<br>0.35                 |
| O4—La         0.23         O4-Ce           O5—La         0.33         O5-Ce           O6—La         0.18         O6-Ce           O7—La         0.24         O7-Ce                                                                                                                                  | 0.17<br>0.36<br>0.31<br>0.35                         |
| O5—La         0.33         O5-Ce           O6—La         0.18         O6-Ce           O7—La         0.24         O7-Ce                                                                                                                                                                             | 0.36<br>0.31<br>0.35                                 |
| O6—La         0.18         O6-Ce           O7—La         0.24         O7-Ce                                                                                                                                                                                                                        | 0.31<br>0.35                                         |
| <b>07–La</b> 0.24 <b>07-Ce</b>                                                                                                                                                                                                                                                                     | 0.35                                                 |
|                                                                                                                                                                                                                                                                                                    |                                                      |
| <b>O8—La</b> 0.16 <b>O8-Ce</b>                                                                                                                                                                                                                                                                     | 0.16                                                 |
| <b>O1—Eu</b> 0.35 <b>O1—Yb</b>                                                                                                                                                                                                                                                                     | 0.30                                                 |
| <b>O2—Eu</b> 0.34 <b>O2—Yb</b>                                                                                                                                                                                                                                                                     | 0.33                                                 |
| <b>O3—Eu</b> 0.28 <b>O3—Yb</b>                                                                                                                                                                                                                                                                     | 0.32                                                 |
| <b>O4—Eu</b> 0.31 <b>O4—Yb</b>                                                                                                                                                                                                                                                                     | 0.29                                                 |
| <b>O5–Eu</b> 0.31 <b>O5–Yb</b>                                                                                                                                                                                                                                                                     | 0.30                                                 |
| <b>O6–Eu</b> 0.20 <b>O6–Yb</b>                                                                                                                                                                                                                                                                     | 0.23                                                 |
| <b>O7—Eu</b> 0.32 <b>O7—Yb</b>                                                                                                                                                                                                                                                                     | 0.30                                                 |
| <b>O8—Eu</b> 0.19 <b>O8—Yb</b>                                                                                                                                                                                                                                                                     | 0.16                                                 |
| <b>O1—Th</b> 0.40 <b>O5—Th</b>                                                                                                                                                                                                                                                                     | 0.38                                                 |
| <b>O2—Th</b> 0.39 <b>O6—Th</b>                                                                                                                                                                                                                                                                     | 0.18                                                 |
| <b>O3—Th</b> 0.31 <b>O7—Th</b>                                                                                                                                                                                                                                                                     | 0.35                                                 |
| <b>O4—Th</b> 0.30 <b>O8—Th</b>                                                                                                                                                                                                                                                                     | 0.19                                                 |

 Table S4. The coordination bond populations in LnSeO-2 and ThSeO-2.