Toward Serotonin Fluorescent False Neurotransmitters: Development of Fluorescent Dual Serotonin and Vesicular Monoamine Transporter Substrates for Visualizing Serotonin Neurons

Adam Henke*, ${ }^{1}$ Yekaterina Kovalyova*, ${ }^{1}$ Matthew Dunn* ${ }^{1}$ Dominik Dreier, ${ }^{1}$ Niko G. Gubernator, ${ }^{1}$ Iva Dincheva, ${ }^{2}$ Christopher Hwu, ${ }^{1}$ Peter Šebej, ${ }^{1}$ Mark S. Ansorge, ${ }^{2}$ David Sulzer, ${ }^{2,3,4}$ Dalibor Sames ${ }^{1}$

* A.H., Y.K. and M.D. contributed equally to this work.

Corresponding authors: ds43@columbia.edu and sames@chem.columbia.edu
${ }^{1}$ Department of Chemistry, and Neuro Technology Center at Columbia University, New York, NY 10027, USA.
${ }^{2}$ Department of Psychiatry, Columbia University, New York, NY 10032, USA.
${ }^{3}$ Department of Neurology, Columbia University, New York, NY 10032, USA.
${ }^{4}$ Department of Pharmacology, Columbia University, New York, NY 10032, USA.

SUPPLEMENTAL FIGURES

Supplemental Figure S1. A) Fluorescence excitation and emission spectra of FFN54 and FFN246. B) K_{M} determination of FFN246 in hSERT-HEK cells using $2 \mu \mathrm{M}$ imipramine ($\left.K_{\mathrm{M}}=14.3 \pm 1.9 \mu \mathrm{M}\right)$. C) Demonstration of using FFN246 to measure K_{i} 's of imipramine ($K_{\mathrm{i}}=4.8 \pm 1.1 \mathrm{nM}$) and citalopram $\left(K_{\mathrm{i}}=\right.$ $1.6 \pm 0.4 \mathrm{nM})$ at hSERT.

Supplemental Figure S2. Uptake of FFN246 in 5-HT neurons in the dorsal raphe of acute murine brain slices in the presence of nomifensine $(2 \mu \mathrm{M})$ or nomifensine and citalopram (200 nM). A-C) 76.3% of 5HT neurons accumulate FFN246 (29/38 cells, 2-3 slices per animal, 2 different animals) when just using nomifensine. D-F) Uptake decreases to 0% when using both nomifensine and citalopram ($0 / 19$ cells, 2-3 slices per animal, 2 different animals). Scale bar, $20 \mu \mathrm{~m}$.

Supplemental Figure S3. Uptake of a lower concentration of FFN246 (2 $\mu \mathrm{M})$ in 5-HT neurons in the dorsal raphe nucleus of acute murine brain slices during a 60 min perfusion. Scale bar, $20 \mu \mathrm{~m}$.

Supplemental Figure S4. Uptake of FFN246 in the 5-HT projections within the substantia nigra reticulata of acute murine brain slices in the presence of both nomifensine ($2 \mu \mathrm{M}$) and citalopram (200 $\mathrm{nM})$. Scale bar, $20 \mu \mathrm{~m}$.

General Notes

Unless otherwise noted, all chemicals were purchased from commercial companies and used without further purification. Nuclear Magnetic Resonance spectra were recorded on Bruker 400 and 500 MHz Fourier transform NMR spectrometers. Proton chemical shifts δ are expressed in parts per million (ppm) and are referenced to residual proton in the NMR solvent ($\mathrm{CDCl}_{3}, \delta=7.26 \mathrm{ppm}$; methanol- $d_{4}, \delta=3.31 \mathrm{ppm} ; \mathrm{DMSO}_{6} d_{6}, \delta=2.50 \mathrm{ppm} ;$ acetone $\left.-d_{6}, \delta=2.05 \mathrm{ppm} ; \mathrm{D}_{2} \mathrm{O}, \delta=4.79 \mathrm{ppm}\right)$. Data for ${ }^{1} \mathrm{H}$ NMR and ${ }^{19} \mathrm{~F}$ NMR are reported as follows: chemical shift, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad peak), and coupling constant in Hz. Carbon chemical shifts are referenced to the carbon resonance of the NMR solvent ($\mathrm{CDCl}_{3}, \delta=77.2 \mathrm{ppm}$; methanol $-d_{4}, \delta=49.0 \mathrm{ppm} ;$ DMSO- $d_{6}, \delta=39.5 \mathrm{ppm} ;$ acetone- $\left.d_{6}, \delta=29.8 \mathrm{ppm}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded without ${ }^{19} \mathrm{~F}$ decoupling and therefore J_{C-F} splitting of ${ }^{13} \mathrm{C}$ signals was observed for fluorinated compounds unless otherwise noted. Low-resolution mass spectra were recorded on a JEOL LCmate instrument in APCl^{+}ionization mode or on an Advion expression-L CMS quadrupole mass spectrometer equipped with APCI source.

Preparative HPLC was performed on Waters 600 Controller equipped with a Vydac C_{18} Protein \& Peptide column (mobile phase - gradient of solvents A and B, where $A=$ deionized water containing 0.1% (v / v) formic acid (FA); B = HPLC grade methanol containing 0.1% (v / v) formic acid (FA)), Waters 2487 Dual Wavelength Absorbance Detector ($\lambda_{\text {abs }}=254 \mathrm{~nm}$) and Waters 2767 Sample Manager. Analytical HPLC was performed on the same instrument equipped with a Phenomenex reverse phase column (Prodigy 5 micron ODS3 100A $250 \times 4.6 \mathrm{~mm}$) using isocratic methanol:water (30:70) mobile phase.

Synthesis

tert-Butyl (4-nitrophenethyl)carbamate: A solution of $\mathrm{Boc}_{2} \mathrm{O}(4.70 \mathrm{~g}, 21.5 \mathrm{mmol})$ in DMF (5 mL) was slowly added to a mixture of 2-(4-nitrophenyl)ethan-1-amine hydrochloride ($4.15 \mathrm{~g}, 20.5 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(3.15 \mathrm{~mL}, 22.5 \mathrm{mmol})$ in DMF (75 mL) at ambient temperature and stirred for 13 h . The mixture was then poured to water and the precipitate was filtered and washed with water. The crude product was dissolved in EtOAc, washed with brine and dried over MgSO_{4}. After removing the solvent, the crude product was crystalized from chloroform/n-hexane (insoluble solid/oil was removed by filtration of the warm solution) to afford the desired product as a yellowish solid in 68% yield (3.7 g). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, methanol $\left.-d_{4}\right) \delta 7.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.65$ ($\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.42(\mathrm{~s}, 9 \mathrm{H})$.

tert-Butyl (4-aminophenethyl)carbamate: tert-Butyl (4-nitrophenethyl)carbamate ($1.6 \mathrm{~g}, 6.0 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(30 \mathrm{~mL})$ and $10 \%(\mathrm{w} / \mathrm{w}) \mathrm{Pd} / \mathrm{C}$ was added $(0.5 \mathrm{~g})$ and the reaction mixture was stirred under H_{2} atmosphere (Parr reactor, $p=50 \mathrm{psi}$) for 1 h at room temperature. The catalyst was removed by filtration and the crude product was crystalized from chloroform/n-hexane to afford the desired product as a white solid in 90% yield (1.28 g). Obtained product was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, methanol $\left.-d_{4}\right) \delta 6.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.46(\mathrm{br} s, 1 \mathrm{H}), 3.17(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101$ MHz , methanol- d_{4}) δ 158.4, 146.7, 130.4, 130.3, 116.9, 79.9, 43.4, 36.4, 28.8.

2-(3-Nitrophenyl)ethan-1-amine hydrochloride: A solution of (3-nitro-phenyl)-acetonitrile (1.0 g, 6.2 mmol) in dry THF (10 ml) was heated to reflux and borane dimethylsulfide ($7 \mathrm{~mL}, 2 \mathrm{M}$ in THF, 14 mmol) was added. The mixture was stirred for 2 h under reflux. After complete conversion the mixture was allowed to come to room temperature and a solution of HCl in methanol ($19 \mathrm{~mL}, 1.25 \mathrm{M}$) was added. The reaction mixture was then stirred overnight and volatiles were removed under reduced pressure. The residue was triturated with diethyl ether, filtered, washed with diethyl ether and dried under the vacuum to give the product as a white solid in 85% yield $(1.05 \mathrm{~g}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}\right.$, methanol- $\left.d_{4}\right) \delta$ $8.21(\mathrm{~m}, 1 \mathrm{H}), 8.18(\mathrm{ddd}, J=8.1,2.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.11(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$.

tert-Butyl (3-nitrophenethyl)carbamate: 2-(3-Nitrophenyl)ethan-1-amine hydrochloride (1.0 g, 4.93 $\mathrm{mmol})$ was dissolved in dry DCM $(20 \mathrm{~mL})$ and $\mathrm{Boc}_{2} \mathrm{O}(1.2 \mathrm{~g}, 5.43 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(1.09 \mathrm{~g}, 1.5 \mathrm{~mL}, 10.9$ mmol) were added and the resulting solution was stirred at room temperature for 1 hour. Volatiles were removed under reduced pressure. The crude material was dissolved in DCM and applied to flash column chromatography. The pure product was obtained as a colorless powder in 95% yield (1.25 g). ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 8.13-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.90(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .^{1}$

tert-Butyl (3-aminophenethyl)carbamate: tert-Butyl (3-nitrophenethyl)carbamate ($1.3 \mathrm{~g}, 4.9 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(30 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(\mathrm{w} / \mathrm{w})$ was added (0.26 g). The reaction mixture was stirred under H_{2} atmosphere (Parr reactor, $p=50 \mathrm{psi}$) for 2 h at room temperature. The catalyst was removed by filtration and the crude product was crystalized from EtOAc/n-hexane to afford the desired product as a white solid in 56% yield $(0.65 \mathrm{~g}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}\right.$, methanol- $\left.d_{4}\right) \delta 7.01(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.61-6.52(\mathrm{~m}, 3 \mathrm{H}), 3.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$. Spectral data are in accordance with literature data. ${ }^{2}$

Halide coupling partners

tert-Butyl (4-iodobenzyl)carbamate: To a solution of the 4-iodobenzonitrile ($942 \mathrm{mg}, 4.11 \mathrm{mmol}$) in dry THF (12 mL) at $0^{\circ} \mathrm{C}$ was added dropwise a solution of $\mathrm{BH}_{3}(1 \mathrm{M}$ in THF, $20 \mathrm{~mL}, 20 \mathrm{mmol}$) and after complete addition the reaction mixture was further stirred at reflux temperature for 2 hours. The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{HCl}(\mathrm{aq}, 6 \mathrm{M}, 2 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ dropwise and afterwards the reaction mixture was basified with $\mathrm{NaOH}(\mathrm{aq}, 1 \mathrm{M})$. The reaction mixture was extracted

[^0]with DCM and the combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and volatiles were removed under reduced pressure to yield the crude product. All obtained material was dissolved in dry DMF (4.1 mL) and $\mathrm{Boc}_{2} \mathrm{O}\left(988 \mathrm{mg}, 4.52 \mathrm{mmol}\right.$) and $\mathrm{NEt}_{3}(625 \mathrm{mg}, 0.86 \mathrm{~mL}, 6.17$ mmol) were added and the resulting solution was stirred at room temperature for 24 hours. Volatiles were removed in vacuo. The crude material was dissolved in DCM and purified by column chromatography (50 g silica gel, n-hexane/EtOAc $=5 / 1,(\mathrm{v} / \mathrm{v})$) to yield the pure product as a colorless powder in 51% yield (693 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$. Spectral data are in accordance with literature data. ${ }^{3}$

tert-Butyl (4-bromophenethyl)carbamate: 2-(4-Bromophenyl)-ethyl-1-amine ($2.6 \mathrm{~g}, 13.0 \mathrm{mmol}$) was dissolved in dry DMF (12.9 mL) and $\mathrm{Boc}_{2} \mathrm{O}(3.1 \mathrm{~g}, 14.3 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(2.0 \mathrm{~g}, 2.75 \mathrm{~mL}, 19.5 \mathrm{mmol})$ were added and the reaction mixture was stirred at room temperature for 12 hours. Volatiles were removed in vacuo and obtained material was dissolved in DCM and purified by flash column chromatography (125 g silica gel, n-hexane/EtOAc $=5 / 1,(\mathrm{v} / \mathrm{v})$). The pure product was obtained as a colorless powder in a quantitative yield $(3.8 \mathrm{~g}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 4.51 (br s, 1H), $3.41-3.27(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 155.9,138.1,131.8,130.7,120.4,79.5,41.7,35.8,28.5$. Spectral data are in accordance with literature data. ${ }^{4}$

(4-Bromophenethoxy)triisopropylsilane: 2-(4-Bromophenyl)-ethan-1-ol (1.0 g, 5.0 mmol$)$ and imidazole ($0.51 \mathrm{~g}, 7.5 \mathrm{mmol}$) were dissolved in dry DMF (5.3 mL). TIPSCl ($1.2 \mathrm{~g}, 6.0 \mathrm{mmol}$) was added and the solution was stirred at room temperature for 8 hours. $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the reaction mixture was further stirred for 10 minutes. The reaction mixture was portioned between additional portion of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aqueous phase was extracted with diethyl ether ($2 \times 20 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and volatiles were removed in vacuo and the crude product was purified by flash column chromatography (150 g silica gel, 1% EtOAc in n-hexane $\rightarrow 2 \% \rightarrow 3 \%)$. The product was obtained as a colorless liquid in 92% yield (1.64 g). ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.11-0.99(\mathrm{~m}, 21 \mathrm{H})$. Spectral data are in accordance with literature data. ${ }^{5}$

tert-Butyl (3-(4-bromophenyl)propyl)carbamate: 4-(4-Bromophenyl)butanoic acid (243 mg, 0.1 mmol), diphenylphosphoryl azide (DPPA; $303 \mathrm{mg}, 1.1 \mathrm{mmol}$) and dry $\mathrm{NEt}_{3}(126 \mathrm{mg}, 0.17 \mathrm{~mL}, 1.25$ mmol) were placed in a 4 mL vial and anhydrous t - $\mathrm{BuOH}(1.65 \mathrm{~mL}$) was added. The vial was flushed with dry Ar and closed tightly with a screw cap. The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ in a thermoblock for 16 hours. The reaction mixture was then allowed to cool down to room temperature and was portioned between EtOAc and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Volatiles were removed in vacuo and obtained crude residuum was further purified by flash column chromatography

[^1](crude material/silica gel $=1 / 100$, (m / m), n-hexane/EtOAc $=7 / 1 \rightarrow 6 / 1 \rightarrow 5 / 1$). The product was obtained as a colorless oil in 39% yield (121 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{brs}, 1 \mathrm{H}), 3.19-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{tt}, J=7.6,6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.1,140.7,131.6,130.3,119.8,79.4,40.3,32.7$, 31.8, 28.6.

2-(2-Bromophenyl)ethyl imidodicarbonic acid, bis(1,1-dimethylethyl) ester: 2-(2-Bromophenyl)ethan-1-amine ($1.0 \mathrm{~g}, 0.5 \mathrm{mmol}$) was dissolved in dry DMF (5 mL) and $\mathrm{Boc}_{2} \mathrm{O}(1.2 \mathrm{~g}, 5.5$ mmol) and NEt_{3} ($759 \mathrm{mg}, 1.05 \mathrm{~mL}, 0.75 \mathrm{mmol}$) were added and the resulting solution was stirred at room temperature for 16 hours. Volatiles were then removed in vacuo. Obtained crude material was dissolved in DCM and purified by flash column chromatography (50 g silica gel, n-hexane/EtOAc = 10/1 $\rightarrow 5 / 1,(\mathrm{v} / \mathrm{v}))$. The pure compound was obtained quantitatively as a colorless powder (1.5 g). This intermediate (1.1 g) was dissolved in $\mathrm{MeCN}(14.5 \mathrm{~mL})$ and $\mathrm{Boc}_{2} \mathrm{O}\left(2.4 \mathrm{~g}, 15.0 \mathrm{mmol}^{2}\right.$), $\mathrm{NEt}_{3}(548 \mathrm{mg}, 0.75$ $\mathrm{mL}, 7.5 \mathrm{mmol}$) and DMAP ($88 \mathrm{mg}, 0.1 \mathrm{mmol}$) were added and the resulting solution was stirred at room temperature for 16 hours. The reaction mixture was concentrated and diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ (aq, satd.) and EtOAc. The aqueous phase was further extracted with EtOAc $(2 \times 20 \mathrm{~mL})$ and the combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and volatiles were removed in vacuo. The crude material was purified by flash column chromatography (100 g silica gel, n-hexane/EtOAc 10:1 $(\mathrm{v} / \mathrm{v}))$. Pure product was obtained as a colorless oil in 96% yield (1.38 g). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.52 (dd, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{ddd}, J=7.9,6.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.04(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.4,138.6,132.9,131.5$, 128.3, 127.7, 124.9, 82.4, 46.1, 35.8, 28.2.

2-Aminobenzoates

General procedure: esterification of 2-aminobenzoic acids

A suspension of the benzoic acid starting material in $\mathrm{SOCl}_{2}(0.68 \mathrm{M})$ was refluxed for 2 hours under dry Ar. Volatiles were removed in vacuo. The residue was cooled with an ice bath and ice-cold MeOH (to final $c=0.45 \mathrm{M}$) was carefully added. The reaction mixture was further refluxed for 1 hour. Volatiles were removed in vacuo and the obtained residuum was portioned between NaHCO_{3} (aq, satd.) and DCM. The aqueous phase was extracted with DCM two more times. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and volatiles were removed under reduced pressure. The crude material was purified by flash column chromatography (crude material/silica gel $=1 / 100(\mathrm{~m} / \mathrm{m})$, n hexane/EtOAc = 5:1, (v/v)).

Methyl 2-amino-6-chlorobenzoate was prepared according to the general procedure from 2-amino6 -chlorobenzoic acid (3.35 mmol) and methanol in 80% yield (497 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.08(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, \mathrm{J}=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.93$
(s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 167.7, 149.0, 134.1, 132.2, 119.7, 115.0, 114.8, 52.2. Spectral data are in accordance with literature data. ${ }^{6}$

Methyl 2-amino-6-methylbenzoate was prepared according to the general procedure from 2-amino6 -chlorobenzoic acid (1.44 mmol) and methanol in 57% yield (136 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.08(\mathrm{dd}, J=8.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54-6.53(\mathrm{~m}, 1 \mathrm{H}), 6.53-6.51(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.43$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,149.2,140.3,132.1,120.6,114.6,114.1,51.5,23.1$. Spectral data are in accordance with literature data. ${ }^{7}$

Methyl 2-amino-3-fluorobenzoate was prepared according to the general procedure from 2-amino-3fluorobenzoic acid (6.32 mmol) and methanol in 68% yield $(727 \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.10(\mathrm{ddd}, J=11.3,7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{td}, J=8.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.88$ (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} ~ N M R(126 ~ M H z, ~ C D C l ~ 3) ~ \delta ~ 168.1, ~ 152.6, ~ 150.7, ~ 139.9, ~ 139.8, ~ 126.4, ~ 126.4, ~ 118.6, ~ 118.5, ~$ $114.8,114.8,112.8,112.7,51.8$. Spectral data are in accordance with literature data. ${ }^{8}$

Methyl 2-amino-6-(trifluoromethyl)benzoate was prepared according to the general procedure 2-amino-6-trifluoromethyl-benzoic acid (2.44 mmol) and methanol in 91% yield (487 mg). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,147.5,131.5,130.2,123.9,120.1,116.2,113.5$, 52.6. Spectral data are in accordance with literature data. ${ }^{9}$

Acridone precursors

General procedure: Buchwald-Hartwig coupling, method A
Aniline (1.2 eq.) and arylhalogenide (1 eq.) starting materials, $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ ($2.5 \mathrm{~mol} \%$), rac-BINAP (7.5 mol\%) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2 eq.) were placed to a flame dried flask under dry Ar and diluted with dry and degassed toluene (c (aniline) $=0.1 \mathrm{M}$; degassed by 15 minutes bubbling of dry Ar and sonicated prior to use) and the reaction mixture was further degassed (5 minutes of bubbling with dry Ar under sonication). The flask was attached to a reflux condenser and the reaction mixture was refluxed under dry Ar for 48 hours. The reaction mixture was filtered through a short pad of silica gel and the silica

[^2]was further eluted with EtOAc. Eluates were combined and volatiles were removed under reduced pressure and obtained residuum was purified by flash column chromatography (crude material/silica gel $=1 / 100(\mathrm{~m} / \mathrm{m})$; DCM $\rightarrow 1 \%$ EtOAc in DCM $\rightarrow 2 \%$.

General procedure: Buchwald-Hartwig coupling, method B (optimized conditions)

Aniline (0.24 mmol), arylbromide (0.2 mmol), $\mathrm{Pd}_{2} \mathrm{dba}_{3}(0.005 \mathrm{mmol})$, Xanthphos (0.015 mmol) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.4 \mathrm{mmol})$ were placed in a 4 mL vial and diluted with toluene $(2 \mathrm{~mL})$. The vial was briefly flushed with Ar and closed tightly with a screw cap. The reaction mixture was stirred at $135{ }^{\circ} \mathrm{C}$ in a thermoblock for 2 hours. For scale-up, multiple reactions were run in parallel. The reaction mixture was allowed to cool down to room temperature, filtered through a short pad of silica gel and then the pad was further eluted with EtOAc. Organic phases were combined, volatiles were removed in vacuo and the obtained crude product was further purified by flash column chromatography (crude material/silica gel $=1 / 100(\mathrm{~m} / \mathrm{m}), \mathrm{DCM} \rightarrow 1 \%$ EtOAc in DCM $\rightarrow 2 \%)$.

2-((4-(2-((tert-Butoxycarbonyl)amino)ethyl)phenyl)amino)benzoic acid: A suspension of tert-butyl (4aminophenethyl)carbamate ($600 \mathrm{mg}, 2.54 \mathrm{mmol}$), 2-bromobenzoic acid ($480 \mathrm{mg}, 3.05 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(430 \mathrm{mg}, 3.1 \mathrm{mmol})$, Cu powder (25 mg) and pyridine ($150 \mu \mathrm{~L}$) in isoamyl alcohol (3 mL) in a 20 mL vial was stirred at $140{ }^{\circ} \mathrm{C}$ for 16 hours. The reaction mixture was then allowed to cool down to room temperature, diluted with EtOAc, washed with $\mathrm{HCl}(\mathrm{aq}, 1 \mathrm{M})$, brine, dried over MgSO_{4}, filtered and volatiles were removed under reduced pressure. The obtained crude brown oil was purified by flash column chromatography (EtOAc/n-hexane $=1 / 1,(\mathrm{v} / \mathrm{v})$) and further crystalized from EtOAc/n-hexane. The product was obtained as an orange solid in 78% yield after column chromatography and in 48% yield after crystallization (710 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 8.01(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (ddd, J = 8.7, 7.1, 1.7 Hz, 1H), $7.27-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.76$ (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 3.31 (t, J = 7.4 Hz, $2 \mathrm{H}), 2.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 170.5,156.6,149.3$, 139.7, 136.0, 135.1, 132.9, 130.7, 123.3, 117.8, 114.4, 112.5, 78.5, 42.7, 36.4, 28.7. LR-MS calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 357.18$, found 356.97.

2-((3-(2-((tert-Butoxycarbonyl)amino)ethyl)phenyl)amino)benzoic acid was prepared from 2bromobenzoic acid and tert-butyl (3-aminophenethyl)carbamate analogously to 2-((4-(2-()tertbutoxycarbonyl)amino)ethyl)phenyl)amino)benzoic acid in 36% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 7.97$ (dd, $J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.33 (ddd, $J=8.6,7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}$, $2 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{ddd}, J=8.1,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , methanol- d_{4}) $\delta 171.8,158.5,149.3,142.3,142.1,135.1$, 133.2, 130.4, 125.0, 123.5, 120.8, 118.1, 115.0, 113.5, 80.0, 42.9, 37.1, 28.8. LR-MS calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 357.2$, found 356.7.

2-((4-(2-((tert-Butoxycarbonyl)amino)ethyl)phenyl)amino)-5-fluorobenzoic acid was prepared from 2-bromo-5-fluorobenzoic acid and tert-butyl (4-aminophenethyl)carbamate analogously to 2-((4-(2-((tert-butoxycarbonyl)amino)ethyl)phenyl)amino)benzoic acid upon stirring in ethanol at $120^{\circ} \mathrm{C}$ in 56% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 7.63(\mathrm{dd}, J=9.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.08$ $(\mathrm{m}, 3 \mathrm{H}), 3.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 5 \mathrm{H}), 2.74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, methanol- d_{4}) $\delta 170.7,158.5,156.7,154.4,146.3,140.6,136.0,130.9,123.3,122.6,122.3,118.2,117.9$, 116.6, 116.6, 113.9, 113.8, 80.0, 43.1, 36.6, 28.8. LR-MS calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 375.2$, found 374.6 .

2-((4-(2-((tert-Butoxycarbonyl)amino)ethyl)phenyl)amino)-6-fluorobenzoic acid was prepared from 2-bromo-6-fluorobenzoic acid and tert-butyl (4-aminophenethyl)carbamate analogously to 2-((4-(2-((tert-butoxycarbonyl)amino)ethyl)phenyl)amino)benzoic acid upon stirring at $140{ }^{\circ} \mathrm{C}$ for 48 h . The crude product was purified by sequential column chromatography: $1^{\text {st }}$ column (isocratic chloroform + $5 \% \mathrm{MeOH}$) and $2^{\text {nd }}$ column (isocratic 1:1 EtOAc/n-hexane) and crystalized from EtOAc/n-hexane. The pure product was obtained as a red oil in 67% yield (500 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}\right.$, methanol- $\left.d_{4}\right) \delta 7.25$ $-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46$ (ddd, $J=11.2,8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (t, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, methanol- $\left.d_{4}\right) \delta 169.8$, 169.8, 166.1, 163.5, 158.4, 150.4, 150.3, 140.3, 136.4, 134.7, 134.6, 130.9, 123.8, 110.7, 110.7, 105.8, $105.6,80.0,43.0,36.7,28.8 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , methanol-d ${ }_{4}$) $\delta-106.79$ (dd, J = 10.8, 5.9 Hz). LR-MS calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 375.17$, found 375.04.

Methyl 2-((4-(2-((tert-butoxycarbonyl)amino)ethyl)phenyl)amino)-6-chlorobenzoate was prepared from methyl 2-amino-6-chlorobenzoate and tert-butyl (4-bromophenethyl)carbamate (0.54 mmol) according to the general procedure for Buchwald-Hartwig coupling A in 66% yield (144 mg). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{dd}, J=6.9,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,156.0,146.0,139.6,134.0,133.9,131.9,129.9,121.4,121.1,118.2,114.1$, 79.4, 52.5, 42.0, 35.7, 28.6. LR-MS calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 405.2$, found 405.2.

Methyl 2-((4-(2-((tert-butoxycarbonyl)amino)ethyl)phenyl)amino)-6-fluorobenzoate was prepared from methyl 2-amino-6-fluorobenzoate and tert-butyl (4-bromophenethyl)carbamate (2.7 mmol) according to the general procedure for Buchwald-Hartwig coupling B (optimized conditions) in 71\% yield (745 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.07(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.45 (dd, J = 11.2, 8.1 Hz, 1H), $4.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.44-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 1.44 (s, 9H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,167.8,164.5,162.4,156.0,149.1,149.1,139.0$,
134.9, 133.9, 133.8, 129.9, 123.1, 109.9, 109.9, 105.2, 105.0, 103.2, 103.1, 79.4, 52.3, 42.0, 35.8, 28.6. LR-MS calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 389.2$, found 389.2.

Methyl 2-((4-(2-((tert-butoxycarbonyl)amino)ethyl)phenyl)amino)-6-methylbenzoate was prepared from methyl 2 -amino-6-methyl benzoate and tert-butyl (4-bromophenethyl)carbamate (0.69 mmol) according to the general procedure for Buchwald-Hartwig coupling A in 23% yield (61 mg). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 6 \mathrm{H}), 6.67(\mathrm{dd}, \mathrm{J}=7.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.91$ (s, 3H), $3.40-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 170.0,156.0,145.5,140.4,139.8,133.1,131.7,129.8,122.1,121.1,117.6,113.7,79.3,51.8$, 42.0, 35.7, 28.6, 22.7. LR-MS calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 385.2$, found 385.2 .

Methyl 2-((4-(2-((tert-butoxycarbonyl)amino)ethyl)phenyl)amino)-4-fluorobenzoate was prepared from methyl 2-amino-4-fluorobenzoate and tert-butyl (4-bromophenethyl)carbamate (0.94 mmol) according to the general procedure for Buchwald-Hartwig coupling A in 42% yield (153 mg). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{dd}, J=9.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 4 \mathrm{H}), 6.79(\mathrm{dd}, J=12.1,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.39(\mathrm{ddd}, \mathrm{J}=9.0,7.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4,168.2,165.7,156.0,150.9,150.8$, $138.4,135.5,134.4,134.3,130.0,123.8,108.0,108.0,104.8,104.6,100.0,99.7,79.4,51.9,41.9,35.9$, 28.6. LR-MS calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 389.2$, found 389.2.

Methyl 2-((4-(((tert-butoxycarbonyl)amino)methyl)phenyl)amino)benzoate was prepared from methyl 2-amino benzoate and tert-butyl (4-iodobenzyl)carbamate (1.00 mmol) according to the general procedure for Buchwald-Hartwig coupling A in 14% yield (50 mg) and 33% of starting tert-butyl (4-iodobenzyl)carbamate was recovered. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.44(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{dd}, \mathrm{J}=8.0,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33-7.18(\mathrm{~m}, 6 \mathrm{H}), 6.73(\mathrm{ddd}, \mathrm{J}=8.2,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.29(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{10}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,156.0,148.0,140.1,134.2,131.7$, 128.7, 122.8, 117.3, 114.1, 112.0, 79.6, 51.9, 44.4, 28.6.

Methyl 2-((4-(2-((tert-butoxycarbonyl)amino)ethyl)phenyl)amino)-3-fluorobenzoate was prepared from methyl 2-amino-3-fluorobenzoate and tert-butyl (4-bromophenethyl)carbamate (0.3 mmol) according to the general procedure for Buchwald-Hartwig coupling B (optimized conditions) in 68% yield (79 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.82(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=12.1,8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 3 \mathrm{H}), 4.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.29(\mathrm{~m}, 2 \mathrm{H})$, $2.74(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.3,168.2,156.0,155.3,153.3$,

[^3]$141.3,141.2,135.0,134.9,132.6,129.1,127.0,127.0,121.0,120.8,119.8,119.7,119.2,119.1,119.1$, 119.0, 79.3, 52.4, 42.0, 35.6, 28.6. LR-MS calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 389.2$, found 389.2.

Methyl 2-((4-(2-((tert-butoxycarbonyl)amino)ethyl)phenyl)amino)-6-(trifluoromethyl)benzoate was prepared from methyl 2-amino-6-trifluoromethylbenzoate and tert-butyl (4bromophenethyl)carbamate (1.0 mmol) according to the general procedure for Buchwald-Hartwig coupling B (optimized conditions) in 78% yield (342 mg). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.42$ $-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2,156.0$, $144.7,139.4,134.3,131.3,130.3,130.0,123.8,121.4,119.3,117.6,116.9,52.9,42.0,35.8,28.6$. LRMS calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 439.2$, found 439.3.

Methyl 2-((4-(3-((tert-butoxycarbonyl)amino)propyl)phenyl)amino)benzoate was prepared from methyl 2-aminobenzoate and tert-butyl [3-(4-bromophenyl)propyl]carbamate (0.4 mmol) according to the general procedure for Buchwald-Hartwig coupling B (optimized conditions). The compound was obtained in the mixture with impurities and the yield was calculated to $\sim 60 \%$. All obtained material was used in the next step without further purification.

2-(2-(2-Methylcarboxyphenylamino)phenyl)ethyl imidodicarbonic acid, bis(1,1-dimethylethyl) ester was prepared from methyl 2-aminobenzoate and tert-butyl (2-bromophenethyl)carbamate (1.0 mmol) according to the general procedure for Buchwald-Hartwig coupling B (optimized conditions) in 62% yield (292 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.29(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{dd}, \mathrm{J}=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=7.9$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{td}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{ddd}, J$ $=8.1,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1,152.4,149.5,139.4,134.7,134.3,131.6,131.3,127.6,125.7,125.4$, $116.6,114.0,111.5,82.2,51.9,46.5,31.4,28.1$. LR-MS calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 471.2$, found 471.3.

Methyl 2-((4-(2-hydroxyethyl)phenyl)amino)benzoate: Methyl 2-aminobenzoate ($36.3 \mathrm{mg}, 0.24$ mmol), (4-bromophenethoxy)triisopropylsilane ($71.5 \mathrm{mg}, 0.20 \mathrm{mmol}$), $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ ($4.6 \mathrm{mg}, 2.5 \mathrm{~mol} \%$), Xanthphos ($8.7 \mathrm{mg}, 7.5 \mathrm{~mol} \%$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130 \mathrm{mg}, 0.40 \mathrm{mmol})$ were placed in a 4 mL vial and diluted
with toluene (2 mL) was added. The vial was flushed with dry Ar and closed tightly with a screw cap. The reaction mixture was stirred at $135{ }^{\circ} \mathrm{C}$ in a thermoblock (temperature was measured and maintained by a thermosensor which was placed in a vial in the thermoblock filled with oil) for 2 hours. For scale-up multiple reactions were run in parallel (in a total scale of 4.05 mmol). The reaction mixture was filtered through a short pad of silica gel and the pad was further eluted with EtOAc. Volatiles were removed in vacuo and the crude product was purified by flash column chromatography (crude material/silica gel, $1 / 100(\mathrm{~m} / \mathrm{m}), 2 \%$ EtOAc in n-hexane) resulting in an inseparable mixture of two compounds. The obtained material was dissolved in THF (32 mL) and TBAF (1 M in THF, 8.5 mL) was added and the solution was further stirred at room temperature for 16 hours. The reaction mixture was diluted with water and DCM. The aqueous phase was extracted further with DCM ($2 \times 20 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and volatiles were removed under reduced pressure. Obtained crude material was purified by flash column chromatography (crude material/silica gel, $1 / 100(\mathrm{~m} / \mathrm{m})$, n-hexane/EtOAc $=5 / 1 \rightarrow 5 / 2 \rightarrow 5 / 3,(\mathrm{v} / \mathrm{v}))$. The pure product was obtained as a colorless solid in 66% yield (730 mg) over two steps. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.42$ (s, 1H), 7.96 (dd, $J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30 (ddd, $J=8.7,7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.72$ (ddd, $J=8.1,7.0,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 169.1,148.3,139.3,134.2,133.9,131.7,130.1,123.1,117.1,114.0,111.8,63.8,51.9,38.8$. LR-MS calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$272.1, found 272.1.

Methyl 2-((4-(2-oxoethyl)phenyl)amino)benzoate: To a solution of methyl 2-((4-(2hydroxyethyl)phenyl)amino)benzoate ($730 \mathrm{mg}, 2.69 \mathrm{mmol}$) in dry DCM (13.5 mL) under dry Ar at $0^{\circ} \mathrm{C}$ was added Dess-Martin periodinane ($1.7 \mathrm{~g}, 4.04 \mathrm{mmol}$) and the reaction mixture was stirred 5 minutes at $0{ }^{\circ} \mathrm{C}$ and then 2 hours at room temperature. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq, satd.) was added and the reaction mixture was stirred for another 10 minutes. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and DCM and the aqueous phase was further extracted with $\operatorname{DCM}(3 \times 20 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and volatiles were removed under reduced pressure. Obtained crude product was purified by flash column chromatography (crude material/silica gel $=1 / 100(\mathrm{~m} / \mathrm{m})$, n hexane/EtOAc $=9 / 1 \rightarrow 8 / 1,(\mathrm{v} / \mathrm{v})$). The pure product was obtained as a yellow oil in 51% yield (370 $\mathrm{mg}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.79(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.50(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (ddd, J=8.6, 7.0, 1.7 Hz, 1H), $7.30-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.77$ (ddd, J = 8.1, $6.9,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.5,169.0,147.7,140.3$, $134.2,131.8,130.7,126.7,122.8,117.5,114.2,112.2,51.9,50.1$. LR-MS calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 270.1, found 270.1.

Methyl 2-((4-(2-(methylamino)ethyl)phenyl)amino)benzoate: Methylamine (2 M in $\mathrm{MeOH}, 1.05 \mathrm{~mL}$, $2.1 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(132 \mathrm{mg}, 2.1 \mathrm{mmol})$ were sequentially added to a solution of methyl 2-($(4-(2-$ oxoethyl)phenyl)amino)benzoate ($189 \mathrm{mg}, 0.70 \mathrm{mmol}$) in $\mathrm{MeOH}(2.46 \mathrm{~mL})$ and the reaction mixture was stirred at room temperature for 24 hours. The reaction mixture was concentrated in vacuo and the residue was portioned between $\mathrm{H}_{2} \mathrm{O}$ and DCM and the aqueous phase was further extracted with DCM ($2 \times 20 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and volatiles were removed under reduced pressure. The obtained crude material was purified by flash column chromatography (crude material/silica gel, $1 / 100(\mathrm{~m} / \mathrm{m}), \mathrm{DCM} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}=90 / 10 / 1,(\mathrm{v} / \mathrm{v})$). The pure product was obtained as a yellowish oil in 27% yield (54 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.41$ (s,
$1 \mathrm{H}), 7.95$ (dd, J = 8.0, 1.6 Hz, 1H), 7.29 (ddd, $J=8.7,7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.70$ (ddd, J = 8.1, $7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.1,148.4,138.9,135.6,134.2,131.7,129.7,123.1,116.9,114.0,111.7,53.4$, 51.9, 36.5, 35.7. LR-MS calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 285.2$, found 285.0.

Methyl 2-((4-(2-(dimethylamino)ethyl)phenyl)amino)benzoate: Dimethylamine (2 M in THF, 0.92 mL , $1.85 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(116 \mathrm{mg}, 1.85 \mathrm{mmol})$ were sequentially added to a solution of the methyl 2-((4-(2-oxoethyl)phenyl)amino)benzoate ($166 \mathrm{mg}, 0.62 \mathrm{mmol}$) in THF (2.16 mL) was added and the reaction mixture was stirred at room temperature for 24 hours. The reaction mixture was concentrated under reduced pressure and the obtained residue was portioned between $\mathrm{H}_{2} \mathrm{O}$ and DCM. The aqueous phase was further extracted with DCM $(2 \times 20 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and volatiles were removed under reduced pressure. The obtained crude material was purified by flash column chromatography (crude material/silica gel, $1 / 100(\mathrm{~m} / \mathrm{m}), \mathrm{DCM} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}$ $=95 / 5 / 0.5(\mathrm{v} / \mathrm{v}))$ to afford the product as yellowish oil in 19% yield $(35 \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.40(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{ddd}, J=8.7,7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.70$ (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), $3.89(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1,148.5,138.7,136.0,134.2,131.7,129.6,123.2,116.9,114.0,111.6$, 61.7, 51.8, 45.6, 33.9. LR-MS calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$299.2, found 299.1.

Acridones

General procedure: preparation of acridone analogs

A solution of the starting substituted methyl 2-(phenylamino)benzoate in $13.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(0.1 \mathrm{M})$ was heated at $115{ }^{\circ} \mathrm{C}$ (oil bath) for 16 hours. The reaction mixture was cooled down to $0{ }^{\circ} \mathrm{C}$ and then was added dropwise to cold $10 \% \mathrm{NaOH}(\mathrm{aq})$ until all the remaining $\mathrm{H}_{2} \mathrm{SO}_{4}$ was neutralized. Volatiles were carefully removed under reduced pressure to remove all residual water. The obtained solid was grounded, diluted with $\mathrm{DCM} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}(80 / 20 / 2(\mathrm{v} / \mathrm{v}))$ under sonication and the suspension was filtered through a short pad of silica gel. This step was repeated until no fluorescent product spot was visible (TLC). Obtained organic phases were combined and volatiles were removed under reduced pressure to afford the crude product. The obtained material was dissolved in $\mathrm{DCM} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}$ (80/20/2, (v/v)) and adsorbed onto celite. The celite with adsorbed material was transferred to the flash chromatography column and further chromatographed (silica gel/crude product, 100/1 (m / m), $\left.\mathrm{DCM} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}, 90 / 10 / 1 \rightarrow 80 / 20 / 2,(\mathrm{v} / \mathrm{v})\right)$. Obtained free amine was transformed into the hydrochloride by dissolving the isolated compound in 1 N HCl (aq; heating and addition of MeOH when necessary) and evaporation of the volatiles ($2 \times$).

2-(2-Aminoethyl)acridin-9(10H)-one hydrochloride (FFN54): A 20 mL vial was charged with 2-((4-(2-((tert-butoxycarbonyl)amino)ethyl)phenyl)amino)benzoic acid ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) and polyphosphoric acid (PPA, $1.3 \mathrm{~g}, 3.85 \mathrm{mmol}$). The mixture was heated to $90^{\circ} \mathrm{C}$ for 5 hours, allowed to cool to room temperature and diluted with water/ice. The mixture was further basified with $\mathrm{NaOH}(\mathrm{aq}, 15 \mathrm{wt} \%)$ and extracted with $3 \times 10 \mathrm{~mL}$ DCM. The combined organic phases were washed with brine, dried over MgSO_{4}, and concentrated to yield a bright yellow solid. The obtained solid was dissolved in methanol ($2-3 \mathrm{~mL}$), and purified by RP-HPLC using a linear gradient of water/methanol with $0.1 \%(\mathrm{v} / \mathrm{v}) \mathrm{FA} / \mathrm{H}_{2} \mathrm{O}$. The fractions containing the desired product were collected and concentrated on vacuum. The solid was re-dissolved in a small amount of water and treated with $5 \mathrm{~mL} \mathrm{HCl}(2.0 \mathrm{M}$ in MeOH$)$, concentrated again, and lyophilized to give the hydrochloride as a white solid in 65% yield (25 mg). Column chromatography (RP-C18 silica, water/dioxane, 1:20, (v/v)) was used as an alternative purification method for scaled-up batches. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 7.56$ (dd, J=8.2, 1.4 Hz, 1H), 7.37 (ddt, J = $8.0,6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $\delta 177.5,139.5,138.4,134.1,133.7,129.4,124.8,123.9,121.7,118.6,118.3,117.4,116.8,40.2,32.2$. LR-MS calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$239.11, found 239.09.

3-(2-Aminoethyl)acridin-9(10H)-one hydrochloride (1) was prepared from methyl 2-((3-(2aminoethyl)phenyl)amino)benzoate analogously to FFN54 in 43% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.90(\mathrm{~s}, 1 \mathrm{H}), 8.23-8.17(\mathrm{~m}, 2 \mathrm{H}), 8.02(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 7.72(\mathrm{ddd}, J=8.5,6.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, \mathrm{J}=8.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{ddd}, J=8.0,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ - $3.10(\mathrm{~m}, 2 \mathrm{H}), 3.06-3.02(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO-d ${ }_{6}$) $\delta 176.5,143.2,141.1,140.9$, 133.4, 126.5, 126.0, 121.9, 121.0, 120.5, 119.4, 117.4, 116.9, 40.0, 39.5, 33.2.LR-MS calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$239.1, found 238.8.

4-(2-Aminoethyl)-acridin-9(10H)-one hydrochloride (2) was prepared from methyl 2-((2-(2aminoethyl)phenyl)amino)benzoate (0.56 mmol) according to the general procedure in 48% yield (74 $\mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.12(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.25-8.13(\mathrm{~m}, 5 \mathrm{H}), 7.73$ (ddd, J = 8.5, 6.9, 1.6 Hz, 1H), 7.65 (dd, J = 7.2, 1.6 Hz, 1H), 7.28 (ddd, J = 8.0, 6.8, 1.1 Hz, 1H), 7.23 (dd, $J=8.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.15-3.07(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $177.0,141.3,139.2,134.8,133.2,125.6,125.3,124.6,121.4,121.2,120.8,120.2,118.3,38.7,28.7$. LRMS calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$239.1, found 239.1.

2,7-Dihydro-3H-pyrido[4,3,2-k/]acridine hydrochloride (3) was obtained as a side-product during the preparation of 1 in 26% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 13.75(\mathrm{~s}, 1 \mathrm{H}), 11.02(\mathrm{~s}, 1 \mathrm{H}), 8.64$ (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98$ (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), $7.94-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (ddd, J $=8.2,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31 (dd, $J=7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88 (td, $J=7.2,2.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.28(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 154.5,139.0,138.9,135.8,135.2,135.1,124.3,123.7,121.0$, 118.7, 115.8, 111.1, 109.3, 39.9, 25.5. LR-MS calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$221.1, found 220.9.

2-(Aminomethyl)-acridin-9(10H)-one hydrochloride (4) was prepared from methyl 2-((4(aminomethyl)phenyl)amino)benzoate (0.14 mmol) according to the general procedure for the preparation of acridone analogs in 95% yield (35 mg). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 12.10(\mathrm{~s}, 1 \mathrm{H})$, $8.43-8.29(\mathrm{~m}, 4 \mathrm{H}), 8.24(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (ddd, $J=8.5,6.9$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.27$ (ddd, $J=8.0,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$
(126 MHz, DMSO-d ${ }_{6}$) $\delta 176.6,140.9,140.8,134.3,133.6,126.8,126.5,126.0,121.3,120.5,120.1$, 117.7, 117.5, 42.0. LR-MS calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 225.1$, found 225.0.

2-(3-Aminopropyl)-acridin-9(10H)-one hydrochloride (5) was prepared from methyl 2-((4-(3aminopropyl)phenyl)amino)benzoate (0.23 mmol) according to the general procedure for the preparation of acridone analogs in 74% yield (49 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.98(\mathrm{~s}, 1 \mathrm{H})$, $8.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-7.94(\mathrm{~m}, 4 \mathrm{H}), 7.71(\mathrm{td}, J=7.6,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.23$ ($\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.84-2.75(\mathrm{~m}, 4 \mathrm{H}), 1.92(\mathrm{p}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{11}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $176.6,140.8,139.4,134.1,133.5,133.2,125.9,124.6,120.8,120.3,117.6,117.3,38.3,31.3,28.8$. LRMS calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$253.1, found 253.1.

2-(2-(Methylamino)ethyl)acridin-9(10H)-one hydrochloride (6) was prepared from methyl 2-((4-(2(methylamino)ethyl)phenyl)amino)benzoate (0.19 mmol) according to the general procedure for the preparation of acridone analogs in 60% yield (33 mg). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.03(\mathrm{~s}, 1 \mathrm{H})$, $8.94(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.07(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}) $\delta 176.6,140.9,139.9,134.2,133.3,129.7,126.0,125.4,120.9,120.4,120.4$, 117.9, 117.4, 49.2, 32.4, 31.0. LR-MS calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$253.1, found 253.1.

2-(2-(Dimethylamino)ethyl)acridin-9(10H)-one hydrochloride (7) was prepared from methyl 2-((4-(2(dimethylamino)ethyl)phenyl)amino)benzoate (0.12 mmol) according to the general procedure for the preparation of acridone analogs in 69% yield (from 25 mg). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 12.07(\mathrm{~s}$, $1 \mathrm{H}), 10.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (ddd, $J=8.4,6.9,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65$ (dd, $J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.24$ (ddd, J=8.0, 6.9, 1.1 Hz, 1H), $3.36-3.30$ $(\mathrm{m}, 2 \mathrm{H}), 3.17-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 176.5,140.9$, $139.9,134.2,133.4,129.5,126.0,125.5,121.0,120.4,120.4,117.9,117.4,57.2,42.1,29.3$. LR-MS calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$267.1, found 267.1.

[^4]

7-(2-Aminoethyl)-1-flouroacridin-9(10H)-one hydrochloride (FFN246) was prepared from methyl 2-((4-(2-(dimethylamino)ethyl)phenyl)amino)-6-fluorobenzoate (1.89 mmol) analogously to FFN54 in 8\% yield (44 mg) or according to the general procedure for the preparation of acridone analogs in 21% yield (116 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 12.18(\mathrm{~s}, 1 \mathrm{H}), 8.12-8.00(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 2 \mathrm{H})$, $7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=11.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.04(\mathrm{~m}, 2 \mathrm{H}), 3.03$ - 2.98 (m, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO-d ${ }_{6}$) $\delta 175.2,162.5,160.5,143.0,143.0,139.2,134.4$, $133.8,133.7,130.4,125.4,121.5,117.6,113.3,113.3,110.4,110.3,106.7,106.6,39.9,32.5 .{ }^{19} \mathrm{~F} \mathrm{NMR}$ (471 MHz, DMSO- d_{6}) $\delta-112.59$ (dd, $J=12.2,5.5 \mathrm{~Hz}$). LR-MS calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 257.1$, found 257.1.

2-(2-Aminoethyl)-7-fluoroacridin-9(10H)-one hydrochloride (8) was prepared from methyl 2-((4-(2-(dimethylamino)ethyl)phenyl)amino)-5-fluorobenzoate analogously to FFN54. After basification of the reaction mixture the product precipitated and was isolated. Obtained precipitate was washed with $\mathrm{H}_{2} \mathrm{O}$ and then with MeOH . Obtained pure free base was converted into the HCl salt. And the pure product was obtained in 84% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.19(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{br}$ $\mathrm{s}, 3 \mathrm{H}$), 7.86 (dd, J = 9.3, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.70-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 2 \mathrm{H}), 3.05$ - 2.97 (m, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO) $\delta 175.9,157.8,155.9,139.8,137.7,134.5,130.2,125.4$, $122.5,122.3,120.9,120.8,120.1,120.1,119.5,118.0,109.7,109.5,39.9,32.6 .{ }^{19} \mathrm{~F}$ NMR (471 MHz , DMSO $-d_{6}$) $\delta-120.78\left(q, J=7.3 \mathrm{~Hz}\right.$). LR-MS calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 257.1$, found 256.9.

2-(2-Aminoethyl)-6-fluoroacridin-9(10H)-one hydrochloride (9) was prepared from methyl 2-((4-(2-(dimethylamino)ethyl)phenyl)amino)-4-fluorobenzoate (0.39 mmol) according to the general procedure for the preparation of acridone analogs in 57% yield (65 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$ $\delta 12.15(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=9.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 7.66(\mathrm{dd}, J=8.5$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=10.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-$ $3.05(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.98(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.126 \mathrm{MHz}, ~ D M S O-d_{6}\right) ~ \delta 175.8,166.0,164.0,142.5,142.3$, $140.0,134.4,130.4,129.6,129.5,125.6,120.5,117.7,117.6,110.0,109.8,102.3,102.1,39.9,32.5 .{ }^{19} \mathrm{~F}$ NMR (471 MHz, DMSO- d_{6}) $\delta-105.35$ (ddd, $J=10.3,8.5,6.9 \mathrm{~Hz}$). LR-MS calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FN} \mathrm{N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 257.1, found 257.1.

2-(2-Aminoethyl)-5-fluoroacridin-9(10H)-one hydrochloride (10) was prepared from methyl 2-((4-(2-(dimethylamino)ethyl)phenyl)amino)-3-fluorobenzoate (0.18 mmol) according to the general procedure for the preparation of acridone analogs in 87% yield (46 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.72(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 7.82(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{td}, \mathrm{J}=8.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 2 \mathrm{H}), 3.05-2.98(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}) δ 175.9, 152.1, 150.2, 139.7, 134.6, 130.8, 130.3, 130.2, 125.5, 122.4, 122.4, $121.7,121.7,120.6,120.3,120.2,118.5,117.8,117.6,39.9,32.5 .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta-$ 130.84 (dd, $J=11.5,4.8 \mathrm{~Hz}$). LR-MS calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 257.1$, found 257.1.

7-(2-Aminoethyl)-1-chloroacridin-9(10H)-one hydrochloride (11) was prepared from methyl 2-chloro-6-((4-(2-(dimethylamino)ethyl)phenyl)amino)benzoate (0.43 mmol) according to the general procedure for the preparation of acridone analogs in 23% yield (31 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.01(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 7.64(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52$ (dd, J = 8.5, 1.5 Hz, 2H), 7.21 (dd, J = 7.5, 1.1 Hz, 1H), 3.12-3.07 (m, 2H), 3.02-2.97 (m, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.126 \mathrm{MHz}, ~ D M S O-d_{6}\right) ~ \delta 175.7,143.3,138.8,134.4,133.0,132.9,130.3,125.8,123.6,121.6$, 117.4, 116.9, 116.4, 39.9, 32.6. LR-MS calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$273.1, found 273.1.

7-(2-Aminoethyl)-1-methylacridin-9(10H)-one hydrochloride (12) was prepared from methyl 2-((4-(2-(dimethylamino)ethyl)phenyl)amino)-6-methylbenzoate (0.16 mmol) according to the general procedure for the preparation of acridone analogs in 85% yield (39 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$ $\delta 11.74(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{brs}, 3 \mathrm{H}), 7.59(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.39 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.04(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}) δ 178.6, 142.5, 140.4, 139.1, 133.9, 132.4, 129.5, 125.7, 123.5, 121.7, 118.9, 117.2, 115.5, 39.9, 32.6, 23.7. LR-MS calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$253.1, found 253.1.

7-(2-Aminoethyl)-1-(trifluoromethyl)acridin-9(10H)-one hydrochloride (13) was prepared from methyl 2-((4-(2-(dimethylamino)ethyl)phenyl)amino)-6-(trifluoromethyl)benzoate (0.23 mmol) according to the general procedure for the preparation of acridone analogs in 31% yield (24 mg). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 12.31(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 7.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.82(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 174.6,142.8,138.7,134.5,132.1,130.7,127.3$, $125.7,123.2,121.7,120.7,117.5,116.3,39.9,32.6 .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta-56.65$ (s, 3F). LRMS calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$307.1, found 307.1.

						Ar-i.															140000	
							$\begin{array}{\|c\|} \hline \mathrm{NH}(\mathrm{~s}) \\ 6.46 \\ \hline \end{array}$											(ts				-130000
																						120000
																						-110000
																						-100000
																						0000
																						80000
																						70000
																						-70000
																						-60000
																						-50000
																						-40000
																						-20000
														,	,							-10000
														λ	,			du				0
						Ho								$\stackrel{H}{\text { H }}$	$\stackrel{H}{\text { + }}$			$\stackrel{1}{\circ}$				10000
																						10000
	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0		5.0		4.0	3.5	53.0	2.5	2.0		. 5	1.0	0.5	0.0	
	9.5								f	1 (ppm)												

																			-75000
					($\mathrm{NH}(\mathrm{s})$.48								${ }^{\text {coome }}$ (s) ${ }^{\text {che }}$	${ }^{\text {CH2 }(\mathrm{m})}$				Boc (s)	65000
						$\underset{\substack{\text { A-H. } 13 \\ \hline \text { (m) }}}{ }$													60000
																			-55000
																			-50000
																			50000
																			45000
																			40000
																			-35000
																			-30000
																			-25000
																			20000
																			15000
						,													
						,													10000
																			5000
														λ	,				
												$\stackrel{1}{\square}$	+	+	$\stackrel{\text { 'r }}{\text { + }}$			$\stackrel{H}{\circ}$	-5000
1.0	9.5	9.0	8.5	8.0	7.5	7.0		. 5			5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	
										1 (ppm)									

[^0]: ${ }^{1}$ Second methylene signal overlapped by methanol- d_{4} solvent signal
 ${ }^{2}$ US7470815 B1, 2008

[^1]: ${ }^{3}$ Angew. Chem. Int. Ed., 2013, 8134
 ${ }^{4}$ J. Phys. Chem. A., 2011, 1222
 ${ }^{5}$ Bioorg. \& Med. Chem., 2011, 7464

[^2]: ${ }^{6}$ Bioorg. Med. Chem., 1999, 1743
 ${ }^{7}$ Tetrahedron, 2009, 563
 ${ }^{8}$ J. Med. Chem., 2015, 1630
 ${ }^{9}$ Eur. Pat. Appl. (1992), EP 516297 A1 19921202

[^3]: ${ }^{10}$ One carbon signal was not distinguished, probably overlapping with another signal

[^4]: ${ }^{11}$ One quaternary carbon signal missing, probably overlapping with another signal

