Discovery of a Novel Dibromoquinoline Compound Exhibiting Potent Antifungal and Antivirulence Activity that Targets Metal ion Homeostasis

Haroon Mohammad^{1,‡}, Nehal H. Elghazawy^{2,‡}, Hassan Eldesouky^{1,‡}, Youssef A. Hegazy¹, Waleed Younis¹, Larisa Avrimova³, Tony Hazbun^{3,4}, Reem K. Arafa^{2*}, and Mohamed N. Seleem^{1,5*}

¹ Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA

- ² Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Sheikh Zayed District, 6th of October City, Cairo, Egypt 12588
- ³ Bindley Bioscience Center, Purdue University, 1201 W State St., West Lafayette, IN 47907, USA
- ⁴ Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN 47907, USA
- ⁵ Purdue Institute for Inflammation, Immunology, and Infectious Diseases, 610 Purdue Mall, West Lafayette, IN 47907, USA

***Corresponding Authors:**

Reem K. Arafa Biomedical Sciences Program Zewail City of Science and Technology Sheikh Zayed District 6th of October City Cairo, Egypt 12588 Phone: +20 2 385 40 430 Fax: 20 2 385 17 181 Email: rkhidr@zewailcity.edu.eg

Mohamed N. Seleem Department of Comparative Pathobiology Purdue University College of Veterinary Medicine 625 Harrison St., West Lafayette, IN, 47907 Phone: 765-494-0763 Fax: 765-496-2627 Email: mseleem@purdue.edu **Supplementary Table 1:** *S. cerevisiae* heterozygous diploid deletion strains identified as sensitive to compound 4b via chemogenomic profiling.

Gene Name	Gene Function ^a	
ssal	ATPase subunit of the chaperonin-containing T-complex (CCT, TriC)	
nup60	FG-nucleoporin component of central core of the nuclear pore complex	
kin3	Serine/threonine protein kinase	
cox17	Copper metallochaperone that transfers copper to Sco1p and Cox11p	
	One of four subunits of the ESCRT-III complex; involved in the	
	sorting of transmembrane proteins into the multivesicular body (MVB)	
snf7	pathway	
ypl251w	Dubious open reading frame; unlikely to encode a functional protein	
	Ferredoxin of the mitochondrial matrix; required for formation of	
yah1	cellular iron-sulfur proteins; involved in heme A biosynthesis;	
	Essential component of the MIND kinetochore complex; joins	
	kinetochore subunits contacting DNA to those contacting microtubules;	
nsll	required for accurate chromosome segregation	
	Iron-regulated transcriptional activator; activates genes involved in	
aft2	intracellular iron use and required for iron homeostasis and resistance	
	to oxidative stress	
	Conserved protein of the mitochondrial matrix; performs a scaffolding	
isul	function during assembly of iron-sulfur clusters	
grx3	Glutathione-dependent oxidoreductase	
	Essential Fe-S protein; required for ribosome biogenesis, translation	
rli1	initiation/termination	
	Cys2His2 zinc-finger transcriptional repressor; involved in alkaline	
	responsive gene repression as part of adaptation to alkaline conditions;	
rim101	involved in cell wall assembly	
	Protein involved in bud growth; involved in the transport of cell wall	
sbe22	components from the Golgi to the cell surface	
- -	Component of the microtubule-nucleating Tub4p (gamma-tubulin)	
spc97	complex	
6.1	Cysteine desulturase; involved in iron-sultur cluster (Fe/S) biogenesis	
nfs1	and in thio-modification of mitochondrial and cytoplasmic tRNAs	
1 1 1	Protein kinase; implicated in Sit2p mitogen-activated (MAP) kinase	
kdx1	signaling pathway	
isu2	Mitochondrial protein required for iron-sulfur protein synthesis	
nej I	Protein involved in regulation of nonhomologous end joining	
01	Catalytic subunit of 1,3-beta-D-glucan synthase; involved in cell wall	
JKSI	Synthesis and maintenance	
1++h 1	Histone H2B, core histone protein required for chromatin assembly and	
mia?	Tine finger transcriptional represent	
mig2	Diagna membrana normassa: mediatas untales of	
	riasina memorane permease, mediates uptake of	
cit 1	grycerophosphomoshol and grycerophosphocholine as sources of the	
git1	nutrients inositol and phosphate	

	Iron transporter of the mitochondrial carrier family; mediates Fe2+		
mrs4	transport across the inner mitochondrial membrane		
	Epsilon-COP subunit of the coatomer; regulates retrograde Golgi-to-		
sec28	ER protein traffic		
fet4	Low-affinity Fe(II) transporter of the plasma membrane		
	Component of the Sec13p-Sec31p complex of the COPII vesicle coat;		
sec31	COPII coat is required for vesicle formation in ER to Golgi transport		
sok1	Protein of unknown function		
	Protein that localizes primarily to the plasma membrane; also found at		
mrhl	the nuclear envelope		
	Component of the microtubule-nucleating Tub4p (gamma-tubulin)		
spc98	complex		
	Subunit of tRNA (1-methyladenosine) methyltransferase with Gcd14p;		
	required for the modification of the adenine at position 58 in tRNAs,		
gcd10	especially tRNAi-Met		
	GPI-anchored protein of unknown function; possible role in apical bud		
ecm33	growth and hyphae formation (in Candida)		
	TATA-binding protein (TBP); general transcription factor that interacts		
spt15	with other factors to form the preinitiation complex at promoters		
yjr039w	Putative protein of unknown function		

^aInformation obtained from the *Saccharomyces* Genome Database

Supplementary Table 2: Minimum inhibitory concentration (MIC) of compound **4b**, in the presence of CuSO₄ or FeSO₄, screened against *S. cerevisiae* BY4743 and *C. albicans* P60002.

	MIC (µg/mL) for 4b	
Media supplemented with	S. cerevisiae BY4743	C. albicans P60002
50 μM CuSO ₄	128	128
100 μM CuSO ₄	>128	>128
50 μM FeSO ₄	64	128
100 µM FeSO ₄	128	128
500 μM FeSO ₄	>128	128
1 mM FeSO ₄	>128	>128

Supplementary Table 3: Aqueous turbidometric solubility assessment of compound **4b** and control drugs.

Compound/Drug	Aqueous solubility limit ^a (μg/mL)	NOTES
4b	>218	High solubility
Tamoxifen	6	Low solubility control
Verapamil	>227	High solubility control

^aSolubility limit corresponds to the highest concentration of test compound where no precipitate was detected (OD_{540})

Strain Name	Alternative	Description
	Strain	
	Designation	
Candida albicans NR-29448	P60002	Isolated from a bloodstream
		infection, collected in Arizona,
		USA.
Candida albicans NR-29351	18M	Isolated from patient in China.
Candida albicans NR-29365	23F	Isolated from patient in China.
Candida albicans NR-29368	28C	Isolated from patient in China.
Candida albicans NR-29446	P94015	Isolated from a bloodstream
		infection collected in Utah, USA.
Candida albicans ATCC MYA-	M4	Isolated from patient with AIDS in
573		Germany. Resistant to fluconazole.
<i>Candida albicans</i> ATCC 64124	Darlington	Isolated from a mouth swab.
		Resistant to ketoconazole.
Candida krusei ATCC 14243	~~~	None.
Candida krusei ATCC 34135	ST-112	Clinical specimen isolated from
		Minnesota, USA.
Candida parapsilosis ATCC	CBS 604	Isolated from a case of sprue in
22019	202542	Puerto Rico
Candida glabrata ATCC MYA-	303542	None.
2950	A) (C 021	N
Candida glabrata ATCC 66032	AmMS 231	None.
Candida tropicalis ATCC 1369	CCY 29-7-7	None.
Candida tropicalis ATCC 13803	FDA PCI M-59	None.
Cryptococcus gattii NR-43208	R265	Isolated from a patient on
		Vancouver Island, Canada in late
C	CDG1020	1990s.
Cryptococcus gattii NR-43209	CBS1930	Isolated from a goat in Aruba prior
		to an outbreak in vancouver,
Curveto o o cours u conforme que NIR	Inclate 2	Canada.
<i>Crypiococcus neojormans</i> NR-	Isolate 2	fluid in China in Eabruary 2012
41292	WI DI $0.24(120)$	Ind III Chilla III February 2012.
16404	WLRI 034(120)	Isolated from North Carolina, USA.
Aspergillus niger ATCC 6275	4247	None.
Aspergillus niger ATCC 16888	WB 326	None.
Aspergillus fumigatus NR-35302	B5854	Isolated from human peritoneal fluid
_		in California, USA in 1998.
Aspergillus fumigatus NR-35301	B5852	Isolated from human abdominal
		tissue in California, USA in 1998.

Supplementary Table 4: Fungal strains used in this study.

Supplementary Figure 1. Percent inhibition *C. albicans* P60002 hyphae formation. *C. albicans* (~6 × 10⁵ CFU/mL) in RPMI-1640 medium supplemented with MOPS was exposed to **4b** (0.13 µg/ml up to 1 µg/mL), 5-Fluorocytosine (0.13 µg/ml up to 1 µg/mL), or left untreated for three hours at 35 °C to induce yeast-to-hyphae transition. Morphological changes were observed via a Nikon TiS inverted microscope (40× objective lens) in at least two different fields of view and the number of yeast and filamentous cells were counted to determine the percent inhibition of hyphae formation. Data were analyzed via a two-way ANOVA with post-hoc Dunnet's test for multiple comparisons. Asterisks (*) indicate significant difference (*P* < 0.05) between values obtained for yeast treated with **4b** compared to 5-Fluorocytosine.

Supplementary Figure 2. Percent inhibition *C. albicans* P60002 biofilm formation. An overnight suspension of *C. albicans* was diluted in RPMI-1640 medium supplemented with MOPS (to achieve a starting inoculum ~5 x 10^5 CFU/mL) and exposed to 4b (at subinhibitory concentrations) or left untreated for 24 hours at 37 °C to permit biofilm formation. The biofilm was stained with 0.1% crystal violet, de-stained with ethanol, and biofilm mass quantified at OD₅₉₅. Data are presented as percent biofilm inhibition by 4b in relation to the untreated control wells.

Supplementary Figure 3. Yeast chemogenomic profiling results for $aft2\Delta$ and $cox17\Delta$ deletion strains showing relative sensitivity of each strain against 1800 compounds. The graph depicts data for heterozygous (Red dots) and homozygous deletion strains (Blue dots) as plotted by z-score and compound. Negative z-score indicates increased sensitivity. The $aft2\Delta$ heterozygous strain (labeled black box) is most sensitive to deferasirox compared to 1800 compounds. The $cox17\Delta$ strain is also relatively sensitive to deferasirox.

Supplementary Figure 4. HPLC trace of compound 4b appearing at 29.897 min.

Result quality : Refer to quality report

Supplementary Figure 5. Dynamic Light Scattering result for compound **4b** in water (top panel) and DMSO (bottom panel).