Supporting Information

Brønsted Acids Enable Three Molecular Rearrangements of One 3-Alkylidene-2*H***-1,2-oxazine Molecule into Distinct Heterocyles**

Bhanudas Dattatray Mokar, Jinxian Liu and Rai-Shung Liu*

Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, ROC College of Chemistry & Materials Science, Longyan University, Fujian, China -------E-mail: <u>rsliu@mx.nthu.edu.tw</u>

Contents:

(1) Table S1 & S2	S2
(2) Representative Synthetic procedures	S3
(3) Standard procedures for Brønsted acids enable reactions	S7
(4) Formal Synthesis of Fluvastatin	S9
(5) Spectral data of key compounds	S10
(6) X-ray Crystallographic data of compounds (3a, 5c' and 6h)	S49
(7) ¹ H, ¹³ C and ¹ H NOE of Key compounds	S76

(1) a) Table S1. Regioselective [4+2]-cycloadditions of alkenylallenes with nitrosoarenes.

^a1 = 0.025 M. ^bProduct yields are reported after THF evaporation to dryness, following by washing with hexane.

b)	Table S2.	Chemoselectivity	using	additional	bronsted	acids.
----	-----------	------------------	-------	------------	----------	--------

Ph Ph 3a ª (N O CE 60 °C, time	Ph ^{-N} Ph ⁻ O 4a	+	Ph N H 5a OH	+ O Ph	N M 6a
entry	acids	time (h)	3a	4a	5a	6a
1	PhCO ₂ H	36 h	98%			
2	CO ₂ H	16 h	95%			
3	CH ₃ CO ₂ H	16 h	95%			
4 ^b	O POH	1.5 h		15%		50%
5	∠ _N → _{CO₂H}	24 h	98%			

^a**3a** = 0.025 M. ^bYields are reported after purification from a silica column.

(2) Representative Synthetic procedures

A) General Experimental:

Unless otherwise noted, all reactions were carried out under a N₂ atmosphere in reaction tube. Tetrahydrofuran was dried with sodium benzophenone and distilled before use. Dichloromethane were dried over CaH₂ and distilled before use. The triethylamine (Et₃N) were stored over 4 Å molecular sieves prior to use. Reagents were purchased from commercial sources and used without purification, unless otherwise stated. Reactions were magnetically stirred and monitored by thin layer chromatography carried out on 0.25 mm E. Merck silica gel plate (60f- 254) using UV light as visualizing agents and/or potassium permanganate (KMnO₄). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 400, Varian 500 MHz and a Varian 600 MHz spectrometers using chloroform-*d* (CDCl₃) and *d*benzene (C₆D₆) as the internal standard. Chemical shifts are reported in parts per million (ppm). Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). Coupling constants *J* are reported in Hertz (Hz). The vinylallene substrates **1a-10** were prepared according to literature,^[S1-S4] the nitrosoarene substrates **2a-2e** were prepared according to literature.^[S5]

[S1] Bhunia, S.; Liu, R.-S. J. Am. Chem. Soc. 2008, 130, 16488-16489.

[S2] Macdonald, T. M.; Reagan, D. R. J. Org. Chem. 1980, 45, 4740-4747.

[S3] Chaudhari, R.; Liao, H.-Y.; Liu, R.-S. Chem. Eur. J. 2009, 15, 8895-8901.

[S4] Choe, J.; Yang, J.; Park, K.; Palani, T.; Lee, S. Tetrahedron Lett. 2012, 6908-6912.

[S5] Kubitschke, J.; Näther, C.; Herges, R. Eur. J. Org. Chem. 2010, 5041-5055.

B) Synthesis of the substrate (3,4-dimethylpenta-1,2,4-trien-1-yl)benzene (1a):

a) Synthesis of 4-methyl-1-phenylpent-4-en-2-yn-1-yl acetate (s1):

To a THF (10 mL) solution of 2-methylbut-1-en-3-yne (1.0 g, 15.13 mmol) was added *n*-BuLi (2.5 M in hexane, 7.3 mL, 18.15 mmol) at -78 $^{\circ}$ C and stirred at this temperature for 0.5

h. The THF (10 mL) solution of PhCHO (1.61 g, 15.13 mmol) was added and the reaction mixture was stirred at rt for additional 1.5 h. The resulting mixture was quenched by acetic anhydride (1.86 g, 18.15 mmol) and stirred for next 1 h. After completion of reaction, saturated NH₄Cl was added and extracted with diethyl ether (2 x 50 mL). The combined organic layer were dried over MgSO₄ and concentrated under reduced pressure. The cude reaction mass was purified by silica column eluting with hexane/ethyl acetate (5:1) to afford 4-methyl-1-phenylpent-4-en-2-yn-1-ol **s1** (3.1 g, 14.48 mmol, 95.7%) as pale yellow oil.

b) Synthesis of (3,4-dimethylpenta-1,2,4-trien-1-yl)benzene (1a):

To a dry 250-mL flask were added LiBr (0.81 g, 9.33 mmol) and CuI (1.78 g, 9.33 mmol), evacuated and backfilled with N₂ balloon before dried THF (25 mL) was added. The reaction mixture was cooled to 0 °C, CH₃MgCl (3.0 M in THF, 2.1 mL, 9.33 mmol) was added. The resulting solution was stirred reaction mixture at 0 °C for additional 0.5 h. To this solution was added propargylic acetate (**s1**) (1 g, 4.67 mmol), and the mixture was stirred for 2 h. The resulting mixture was quenched by a saturated NH₄Cl, filtrated, and extracted with diethyl ether (2 x 50 mL). The extract was dried over MgSO₄, concentrated in vacuo and purified by a silica column to afford (3,4-dimethylpenta-1,2,4-trien-1-yl)benzene **1a** (0.60 g, 3.52 mmol, 75.6%) as pale yellow oil.

Substrates 1b-1h were synthesized using same as above procedure.

C) Synthesis of the substrate (4-methylpenta-1,2,4-triene-1,3-diyl)dibenzene (1i):

Synthesis of (4-methylpenta-1,2,4-triene-1,3-diyl)dibenzene (1i):

A dry 250-mL flask was added with $ZnCl_2$ (1.27 g, 9.93 mmol), dried in vacuo and refilled with N₂ balloon. To this flask was added dry THF (25 mL) and then PhMgBr (1.69 g, 9.93 mmol); the mixture was stirred at 25 °C for 0.5 h. After stirring for 20 min, [Pd(PPh₃)₄] (54.0 mg, 0.047 mmol) and compound **s1** (1 g, 46.7 mmol) were added to this reaction mixture; the resulting solution was stirred for 1 h before quenching with water. The organic layer was extracted with diethyl ether (2 x 25 mL), dried over MgSO₄ and concentrated under reduced pressure. The residue was eluted through a silica column to afford (4-methylpenta-1,2,4triene-1,3-diyl)dibenzene **1i** (0.8 g, 3.44 mmol, 73.8%) as orange-yellow liquid.

Substrates **11-1n** were synthesized using same as above procedure.

D) Synthesis of the substrate (3-methylpenta-1,2,4-trien-1-yl)benzene (1j):

a) Synthesis of 1-phenylpent-4-en-2-yn-1-ol (s3):

Copper (I) iodide (0.029 g, 0.15 mmol) and tetrakis(triphenylphosphin)palladium (0.087 g, 0.076 mmol) were dissolved in anhydrous and degassed Et₃N (3.2 mL, 22.7 mmol), and the mixture was cooled to 0 °C. To this solution was added alkyne **s2** (1 g, 7.57 mmol) and vinyl bromide (1 M in THF, 1.21 g, 11.35 mmol), and the mixture was stirred at room temperature until a complete consumption of starting material. The reaction solution was filtered through a celite pad, concentrated and eluted through a silica column to give 1-phenylpent-4-en-2-yn-1-ol **s3** (0.55 g, 2.75 mmol, 45.9%) as colorless oil.

b) Synthesis of 1-phenylpent-4-en-2-yn-1-yl acetate (s4):

To a DCM solution of 1-phenylpent-4-en-2-yn-1-ol (1.0 g, 6.33 mmol) were added

DMAP (77 mg, 0.63 mmol), Et₃N (0.96 g, 9.49 mmol) and the mixtures were stirred at 0 $^{\circ}$ C for 15 min. To this solution was added Ac₂O (0.78 g, 7.59 mmol), and the mixture was slowly warmed to room temperature for a stirring of 4 h. The solution was quenched by water and extracted with DCM (2 x 25 mL). The combined organic layer was dried over MgSO₄, concentrated in vacuo, and further purified by a silica column to afford 1-phenylpent-4-en-2-yn-1-yl acetate **s4** (1.19 g, 7.52 mmol, 93.7%) as pale yellow oil.

c) Synthesis of (3-methylpenta-1,2,4-trien-1-yl)benzene (1j):

The substarte 1j was synthesized using similar synthetic procedure of substrate 1a from s1.

E) Synthesis of the substrate penta-1,2,4-trien-1-ylbenzene (1k):

The substarte **1k** was synthesized according to literature procedure.^[S4]

F) Synthesis of the substrate 1-fluoro-4-(penta-1,2,4-trien-1-yl)benzene (10):

a) Synthesis of 3-(4-fluorophenyl)propiolic acid (s5):

To a DMSO (20 mL) solution of 1-bromo-4-fluorobenzene (2 g, 11.42 mmol) was added propiolic acid (0.96 g, 13.71 mmol), DBU (3.48 g, 22.84 mmol) and Pd(PPh₃)₄ (0.33 g, 0.3 mmol); the mixture was stirred at 25 °C for 24 h. The reaction solution was poured into ethyl acetate (50 mL) and extracted with a saturated aqueous NaHCO₃ solution. The aqueous layer was separated, acidified to pH 2.0 with cold HCl (1 N), and extracted with DCM (3 x 25 mL). The combined organic layers were dried with MgSO₄, and the solvent was removed under reduced pressure. Crude product was purified by flash chromatography on silica gel using ethyl acetate/hexane, 1:4 with HOAc (1 %, v/v) to afford 3-(4-fluorophenyl)propiolic acid s5 (0.76 g, 4.63 mmol, 40.4%) as pale yellow solid.

b) Synthesis of 1-fluoro-4-(penta-1,2,4-trien-1-yl)benzene (10):

To a DMSO (10 mL) solution of 3-(4-fluorophenyl)propiolic acid (1 g, 6.09 mmol) was

added Ni(OAc)₂·4H₂O (0.145 g, 0.61 mmol), 1,3-bis(diphenylphosphino)propane (0.302 g, 0.73 mmol), allyl acetate (1.22 g, 12.2 mmol), AgOAc (0.102 g, 0.61 mmol), zinc (0.4 g, 6.09 mmol) and DBU (0.93 g, 6.09 mmol) in a 100-mL round-bottomed flask, and the resulting mixture was stirred at 100 °C for 1 h. The reaction mixture was poured into water and extracted with EtOAc (2 x 20 mL). The solution was removed under vacuum and the resulting crude product was purified by flash chromatography on silica gel to give desired 1-fluoro-4-(penta-1,2,4-trien-1-yl)benzene **10** (0.62 g, 3.87 mmol, 60.5%) as pale yellow oil.

G) Preparation of the (Z)-3-benzylidene-4,5-dimethyl-2-phenyl-3,6-dihydro-2*H*-1,2-oxazine (3a):

A 25-mL flask was charged with nitrosobenzene 2a (107.1 mg, 1.0 mmol), then evacuated and backfilled with a N₂ balloon. To this solid was added anhydrous THF (4 mL), and the resulting mixture was stirred at room temperature until the solid was dissolved. A THF solution (4.3 mL) of 1a (170.5 mg, 1.0 mmol) was added; the mixture was stirred at room temperature for additional 10 min. The resulting solution was concentrated under reduced pressure to romove solvent, affording compound 3a (323.0 mg, 1.18 mmol, 99%) as yellow solid. This yellow solid was recrystallized in hexane/chloroform for X-ray analysis.

(3) Standard procedures for Brønsted acids enable reactions

a) Typical procedure for the preparation of (*Z*)-*N*-(4,5-dimethyl-2-phenyl-2*H*-pyran-3(6*H*)-ylidene)aniline (4a):

To a DCM (7 mL) solution of compound **3a** (277.4 mg, 1.0 mmol) was added HOTf (150.1 mg, 1.0 mmol) under N_2 atmosphere and stirred at 25 °C for 5 min. The resulting

solution was quenched with saturated NaHCO₃ and extracted with DCM (2 x 14 mL). The combined organic layers were dried over MgSO₄, concentrated in vacuo and further purification by silica column to afford compound **4a** (230 mg, 0.83 mmol, 83%) as colorless oil.

b) i) Typical procedure for the preparation of (Z)-2-methyl-3-(3-phenyl-1*H*-indol-2-yl)but-2-en-1-ol (5a):

To a THF (5.6 mL) solution of compound **3a** (277.4 mg, 1.0 mmol) was added silica gel (600.9 mg, 10.0 mmol) under N₂ atmosphere and the mixture was stirred at 25 °C for 1 h. The resulting suspension was concentrated under reduced pressure, and further purifed by a silica column to afford compound **5a** (185.8 mg, 0.67 mmol, 67%) as colorless oil.

ii) Synthesis of (Z)-2-methyl-3-(3-(p-tolyl)-1H-indol-2-yl)but-2-en-1-yl acetate (5c'):

Compound **5c'** (171 mg, 0.51 mmol, 95%) was synthesized using similar procedure to that of compound **s4**. This solid was recrystallized in hexane/dichloromethane for X-ray analysis.

c) Typical procedure for the preparation of (*S*)-5-benzyl-3,4-dimethyl-1-phenyl-1*H*-pyrrol-2(5*H*)-one (6a):

To a DCE (7 mL) solution of compound **3a** (277.4 mg, 1.0 mmol) was added propiolic acid (14.0 mg, 0.2 mmol) under N₂ atmosphere and stirred at 60 °C for 1 h. The resulting solution was concentrated under reduced pressure, and further purified by a silica column to afford compound **6a** (169 mg, 0.61 mmol, 61%) as pale yellow solid.

(4) Formal Synthesis of Fluvastatin

a) Synthesis of (Z)-3-(3-(4-fluorophenyl)-1H-indol-2-yl)prop-2-en-1-ol (5s):

To a THF (25 mL) solution of nitrosobenzene 2a (0.67 g, 6.24 mmol) was added compound 1o (1 g, 6.24 mmol) under N₂ atmosphere, and the reaction mixture was stirred at rt for additional 30 min. The solution was concentrated under reduced pressure, further purified on an acidic silica column to afford compound 5s (1 g, 3.74 mmol, 60%) as yellow oil.

b) Synthesis of (Z)-3-(3-(4-fluorophenyl)-1-isopropyl-1*H*-indol-2-yl)prop-2-en-1-ol (Z-7):

1) To a CH₃CN (5 mL) solution of Indole **5s** (160.0 mg, 0.6 mmol) were added pyridinium *p*-toluenesulfonate (15.0 mg, 0.06 mmol) and dihydropyran (0.27 mL, 3.0 mmol), and the mixtures were stirred at rt for 4 h. The mixture was concentrated in vacuo, added with water (10 mL) and extracted with diethyl ether (10 mL). The organic layer was dried over MgSO₄, concentrated to form crude product **int-A** (179.0 mg, 0.51 mmol, 85%). This species was directly used in the next step without purification.

2) To a DMF (5 mL) suspension of NaH (60%, 36 mg, 0.9 mmol) was added **int-A** (263.0 mg, 0.75 mmol) at 0 $^{\circ}$ C under N₂, and the mixture was stirred for additional 15 min. To this

mixture was added *i*-PrI (0.3 mL, 3.0 mmol); the mixture was warmed to rt for 12 h. The resulting solution was quenched with saturated NH₄Cl and extracted with EtOAc (10 mL). The organic layer was dried over MgSO₄ and concentrated under reduced pressure to afford **int-B** (220.0 mg, 0.56 mmol, 75%). This crude product was used in the next step without purification.

3) To a MeOH (5 mL) solution of **int-B** (234.0 mg, 0.59 mmol) was added pyridinium *p*-toluenesulfonate (15.0 mg, 0.06 mmol) and the reaction mixture was stirred at rt for 12 h. The resulting mixture was concentrated in vacuo and further purified by a silica column to afford compound **Z-7** (125 mg, 0.41 mmol, 68%).

c) Synthesis of (*E*)-3-(3-(4-fluorophenyl)-1-isopropyl-1*H*-indol-2-yl)acrylaldehyde (*E*-8):

A DCE (2 mL) solution of **Z-7** (125.0 mg, 0.4 mmol) were charged with $Fe(NO_3)_3 \cdot 9H_2O$ (16.0 mg, 0.04 mmol), TEMPO (6.3 mg, 0.04 mmol), NaCl (2.5 mg, 0.04 mmol) under O₂, and the solution was stirred at rt for 5 h. The mixture was concentrated in vacuo, and purified by a silica column to afford **Z-8** (88.5 mg, 0.28 mmol, 72%) as colorless oil. **Z-8** was easily transformed to *E-8* (50.0 mg, 0.16 mmol, 100%) in *d*-chloroform (CdCl₃) for 2 days.

(5) Spectral Data of Key Compounds

Spectral data for (3,4-dimethylpenta-1,2,4-trien-1-yl)benzene (1a):

Pale yellow oil (0.600 g, 3.52 mmol, 75.6%); ¹H NMR (600 MHz, CDCl₃): δ 7.30 ~ 7.24 (m, 4H), 7.19 ~ 7.16 (m, 1H), 6.28 (s, 1H), 5.00 (s, 1H), 4.96 (d, *J* = 1.4 Hz, 1H), 1.97 (d, *J* = 2.6 Hz, 3H), 1.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 207.6, 140.5, 134.9, 128.6, 126.8, 126.7, 111.5, 106.5, 95.4, 21.5, 16.3; HRMS (EI+, m/z) calcd for C₁₃H₁₄[M⁺] : 170.1096, found : 170.1091.

Spectral data for 1-(3,4-dimethylpenta-1,2,4-trien-1-yl)-4-methoxybenzene (1b):

Pale yellow oil (0.260 g, 1.30 mmol, 63.4%); ¹H NMR (600 MHz, CDCl₃): δ 7.20 ~ 7.17 (m, 2H), 6.84 ~ 6.82 (m, 2H), 6.24 (s, 1H), 4.98 (s, 1H), 4.95 (d, *J* = 1.3 Hz, 1H), 3.78 (s, 3H), 1.95 (d, *J* = 2.7 Hz, 3H), 1.84 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 207.0, 158.7, 140.9, 127.8, 127.2, 114.1, 111.2, 106.4, 94.7, 55.3, 21.5, 16.5; HRMS (ESI, m/z) calcd for C₁₄H₁₇O[M+H] : 201.1279, found : 201.1271.

Spectral data for 1-(3,4-dimethylpenta-1,2,4-trien-1-yl)-4-methylbenzene (1c):

Pale yellow oil (0.282 g, 1.53 mmol, 70.0%); ¹H NMR (600 MHz, CDCl₃): δ 7.16 (d, *J* = 8.1 Hz, 2H), 7.09 (d, *J* = 7.9 Hz, 2H), 6.25 (s, 1H), 4.99 (s, 1H), 4.95 (d, *J* = 1.4 Hz, 1H), 2.31 (s, 3H), 1.96 (d, *J* = 2.6 Hz, 3H), 1.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 207.3, 140.7, 136.5, 131.9, 129.3, 126.6, 111.3, 106.4, 95.2, 21.4, 21.1, 16.3; HRMS (EI+, m/z) calcd for C₁₄H₁₆[M⁺] : 184.1253, found : 184.1253.

Spectral data for 1-chloro-4-(3,4-dimethylpenta-1,2,4-trien-1-yl)benzene (1d):

Pale yellow oil (0.340 g, 1.66 mmol, 82.5%); ¹H NMR (600 MHz, CDCl₃): δ 7.26 ~ 7.25 (m, 2H), 7.20 ~ 7.18 (m, 2H), 6.25 (s, 1H), 5.03 (s, 1H), 4.99 (d, *J* = 1.4 Hz, 1H), 1.98 (d, *J* = 2.6 Hz, 3H), 1.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 207.7, 140.2, 133.5, 132.4, 128.7, 127.9, 111.9, 107.0, 94.5, 21.4, 16.2; HRMS (EI+, m/z) calcd for C₁₃H₁₃Cl[M⁺] : 204.0706, found : 204.0705.

Pale yellow oil (0.360 g, 1.51 mmol, 85.3%); ¹H NMR (600 MHz, CDCl₃): δ 7.52 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.3 Hz, 2H), 6.31 (s, 1H), 5.05 (s, 1H), 5.00 (d, *J* = 1.3 Hz, 1H), 1.99 (d, *J* = 2.6 Hz, 3H), 1.89 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 208.6, 139.9, 139.0, 129.9 (*J*_C-F = 283.8), 128.2 (*J*_{C-F} = 32.0), 126.8, 125.6, 125.5, 112.3, 107.2, 94.7, 29.7, 21.4, 16.1; HRMS (EI+, m/z) calcd for C₁₄H₁₃F₃[M⁺] : 238.0969, found : 238.0966.

Spectral data for 1-(3,4-dimethylpenta-1,2,4-trien-1-yl)-3-methoxybenzene (1f):

Pale yellow oil (0.295 g, 1.47 mmol, 72.0%); ¹H NMR (600 MHz, CDCl₃): δ 7.22 (t, *J* = 7.9 Hz, 1H), 6.89 (dd, *J* = 7.6, 1.0 Hz, 1H), 6.84 ~ 6.83 (m, 1H), 6.76 (dt, *J* = 8.3, 1.5 Hz, 1H), 6.27 (s, 1H), 5.03 (s, 1H), 4.99 (d, *J* = 1.3 Hz, 1H), 3.80 (s, 3H), 1.99 (d, *J* = 2.6 Hz, 3H), 1.88 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 207.7, 159.9, 140.5, 136.5, 129.5, 119.4, 112.3, 112.2, 111.5, 106.6, 95.3, 55.1, 21.5, 16.3; HRMS (EI+, m/z) calcd for C₁₄H₁₆O[M⁺] : 200.1201, found : 200.1203.

Spectral data for 1-chloro-3-(3,4-dimethylpenta-1,2,4-trien-1-yl)benzene (1g):

Pale yellow oil (0.330 g, 1.33 mmol, 80.1%); ¹H NMR (600 MHz, CDCl₃): δ 7.26 (s, 1H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.17 ~ 7.13 (m, 2H), 6.24 (s, 1H), 5.05 (s, 1H), 5.01 (s, 1H), 1.99 (d, *J* = 2.7 Hz, 3H), 1.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 207.9, 140.1, 137.0, 134.6,

129.8, 126.8, 126.5, 124.9, 112.1, 107.1, 94.5, 21.4, 16.2; HRMS (EI+, m/z) calcd for $C_{13}H_{13}Cl[M^+]$: 204.0706, found : 204.0703.

Spectral data for 2-(3,4-dimethylpenta-1,2,4-trien-1-yl)naphthalene (1h):

Pale yellow solid (0.650 g, 2.95 mmol, 78.0%); ¹H NMR (600 MHz, CDCl₃): δ 7.79 ~ 7.75 (m, 3H), 7.66 (s, 1H), 7.47 ~ 7.41 (m, 3H), 6.49 (s, 1H), 5.07 (s, 1H), 5.02 (s, 1H), 2.05 (s, 3H), 1.91 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 208.2, 140.6, 133.7, 132.6, 132.5, 128.2, 127.7, 127.6, 126.2, 125.5, 125.4, 124.7, 111.6, 106.7, 95.8, 21.5, 16.4; HRMS (ESI, m/z) calcd for C₁₇H₁₇[M+H] : 221.1330, found : 221.1324.

Spectral data for (4-methylpenta-1,2,4-triene-1,3-diyl)dibenzene (1i):

Orange yellow oil (0.800 g, 3.44 mmol, 73.8%); ¹H NMR (600 MHz, CDCl₃): δ 7.44 ~ 7.42 (m, 2H), 7.40 ~ 7.33 (m, 6H), 7.31 ~ 7.30 (m, 1H), 7.25 ~ 7.22 (m, 1H), 6.56 (s, 1H), 5.17 ~ 5.16 (m, 1H), 5.00 ~ 5.00 (m, 1H), 2.04 (t, *J* = 0.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 207.7, 139.8, 136.2, 134.3, 129.0, 128.7, 128.3, 127.3, 127.2, 126.8, 115.5, 96.9, 22.0; HRMS (EI+, m/z) calcd for C₁₈H₁₆[M⁺] : 232.1252, found : 232.1253.

Spectral data for (3-methylpenta-1,2,4-trien-1-yl)benzene (1j):

Pale yellow oil (0.450 g, 2.88 mmol, 57.7%); ¹H NMR (400 MHz, CDCl₃): δ 7.39 ~ 7.34 (m, 4H), 7.28 ~ 7.24 (m, 1H), 6.50 (dd, *J* = 17.6, 10.8 Hz, 1H), 6.33 (s, 1H), 5.30 (dd, *J* = 17.6,

1.2 Hz, 1H), 5.19 (dd, *J* = 10.4, 0.8 Hz, 1H), 2.03 (d, *J* = 2.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 209.1, 134.8, 134.6, 128.6, 126.9, 126.9, 113.4, 104.1, 94.2, 14.5.

Spectral data for (2-methylhexa-1,3,4-trien-3-yl)benzene (11):

Pale yellow oil (0.700 g, 4.11 mmol, 62.5%); ¹H NMR (600 MHz, CDCl₃): δ 7.32 ~ 7.31 (m, 4H), 7.25 ~ 7.23 (m, 1H), 5.48 (q, *J* = 7.1 Hz, 1H), 5.03 ~ 5.02 (m, 1H), 4.82 (d, *J* = 0.6 Hz, 1H), 1.95 (s, 3H), 1.76 (dd, *J* = 7.1, 0.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 206.2, 140.5, 137.3, 129.1, 128.1, 126.8, 114.2, 110.8, 88.0, 22.1, 14.5; HRMS (EI+, m/z) calcd for C₁₃H₁₄[M⁺] : 170.1096, found : 170.1089.

Spectral data for (2,6-dimethylhepta-1,3,4-trien-3-yl)benzene (1m):

Pale yellow oil (0.725 g, 3.66 mmol, 65.9%); ¹H NMR (400 MHz, CDCl₃): δ 7.32 ~ 7.30 (m, 4H), 7.25 ~ 7.21 (m, 1H), 5.52 (d, *J* = 5.6 Hz, 1H), 5.02 ~ 5.00 (m, 1H), 4.80 (d, *J* = 0.4 Hz, 1H), 2.43 ~ 2.38 (m, 1H), 1.96 (s, 3H), 1.08 (d, *J* = 3.2, 3H), 1.06 (d, *J* = 3.2, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 203.8, 140.5, 137.4, 129.0, 128.1, 126.8, 114.1, 112.4, 100.7, 28.5, 22.5, 22.4, 22.1; HRMS (EI+, m/z) calcd for C₁₅H₁₈[M⁺] : 198.1409, found : 198.1407.

Spectral data for (1-cyclohexyl-4-methylpenta-1,2,4-trien-3-yl)benzene (1n):

Pale yellow oil (0.350 g, 1.47 mmol, 64.8%); ¹H NMR (400 MHz, CDCl₃): δ 7.35 ~ 7.30 (m,

4H), 7.28 ~ 7.22 (m, 1H), 5.51 (d, J = 5.6 Hz, 1H), 5.03 ~ 5.01 (m, 1H), 4.82 (s, 1H), 2.18 ~ 2.05 (m, 1H), 1.97 (s, 3H), 1.83 (d, J = 12.0 Hz, 2H), 1.75 ~ 1.72 (m, 2H), 1.68 ~ 1.63 (m, 1H), 1.35 ~ 1.12 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 204.2, 140.5, 137.4, 129.0, 128.0, 126.7, 114.0, 99.3, 37.8, 33.2, 33.0, 26.1, 22.2; HRMS (EI+, m/z) calcd for C₁₈H₂₂[M⁺] : 238.1722, found : 238.1725.

Spectral data for 1-fluoro-4-(penta-1,2,4-trien-1-yl)benzene (10):

Pale yellow oil (0.620 g, 3.87 mmol, 60.5%); ¹H NMR (600 MHz, CDCl₃): δ 7.27 ~ 7.24 (m, 2H), 7.02 ~ 6.99 (m, 2H), 6.33 ~ 6.23 (m, 3H), 5.35 ~ 5.30 (m, 1H), 5.12 ~ 5.10 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 209.1, 162.8, 161.2, 131.9, 129.7 (d, $J_{C-F} = 3.1$), 128.4 (d, $J_{C-F} = 8.0$), 117.1, 115.6 (d, $J_{C-F} = 21.7$), 98.5, 95.0.

Spectral data for (Z)-3-benzylidene-4,5-dimethyl-2-phenyl-3,6-dihydro-2*H*-1,2-oxazine (3a):

Pale yellow solid (0.323 g, 1.18 mmol, 99%); ¹H NMR (600 MHz, CDCl₃): δ 7.54 (d, *J* = 7.7 Hz, 2H), 7.23 (t, *J* = 7.7 Hz, 2H), 7.17 (t, *J* = 7.6 Hz, 2H), 7.10 (t, *J* = 7.6 Hz, 1H), 7.01 (d, *J* = 8.3 Hz, 2H), 6.92 (td, *J* = 3.7, 1.0 Hz, 1H), 6.39 (s, 1H), 4.19 (s, 2H), 2.04 (s, 3H), 1.66 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 144.1, 137.2, 135.1, 129.7, 129.1, 128.2, 127.1, 122.3, 121.9, 118.5, 117.1, 66.0, 15.5, 13.3; HRMS (ESI, m/z) calcd for C₁₉H₂₀NO[M+H] : 278.1545, found : 278.1548.

Spectral data for (Z)-3-(4-methoxybenzylidene)-4,5-dimethyl-2-phenyl-3,6-dihydro-2*H*-1,2-oxazine (3b):

Pale green oil (0.304 g, 0.99 mmol, 99%); ¹H NMR (600 MHz, CDCl₃): δ 7.47 (d, *J* = 8.9 Hz, 2H), 7.22 (t, *J* = 8.2 Hz, 2H), 6.99 (d, *J* = 8.1 Hz, 2H), 6.91 (td, *J* = 3.7, 1.0 Hz, 1H), 6.71 (d, *J* = 9.0 Hz, 2H), 6.34 (s, 1H), 4.18 (s, 2H), 3.71 (s, 3H), 2.01 (s, 3H), 1.64 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 158.7, 144.2, 135.4, 131.1, 129.1, 127.9, 127.9, 122.3, 121.7, 118.2, 116.9, 113.7, 66.0, 55.1, 15.5, 13.3; HRMS (ESI, m/z) calcd for C₂₂H₂₂NO₂[M+H] : 308.1651, found : 308.1647.

Spectral data for (*Z*)-4,5-dimethyl-3-(4-methylbenzylidene)-2-phenyl-3,6-dihydro-2*H*-1,2-oxazine (3c):

Greenish oil (0.312 g, 1.07 mmol, 99%); ¹H NMR (600 MHz, CDCl₃): δ 7.46 (d, J = 8.2 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 7.03 ~ 6.99 (m, 4H), 6.93 (td, J = 3.7, 1.0 Hz, 1H), 6.39 (s, 1H), 4.21 (s, 2H), 2.25 (s, 3H), 2.04 (s, 3H), 1.66 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 144.1, 137.0, 136.4, 132.3, 129.6, 129.0, 129.0, 128.5, 122.3, 121.7, 118.5, 117.0, 66.0, 21.1, 15.5, 13.3; HRMS (ESI, m/z) calcd for C₂₀H₂₂NO[M+H] : 292.1696 ; found : 292.1697.

Spectral data for (*Z*)-3-(4-chlorobenzylidene)-4,5-dimethyl-2-phenyl-3,6-dihydro-2*H*-1,2-oxazine (3d):

Pale yellow solid (0.275 g, 0.88 mmol, 90%); ¹H NMR (600 MHz, C₆D₆): δ 7.48 ~ 7.46 (m, 2H), 7.14 (dd, J = 10.5, 1.3 Hz, 2H), 7.10 (t, J = 8.0 Hz, 2H), 6.92 ~ 6.89 (m, 2H), 6.80 ~

6.77 (m, 1H), 6.16 (s, 1H), 3.93 (s, 2H), 1.72 (d, J = 0.8 Hz, 3H), 1.09 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 144.4, 138.3, 134.1, 133.1, 131.3, 130.0, 129.6, 128.7, 122.4, 122.3, 117.3, 117.0, 66.0, 15.1, 13.0; HRMS (EI+, m/z) calcd for C₁₉H₁₈ClNO[M⁺] : 311.1077, found : 311.1080.

Spectral data for (Z)-4,5-dimethyl-2-phenyl-3-(4-(trifluoromethyl)benzylidene)-3,6dihydro-2*H*-1,2-oxazine (3e):

Light brown oil (0.248 g, 0.72 mmol, 86%); ¹H NMR (600 MHz, C₆D₆): δ 7.51 (d, *J* = 8.3 Hz, 2H), 7.14 (dd, *J* = 12.1, 3.1 Hz, 4H), 7.09 (t, *J* = 7.7 Hz, 2H), 6.78 (td, *J* = 7.7, 0.9 Hz, 1H), 6.16 (s, 1H), 3.90 (s, 2H), 1.70 (s, 3H), 1.08 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 144.3, 139.7, 139.0, 131.1, 130.1, 129.6, 128.8 (*J*_{C-F} = 32.3), 125.4 (*J*_{C-F} = 3.4), 122.7, 122.2, 117.4, 116.7, 66.0, 15.1, 13.0; HRMS (EI+, m/z) calcd for C₂₀H₁₈F₃NO[M⁺] : 345.1340, found : 345.1346.

Spectral data for (Z)-3-(3-methoxybenzylidene)-4,5-dimethyl-2-phenyl-3,6-dihydro-2*H*-1,2-oxazine (3f):

Off white solid (0.248 g, 0.95 mmol, 95%); ¹H NMR (600 MHz, C₆D₆): δ 7.52 (s, 1H), 7.27 (dd, J = 7.7, 0.5 Hz, 1H), 7.20 (d, J = 8.3 Hz, 2H), 7.08 (t, J = 8.0 Hz, 2H), 6.97 (t, J = 8.9 Hz, 1H), 6.77 ~ 6.75 (m, 1H), 6.63 (dd, J = 8.2, 2.6 Hz, 1H), 6.38 (s, 1H), 3.95 (s, 2H), 3.21 (s, 3H), 1.74 (t, J = 0.9, 0.6 Hz, 3H), 1.11 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 160.1, 144.7, 137.8, 137.0, 129.5, 129.5, 129.4, 123.1, 122.5, 122.2, 118.4, 117.5, 114.7, 114.2, 66.2, 54.4, 15.1, 13.1; HRMS (EI+, m/z) calcd for C₂₀H₂₁NO₂[M⁺] : 307.1572, found : 307.1575.

Spectral data for (*Z*)-3-(3-chlorobenzylidene)-4,5-dimethyl-2-phenyl-3,6-dihydro-2*H*-1,2-oxazine (3g):

Off white solid (0.299 g, 0.96 mmol, 98%); ¹H NMR (600 MHz, C₆D₆): δ 7.60 ~ 7.59 (m, 2H), 7.14 (d, *J* = 8.2, Hz, 2H), 7.08 (t, *J* = 7.9 Hz, 2H), 6.83 (d, *J* = 7.4 Hz, 1H), 6.76 (td, *J* = 7.4, 0.8 Hz, 1H), 6.65 (t, *J* = 8.0 Hz, 1H), 6.10 (s, 1H), 3.89 (s, 2H), 1.69 (s, 3H), 1.08 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 144.3, 138.9, 137.6, 134.3, 130.5, 130.1, 129.8, 129.6, 127.7, 127.3, 122.6, 122.2, 117.5, 116.7, 66.0, 15.1, 13.0; HRMS (EI+, m/z) calcd for C₁₉H₁₈CINO[M⁺] : 311.1077, found : 311.1076.

Spectral data for (Z)-4,5-dimethyl-3-(naphthalen-2-ylmethylene)-2-phenyl-3,6-dihydro-2*H*-1,2-oxazine (3h):

Pale yellow solid (0.253 g, 0.77 mmol, 85%); ¹H NMR (600 MHz, CDCl₃): δ 7.96 (s, 1H), 7.87 (d, J = 8.7 Hz, 1H), 7.72 ~ 7.67 (m, 2H), 7.63 (d, J = 8.7 Hz, 1H), 7.41 ~ 7.35 (m, 2H), 7.24 (t, J = 8.4 Hz, 2H), 7.10 (d, J = 8.1 Hz, 2H), 6.93 (t, J = 7.3 Hz, 1H), 6.58 (s, 1H), 4.25 (s, 2H), 2.21 (s, 3H), 1.69 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 144.0, 137.5, 133.3, 132.9, 132.5, 129.3, 129.2, 129.1, 128.2, 127.6, 127.3, 127.3, 125.8, 125.7, 122.3, 121.9, 118.2, 117.1, 66.0, 15.6, 13.3; HRMS (EI+, m/z) calcd for C₂₃H₂₁NO[M⁺] : 327.1623, found : 327.1626.

Spectral data for (Z)-3-benzylidene-5-methyl-2,4-diphenyl-3,6-dihydro-2*H*-1,2-oxazine (3i):

Light brown oil (0.278 g, 0.82 mmol, 95%); ¹H NMR (500 MHz, C₆D₆): δ 7.52 (d, *J* = 7.5 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 2H), 6.99 (dd, *J* = 8.6, 1.7 Hz, 2H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.85 ~ 6.78 (m, 4H), 6.73 (s, 5H), 4.22 (s, 2H), 1.11 (s, 3H); ¹³C NMR (125 MHz, C₆D₆): δ 147.8, 137.5, 136.7, 135.5, 134.3, 130.8, 129.7, 129.4, 129.4, 127.6, 127.1, 126.7, 126.6, 126.3, 122.4, 117.3, 67.3, 15.5; HRMS (EI+, m/z) calcd for C₂₄H₂₁NO[M⁺] : 339.1623, found : 339.1625.

Spectral data for (Z)-3-benzylidene-4-methyl-2-phenyl-3,6-dihydro-2H-1,2-oxazine (3j):

Light brown oil (0.295 g, 0.91 mmol, 99%); ¹H NMR (400 MHz, C₆D₆): δ 7.66 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 7.07 (t, *J* = 7.8 Hz, 2H), 6.97 (t, *J* = 7.6 Hz, 2H), 6.87 (t, *J* = 7.2 Hz, 1H), 6.77 (td, *J* = 7.2, 0.8 Hz, 1H), 6.27 (s, 1H), 5.15 (s, 1H), 4.03 (s, 2H), 1.75 (d, *J* = 1.2 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 144.6, 137.7, 135.2, 130.3, 129.5, 128.7, 128.6, 127.8, 123.6, 122.3, 120.3, 117.5, 62.7, 18.9; HRMS (EI+, m/z) calcd for C₁₈H₁₇NO[M⁺] : 263.1310, found : 263.1308.

Spectral data for (Z)-3-ethylidene-5-methyl-2,4-diphenyl-3,6-dihydro-2*H*-1,2-oxazine (31):

Light brown oil (0.290 g, 1.0 mmol, 89%); ¹H NMR (600 MHz, C₆D₆): δ 7.34 ~ 7.32 (m, 2H),

7.29 ~ 7.26 (m, 3H), 7.24 ~ 7.22 (m, 3H), 7.21 ~ 7.18 (m, 1H), 6.99 ~ 6.96 (m, 1H), 5.19 (q, J = 7.1 Hz, 1H), 4.11 (s, 2H), 1.59 (d, J = 7.7 Hz, 3H), 1.12 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 146.0, 139.1, 138.2, 130.4, 130.3, 129.7, 128.6, 128.6, 127.3, 121.8, 119.9, 116.8, 65.7, 15.7, 12.8; HRMS (EI+, m/z) calcd for C₁₉H₁₉NO[M⁺] : 277.1467, found : 277.1469.

Spectral data for (*Z*)-5-methyl-3-(2-methylpropylidene)-2,4-diphenyl-3,6-dihydro-2*H*-1,2-oxazine (3m):

Light brown oil (0.293 g, 0.96 mmol, 95%); ¹H NMR (400 MHz, C₆D₆): δ 7.37 (d, *J* = 8.8 Hz, 2H), 7.27 (t, *J* = 7.8 Hz, 2H), 7.24 ~ 7.18 (m, 4H), 7.13 ~ 7.09 (m, 1H), 6.93 ~ 6.89 (m, 1H), 5.09 (d, *J* = 10.0 Hz, 1H), 4.03 (s, 2H), 2.93 ~ 2.84 (m, 1H), 1.04 (s, 3H), 0.78 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, C₆D₆): δ 146.9, 138.3, 136.1, 133.2, 130.4, 130.3, 129.5, 129.2, 128.6, 127.4, 122.1, 117.2, 65.5, 26.7, 22.4, 15.7; HRMS (EI+, m/z) calcd for C₂₁H₂₃NO[M⁺] : 305.1780, found : 305.1775.

Spectral data for (*Z*)-3-(cyclohexylmethylene)-5-methyl-2,4-diphenyl-3,6-dihydro-2*H*-1,2-oxazine (3n):

Light brown oil (0.261 g, 0.76 mmol, 90%); ¹H NMR (600 MHz, C₆D₆): δ 7.41 (q, *J* = 8.3 Hz, 2H), 7.28 ~ 7.21 (m, 6H), 7.16 ~ 7.11 (m, 1H), 6.92 ~ 6.88 (m, 1H), 5.14 (d, *J* = 9.8 Hz, 1H), 4.05 (s, 2H), 2.69 ~ 2.63 (m, 1H), 1.70 (d, *J* = 12.7 Hz, 2H), 1.41 ~ 1.37 (m, 2H), 1.33 ~ 1.31 (m, 1H), 1.03 (s, 3H), 0.97 ~ 0.77 (m, 5H); ¹³C NMR (150 MHz, C₆D₆): δ 147.1, 138.4, 136.3, 132.1, 130.5, 130.4, 129.6, 129.1, 128.6, 127.4, 122.1, 117.1, 65.4, 36.2, 32.5, 26.1, 25.7, 15.7; HRMS (EI+, m/z) calcd for C₂₄H₂₇NO[M⁺] : 345.2093, found : 345.2096.

Spectral data for (Z)-3-benzylidene-4,5-dimethyl-2-(p-tolyl)-3,6-dihydro-2*H*-1,2-oxazine (30):

Pale yellow solid (0.295 g, 1.01 mmol, 86%); ¹H NMR (600 MHz, C₆D₆): δ 7.71 (d, *J* = 7.8 Hz, 2H), 7.13 (d, *J* = 6.0 Hz, 2H), 7.02 ~ 6.99 (m, 2H), 6.91 ~ 6.86 (m, 3H), 6.35 (s, 1H), 3.98 (s, 2H), 2.01 (s, 3H), 1.78 (s, 3H), 1.16 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 142.4, 138.3, 135.9, 131.5, 130.2, 130.1, 129.6, 128.5, 127.3, 122.5, 118.3, 117.7, 65.8, 20.6, 15.1, 13.1; HRMS (EI+, m/z) calcd for C₂₀H₂₁NO[M⁺] : 291.1623, found : 291.1624.

Spectral data for (*Z*)-3-benzylidene-2-(4-methoxyphenyl)-4,5-dimethyl-3,6-dihydro-2*H*-1,2-oxazine (3p):

Pale yellow oil (0.319 g, 1.04 mmol, 88%); ¹H NMR (600 MHz, C₆D₆): δ 7.29 (d, *J* = 9.6 Hz, 2H), 7.15 ~ 7.13 (m, 2H), 7.07 ~ 6.99 (m, 3H), 6.79 (d, *J* = 9.0 Hz, 2H), 6.54 (s, 1H), 4.11 (s, 2H), 3.31 (s, 3H), 1.57 (s, 3H), 1.13 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 156.5, 141.9, 141.3, 137.5, 132.7, 129.8, 128.1, 127.1, 122.8, 121.2, 119.8, 114.5, 68.0, 55.0, 16.9, 14.4; HRMS (EI+, m/z) calcd for C₂₀H₂₁NO₂[M⁺] : 307.1572, found : 307.1571.

Spectral data for (Z)-3-benzylidene-2-(4-chlorophenyl)-4,5-dimethyl-3,6-dihydro-2*H*-1,2-oxazine (3q):

Pale yellow solid (0.300 g, 0.96 mmol, 82%); ¹H NMR (400 MHz, C₆D₆): δ 7.64 (d, *J* = 7.2 Hz, 2H), 7.04 ~ 7.00 (m, 4H), 6.94 ~ 6.88 (m, 3H), 6.28 (s, 1H), 3.86 (s, 2H), 1.69 (d, *J* = 0.8 Hz, 3H), 1.18 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 143.3, 137.3, 135.5, 130.0, 129.5, 129.3, 128.7, 127.7, 127.1, 122.4, 118.8, 118.5, 66.1, 15.0, 13.0; HRMS (EI+, m/z) calcd for C₁₉H₁₈CINO[M⁺] : 311.1077, found : 311.1070.

Spectral data for (Z)-ethyl 4-(3-benzylidene-4,5-dimethyl-3,6-dihydro-2*H*-1,2-oxazin-2-yl)benzoate (3r):

Off white solid (0.305 g, 0.87 mmol, 74%); ¹H NMR (600 MHz, CDCl₃): δ 7.88 (d, *J* = 9.1 Hz, 2H), 7.48 (d, *J* = 7.7 Hz, 2H), 7.18 ~ 7.15 (m, 2H), 7.12 ~ 7.09 (m, 1H), 6.95 (d, *J* = 8.0 Hz, 2H), 6.42 (s, 1H), 4.29 (q, *J* = 7.2 Hz, 2H), 4.27 (s, 2H), 2.03 (s, 3H), 1.66 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 166.4, 147.7, 136.1, 134.7, 131.0, 129.5, 128.9, 128.4, 127.5, 123.1, 122.5, 119.0, 115.2, 67.1, 60.5, 15.4, 14.3, 13.3; HRMS (EI+, m/z) calcd for C₂₂H₂₃NO₃[M⁺] : 349.1678, found : 349.1676.

Spectral data for (Z)-N-(4,5-dimethyl-2-phenyl-2H-pyran-3(6H)-ylidene)aniline (4a):

Pale yellow oil (0.230 g, 0.83 mmol, 83%); ¹H NMR (400 MHz, C6D6): δ 7.24 (d, J = 7.2 Hz, 2H), 7.08 ~ 7.01 (m, 3H), 6.93 (t, J = 7.9 Hz, 2H), 6.76 ~ 6.71 (m, 3H), 5.75 (s, 1H), 3.72 (s, 2H), 2.17 (s, 3H), 1.15 (d, J = 0.8 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 162.9, 151.4, 141.9, 137.1, 129.5, 128.9, 128.7, 128.5, 128.4, 123.3, 119.3, 73.2, 64.5, 15.3, 11.8; HRMS (ESI, m/z) calcd for C₁₉H₂₀NO[M+H] : 278.1545, found : 278.1537.

¹H NOE of Compound (Z)-N-(4,5-dimethyl-2-phenyl-2*H*-pyran-3(6*H*)-ylidene)aniline (4a):

Sr. No.	Irradiation	Intensity Increase % (Key peaks)
1	H _b (δ 2.17)	$H_a (\delta 1.15, 1.98\%), H_e (\delta 7.24, 0.46\%)$
2	H _d (δ 5.75)	H_e (δ 7.24, 5.96%), H_h (δ 6.72, 5.47%)
3	H_h (δ 6.72)	H_d (δ 5.75, 1.06%), H_i (δ 6.93, 11.05%), H_e (δ 7.24, 2.93%), H_f
		(δ 7.08 ~ 7.01, 1.83%)
4	H _e (δ 7.24)	H_c (δ 3.72, 0.73%), H_d (δ 5.75, 3.05%), H_h (δ 6.72, 1.54%), H_{fg}
		(δ 7.08 ~ 7.01, 1.51%)

Spectral data for (Z)-N-(2-(4-methoxyphenyl)-4,5-dimethyl-2H-pyran-3(6H)ylidene)aniline (4b):

Light brown oil (0.085 g, 0.28 mmol, 85%); ¹H NMR (600 MHz, CDCl₃): δ 7.12 ~ 7.06 (m, 4H), 6.92 (t, *J* = 7.4 Hz, 1H), 6.82 ~ 6.80 (m, 2H), 6.55 (dd, *J* = 7.4, 1.0 Hz, 2H), 5.33 (s, 1H), 3.93 (d, *J* = 17.5 Hz, 1H), 3.84 (d, *J* = 17.6 Hz, 1H), 3.78 (s, 3H), 2.10 (s, 3H), 1.75 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 163.0, 159.4, 150.4, 141.9, 129.5, 128.4, 128.0, 127.6, 122.9, 119.0, 113.5, 72.5, 64.1, 55.0, 15.8, 11.6; HRMS (ESI+, m/z) calcd for C₂₀H₂₂NO₂[M+H] : 308.1651, found : 308.1647.

Spectral data for (Z)-N-(4,5-dimethyl-2-(p-tolyl)-2H-pyran-3(6H)-ylidene)aniline (4c):

Pale yellow oil (0.085 g, 0.29 mmol, 85%); ¹H NMR (600 MHz, CDCl₃): δ 7.12 ~ 7.04 (m, 6H), 6.91 (t, *J* = 7.4 Hz, 1H), 6.57 (d, *J* = 7.9 Hz, 2H), 5.37 (s, 1H), 3.93 (d, *J* = 17.5 Hz, 1H), 3.85 (d, *J* = 17.5 Hz, 1H), 2.33 (s, 3H), 2.10 (s, 3H), 1.74 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 163.1, 150.3, 142.1, 138.0, 133.0, 128.9, 128.5, 128.2, 127.7, 123.1, 119.1, 72.7, 64.3, 21.2, 15.9, 11.7; HRMS (ESI, m/z) calcd for C₂₀H₂₂NO[M+H] : 292.1701, found : 292.1709.

Spectral data for (Z)-N-(2-(4-chlorophenyl)-4,5-dimethyl-2H-pyran-3(6H)ylidene)aniline (4d):

Light brown oil (0.088 g, 0.28 mmol, 88%); ¹H NMR (600 MHz, C₆D₆): δ 7.00 ~ 6.93 (m, 6H), 6.77 ~ 6.75 (m, 1H), 6.65 (d, *J* = 8.4 Hz, 2H), 5.60 (s, 1H), 3.68 (d, *J* = 17.5 Hz, 1H), 3.59 (d, *J* = 17.6 Hz, 1H), 2.12 (s, 3H), 1.17 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 162.3, 151.2, 141.9, 135.4, 134.4, 130.0, 129.0, 128.7, 123.4, 119.2, 72.4, 64.4, 15.3, 11.8; HRMS (EI+, m/z) calcd for C₁₉H₁₈ClNO[M⁺] : 311.1077, found : 311.1080.

Spectral data for (*Z*)-*N*-(4,5-dimethyl-2-(4-(trifluoromethyl)phenyl)-2*H*-pyran-3(6*H*)ylidene)aniline (4e):

Light brown oil (0.082 g, 0.24 mmol, 82%); ¹H NMR (600 MHz, C₆D₆): δ 7.22 (d, *J* = 8.2 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.93 (t, *J* = 7.8 Hz, 2H), 6.74 (t, *J* = 7.4 Hz, 1H), 6.64 (d, *J* = 7.7 Hz, 2H), 5.65 (s, 1H), 3.67 (d, *J* = 17.6 Hz, 1H), 3.51 (d, *J* = 17.6 Hz, 1H), 2.13 (s, 3H), 1.14 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 162.0, 151.1, 141.9, 140.8, 130.5 (*J*_{C-F} = 32.5), 129.1, 128.8, 125.4 (*J*_{C-F} = 2.8), 123.5, 119.1, 72.3, 64.5, 15.3, 11.8; HRMS (EI+, m/z) calcd for C₂₀H₁₈F₃NO[M⁺] : 345.1340, found : 345.1343.

Spectral data for (Z)-N-(2-(3-methoxyphenyl)-4,5-dimethyl-2H-pyran-3(6H)ylidene)aniline (4f):

Light brown oil (0.092 g, 0.30 mmol, 92%); ¹H NMR (600 MHz, C₆D₆): δ 7.02 (t, *J* = 7.9 Hz, 1H), 6.96 ~ 6.91 (m, 4H), 6.78 ~ 6.73 (m, 3H), 6.66 (dd, *J* = 8.2, 2.4 Hz, 1H), 5.76 (s, 1H), 3.84 ~ 3.73 (m, 2H), 3.23 (s, 3H), 2.16 (s, 3H), 1.17 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 162.8, 160.2, 151.4, 141.8, 138.6, 129.5, 128.9, 123.3, 120.8, 119.4, 114.4, 114.1, 73.1, 64.6, 54.6, 15.3, 11.8; HRMS (EI+, m/z) calcd for C₂₀H₂₁NO₂[M⁺] : 307.1572, found : 307.1574.

Spectral data for (Z)-N-(2-(3-chlorophenyl)-4,5-dimethyl-2H-pyran-3(6H)ylidene)aniline (4g):

Light brown oil (0.085 g, 0.27 mmol, 85%); ¹H NMR (600 MHz, C₆D₆): δ 7.33 (s, 1H), 6.97 (td, *J* = 8.5, 1.4 Hz, 2H), 6.93 (t, *J* = 7.9 Hz, 2H), 6.76 ~ 6.72 (m, 2H), 6.69 (dd, *J* = 7.5, 1.0 Hz, 2H), 5.64 (s, 1H), 3.67 ~ 3.59 (m, 2H), 2.10 (s, 3H), 1.10 (s, 3H); ¹³C NMR (150 MHz, 2H), 5.64 (s, 1H), 3.67 ~ 3.59 (m, 2H), 2.10 (s, 3H), 1.10 (s, 3H); ¹³C NMR (150 MHz, 2H), 5.64 (s, 1H), 3.67 ~ 3.59 (m, 2H), 2.10 (s, 3H), 1.10 (s, 3H); ¹³C NMR (150 MHz, 2H), 5.64 (s, 1H), 3.67 ~ 3.59 (m, 2H), 2.10 (s, 3H), 1.10 (s, 3H); ¹³C NMR (150 MHz, 2H), 5.64 (s, 1H), 3.67 ~ 3.59 (m, 2H), 2.10 (s, 3H), 1.10 (s, 3H); ¹³C NMR (150 MHz, 2H), 3.67 ~ 3.59 (m, 2H), 3.57 ~ 3.59

 C_6D_6): δ 162.1, 151.2, 142.0, 139.2, 134.7, 129.8, 129.0, 128.7, 128.7, 126.6, 123.4, 119.1, 72.4, 64.5, 15.2, 11.8; HRMS (EI+, m/z) calcd for $C_{19}H_{18}CINO[M^+]$: 311.1077, found : 311.1076.

Spectral data for (Z)-N-(4,5-dimethyl-2-(naphthalen-2-yl)-2H-pyran-3(6H)ylidene)aniline (4h):

Light brown oil (0.080 g, 0.24 mmol, 80%); ¹H NMR (600 MHz, CDCl₃): δ 7.84 ~ 7.79 (m, 2H), 7.78 (d, J = 8.5 Hz, 1H), 7.59 (s, 1H), 7.51 ~ 7.47 (m, 2H), 7.36 (dd, J = 8.5, 1.8 Hz, 1H), 7.07 (t, J = 7.9 Hz, 2H), 6.89 (t, J = 7.4 Hz, 1H), 6.61 (dd, J = 8.3, 1.0 Hz, 2H), 5.56 (s, 1H), 3.97 (d, J = 17.3 Hz, 1H), 3.83 (d, J = 17.4 Hz, 1H), 2.16 (s, 3H), 1.73 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 162.8, 150.4, 142.0, 133.6, 133.2, 132.8, 128.6, 128.2, 128.1, 127.6, 127.3, 126.4, 126.2, 126.0, 123.1, 119.0, 72.9, 64.6, 15.9, 11.8; HRMS (EI+, m/z) calcd for C₂₃H₂₁NO[M⁺] : 327.1623, found : 327.1620.

Spectral data for (Z)-N-(5-methyl-2,4-diphenyl-2H-pyran-3(6H)-ylidene)aniline (4i):

Light brown oil (0.082 g, 0.24 mmol, 82%); ¹H NMR (600 MHz, C₆D₆): δ 7.47 ~ 7.44 (m, 4H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.19 ~ 7.14 (m, 3H), 7.08 (t, *J* = 7.4 Hz, 1H), 6.88 (t, *J* = 7.9 Hz, 2H), 6.71 (t, *J* = 7.4 Hz, 1H), 6.65 (d, *J* = 7.7 Hz, 2H), 5.86 (s, 1H), 3.89 (q, *J* = 13.6 Hz, 2H), 1.19 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 162.2, 151.1, 144.0, 137.0, 136.9, 134.9, 130.8, 128.8, 128.7, 128.6, 128.6, 128.2, 127.3, 123.3, 119.1, 79.1, 64.5, 16.6; HRMS (EI+, m/z) calcd for C₂₄H₂₁NO[M⁺] : 339.1623, found : 339.1624.

Pale yellow oil (0.090 g, 0.28 mmol, 90%); ¹H NMR (400 MHz, C₆D₆): δ 7.30 ~ 7.23 (m, 2H), 7.15 ~ 7.08 (m, 3H), 7.01 ~ 6.97 (m, 2H), 6.84 ~ 6.81 (m, 1H), 6.80 ~ 6.75 (m, 2H), 5.79 (s, 1H), 5.71 ~ 5.69 (m, 1H), 3.90 ~ 3.74 (m, 2H), 2.23 (t, *J* = 1.8 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 163.2, 150.8, 136.8, 134.5, 133.4, 128.9, 128.6, 128.5 (1 CH-merged), 123.5, 119.2, 73.6, 60.5, 17.5; HRMS (EI+, m/z) calcd for C₁₈H₁₇NO[M⁺] : 263.1310, found : 263.1313.

Spectral data for (Z)-N-(2,5-dimethyl-4-phenyl-2H-pyran-3(6H)-ylidene)aniline (4l):

Pale yellow oil (0.080 g, 0.29 mmol, 80%); ¹H NMR (600 MHz, C₆D₆): δ 7.27 ~ 7.22 (m, 4H), 7.14 ~ 7.11 (m, 1H), 7.02 (t, *J* = 7.9 Hz, 2H), 6.80 (t, *J* = 7.5 Hz, 1H), 6.59 (dd, *J* = 8.4, 1.1 Hz, 2H), 4.86 (q, *J* = 6.8 Hz, 1H), 4.11 (d, *J* = 17.9 Hz, 1H), 3.95 (d, *J* = 17.9 Hz, 1H), 1.28 (s, 3H), 1.14 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 165.1, 151.7, 147.7, 137.0, 133.2, 130.8, 129.1, 128.0, 127.1, 122.8, 118.8, 67.5, 63.9, 16.5, 16.1; HRMS (EI+, m/z) calcd for C₁₉H₁₉NO[M⁺] : 277.1467, found : 277.1464.

Spectral data for (*Z*)-*N*-(2-isopropyl-5-methyl-4-phenyl-2*H*-pyran-3(6*H*)-ylidene)aniline (4m):

Pale yellow oil (0.085 g, 0.28 mmol, 85%); ¹H NMR (400 MHz, C₆D₆): δ 7.26 (d, *J* = 4.4 Hz, 4H), 7.13 (s, 1H), 7.02 (t, *J* = 7.8 Hz, 2H), 6.78 (t, *J* = 7.2 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 2H), 4.55 (d, *J* = 9.6 Hz, 1H), 4.01 (dd, *J* = 18.0, 23.6 Hz, 2H), 2.03 ~ 1.97 (m, 1H), 1.28 (s, 3H), 0.87 (d, *J* = 6.4 Hz, 3H), 0.70 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 164.2, 151.5, 141.6, 137.5, 134.3, 130.7, 128.9, 128.1, 127.1, 122.9, 119.9, 75.1, 64.8, 27.7, 19.4, 18.9, 16.1; HRMS (EI+, m/z) calcd for C₂₁H₂₃NO[M⁺] : 305.1780, found : 305.1776.

Spectraldatafor(Z)-N-(2-cyclohexyl-5-methyl-4-phenyl-2H-pyran-3(6H)-ylidene)aniline (4n):

Pale yellow oil (0.082 g, 0.24 mmol, 82%); ¹H NMR (600 MHz, C₆D₆): δ 7.30 (d, *J* = 7.7 Hz, 2H), 7.26 (t, *J* = 7.0 Hz, 2H), 7.14 ~ 7.13 (m, 1H), 7.8 (t, *J* = 7.2 Hz, 2H), 6.79 (t, *J* = 7.4 Hz, 1H), 6.75 (d, *J* = 7.7 Hz, 2H), 4.71 (d, *J* = 9.9 Hz, 1H), 4.13 (d, *J* = 18.1 Hz, 1H), 4.03 (d, *J* = 18.1 Hz, 1H), 2.03 ~ 1.90 (m, 2H), 1.63 ~ 1.44 (m, 4H), 1.30 (s, 3H), 1.21 ~ 1.03 (m, 3H), 0.91 ~ 0.70 (m, 2H); ¹³C NMR (150 MHz, C₆D₆): δ 163.9, 151.5, 141.7, 137.5, 134.4, 130.8, 128.9, 128.1, 127.1, 122.9, 119.9, 74.1, 64.8, 37.7, 30.1, 29.2, 26.3, 26.3, 26.0, 16.2; HRMS (EI+, m/z) calcd for C₂₄H₂₇NO[M⁺] : 345.2093, found : 345.2089.

Spectral data for (Z)-N-(4,5-dimethyl-2-phenyl-2H-pyran-3(6H)-ylidene)-4methylaniline (40):

Light brown oil (0.085 g, 0.29 mmol, 85%); ¹H NMR (600 MHz, C₆D₆): δ 7.29 ~ 7.28 (m, 2H), 7.09 ~ 7.06 (m, 2H), 7.04 ~ 7.02 (m, 1H), 6.74 (d, *J* = 8.4 Hz, 2H), 6.69 ~ 6.67 (m, 2H), 5.81 (s, 1H), 3.73 (s, 2H), 2.19 (s, 3H), 1.97 (s, 3H), 1.16 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 162.9, 148.8, 141.5, 137.2, 132.4, 129.5, 128.7 (1-q merged), 128.5, 128.4, 119.4,

73.1, 64.5, 20.7, 15.3, 11.9; HRMS (EI+, m/z) calcd for $C_{20}H_{21}NO[M^+]$: 291.1623, found : 291.1625.

Spectral data for (Z)-N-(4,5-dimethyl-2-phenyl-2H-pyran-3(6H)-ylidene)-4methoxyaniline (4p):

Light brown oil (0.090 g, 0.29 mmol, 90%); ¹H NMR (500 MHz, C₆D₆): δ 7.30 (d, *J* = 7.5 Hz, 2H), 7.11 ~ 7.03 (m, 3H), 6.70 ~ 6.68 (m, 2H), 6.54 ~ 6.51 (m, 2H), 5.83 (s, 1H), 3.74 (s, 2H), 3.19 (s, 3H), 2.20 (s, 3H), 1.18 (s, 3H); ¹³C NMR (125 MHz, C₆D₆): δ 163.0, 156.4, 144.3, 141.1, 137.4, 128.7, 128.6, 128.4, 128.3, 120.8, 114.3, 73.0, 64.5, 54.8, 15.3, 12.0; HRMS (EI+, m/z) calcd for C₂₀H₂₁NO₂[M⁺] : 307.1572, found : 307.1573.

Spectral data for (Z)-4-chloro-N-(4,5-dimethyl-2-phenyl-2H-pyran-3(6H)ylidene)aniline (4q):

Pale yellow oil (0.092 g, 0.30 mmol, 92%); ¹H NMR (400 MHz, C₆D₆): δ 7.18 (d, *J* = 7.6 Hz, 2H), 7.07 ~ 7.02 (m, 3H), 6.82 (dd, *J* = 8.4, 1.2 Hz, 2H), 6.41 (dd, *J* = 8.4, 1.6 Hz, 2H), 5.58 (s, 1H), 3.70 (s, 2H), 2.12 (s, 3H), 1.15 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 163.5, 149.7, 142.6, 136.8, 128.9, 128.6, 128.6, 120.7, 73.2, 64.4, 15.3, 11.7; HRMS (EI+, m/z) calcd for C₁₉H₁₈CINO[M⁺] : 311.1077, found : 311.1074.

Spectral data for (Z)-ethyl 4-((4,5-dimethyl-2-phenyl-2*H*-pyran-3(6*H*)ylidene)amino)benzoate (4r):

Pale yellow oil (0.081 g, 0.23 mmol, 81%); ¹H NMR (400 MHz, C₆D₆): δ 7.92 (d, *J* = 7.8 Hz, 2H), 7.19 ~ 7.15 (m, 2H), 7.04 ~ 7.02 (m, 3H), 6.59 (d, *J* = 8.0 Hz, 2H), 5.59 (s, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 3.70 (s, 2H), 2.11 (s, 3H), 1.15 (s, 3H), 0.96 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 166.0, 163.0, 155.5, 143.2, 136.6, 130.8, 128.6, 125.9, 119.0, 73.6, 64.4, 60.4, 15.4, 14.3, 11.7; HRMS (EI+, m/z) calcd for C₁₂H₂₃NO₃[M⁺] : 349.1678, found : 349.1675.

Spectral data for 4,5-dimethyl-2-phenyl-2H-pyran-3(6H)-one (4a'):

Pale yellow oil (0.059 g, 0.29 mmol, 85%); ¹H NMR (400 MHz, CDCl₃): δ 7.37 ~ 7.28 (m, 5H), 5.04 (s, 1H), 4.32 ~ 4.30 (m, 2H), 1.85 (s, 3H), 1.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 193.8, 152.5, 135.6, 129.3, 128.3, 128.2, 127.5, 81.2, 67.2, 16.2, 9.8; HRMS (ESI, m/z) calcd for C₁₃H₁₅O₂[M+H] : 203.1072, found : 203.1069.

Spectral data for 2-(4-methoxyphenyl)-4,5-dimethyl-2H-pyran-3(6H)-one (4b'):

Pale yellow oil (0.042 g, 0.18 mmol, 56%); ¹H NMR (400 MHz, CDCl₃): δ 7.22 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 4.99 (s, 1H), 4.33 ~ 4.23 (m, 2H), 3.78 (s, 3H), 1.85 (s, 3H), 1.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 194.2, 159.5, 152.5, 129.3, 128.9, 127.8, 113.8, 80.9, 67.1, 55.2, 16.2, 9.8; HRMS (EI+, m/z) calcd for C₁₄H₁₆O₃[M⁺] : 232.1099,

Spectral data for 4,5-dimethyl-2-(*p*-tolyl)-2*H*-pyran-3(6*H*)-one (4c'):

Pale yellow oil (0.037 g, 0.17 mmol, 50%); ¹H NMR (400 MHz, CDCl₃): δ 7.24 ~ 7.12 (m, 4H), 5.01 (s, 1H), 4.34 ~ 4.24 (m, 2H), 2.33 (s, 3H), 1.84 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 194.0, 152.4, 138.0, 132.5, 129.3, 129.0, 127.5, 81.0, 67.0, 21.1, 16.2, 9.8; HRMS (ESI, m/z) calcd for C₁₄H₁₇O₂[M+H] : 217.1229, found : 217.1234.

Spectral data for (Z)-2-methyl-3-(3-phenyl-1*H*-indol-2-yl)but-2-en-1-ol (5a):

Light brown oil (0.186 g, 0.67 mmol, 67%); ¹H NMR (600 MHz, CDCl₃): δ 8.44 (bs, 1H), 7.73 (d, *J* = 7.8 Hz, 1H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.40 (t, *J* = 8.1 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.27 (t, *J* = 7.4 Hz, 1H), 7.20 (td, *J* = 7.0, 1.2 Hz, 1H), 7.13 (td, *J* = 7.0, 1.1 Hz, 1H), 3.89 (s, 2H), 1.95 (s, 3H), 1.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 136.0, 135.8, 135.5, 135.3, 129.1, 128.6, 127.2, 126.1, 125.8, 122.2, 120.1, 119.2, 114.6, 110.8, 65.4, 19.7, 16.9; HRMS (ESI, m/z) calcd for C₁₉H₂₀NO [M+H] : 278.1545, found : 278.1549.

Spectral data for (Z)-3-(3-(4-methoxyphenyl)-1*H*-indol-2-yl)-2-methylbut-2-en-1-ol (5b):

Pale yellow oil (0.068 g, 0.17 mmol, 68%); ¹H NMR (600 MHz, CDCl₃): δ 8.48 (bs, 1H), 7.70 (d, *J* = 7.8 Hz, 1H), 7.40 (d, *J* = 8.7 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 1H), 7.19 (t, *J* = 7.1 Hz, 1H), 7.12 (t, *J* = 7.1 Hz, 1H), 6.97 (d, *J* = 8.7 Hz, 2H), 3.90 (s, 2H), 3.84 (s, 3H), 1.94 (s, 3H), 1.88 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 158.0, 135.6, 135.5, 135.2, 130.1, 127.8, 127.3, 126.0, 122.0, 119.9, 119.2, 114.1, 113.7, 110.8, 65.4, 55.2, 19.6, 16.9; HRMS: (ESI, m/z) calcd for C₂₀H₂₂NO₂ [M+H] : 308.1651, found : 308.1647.

Spectral data for (Z)-2-methyl-3-(3-(p-tolyl)-1H-indol-2-yl)but-2-en-1-ol (5c):

Pale yellow oil (0.052 g, 0.18 mmol, 52%); ¹H NMR (600 MHz, CDCl₃): δ 8.40 (bs, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.18 (td, *J* = 7.6, 1.0 Hz, 1H), 7.11 (td, *J* = 7.0, 1.0 Hz, 1H), 3.88 (s, 2H), 2.37 (s, 3H), 1.96 (s, 3H), 1.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 135.7, 135.7, 135.7, 135.3, 132.4, 129.3, 129.0, 127.2, 125.8, 122.1, 112.0, 119.3, 114.5, 110.8, 65.5, 21.2, 19.7, 16.9; HRMS (ESI, m/z) calcd for C₂₀H₂₂NO [M+H] : 292.1701, found : 292.1691.

Spectral data for (Z)-2-methyl-3-(3-(p-tolyl)-1H-indol-2-yl)but-2-en-1-yl acetate (5c'):

Pale yellow solid (0.171 g, 0.51 mmol, 95%); ¹H NMR (600 MHz, CDCl₃): δ 9.00 (bs, 1H), 7.77 (d, *J* = 7.9 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 3H), 7.24 ~ 7.21 (m, 3H), 7.15 (td, *J* = 7.4, 0.9 Hz, 1H), 4.57 (s, 2H), 2.42 (s, 3H), 2.07 (s, 3H), 1.91 (s, 3H), 1.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 171.5, 135.3, 135.2, 134.9, 132.4, 131.1, 129.1, 128.8, 128.0, 127.4, 122.0, 119.8, 119.2, 115.0, 110.9, 67.5, 21.2, 20.9, 19.7, 15.9; HRMS (ESI, m/z) calcd for C₂₂H₂₃NNaO₂[M+Na] : 356.1621, found : 356.1620.

Spectral data for (Z)-3-(3-(4-chlorophenyl)-1H-indol-2-yl)-2-methylbut-2-en-1-ol (5d):

Light brown oil (0.095 g, 0.30 mmol, 95%); ¹H NMR (600 MHz, C₆D₆): δ 8.03 (bs, 1H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.33 ~ 7.31 (m, 2H), 7.24 ~ 7.17 (m, 4H), 7.15 ~ 7.14 (m, 1H), 3.59 (s, 2H), 1.67 (s, 3H), 1.66 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 136.3, 136.1, 135.7, 134.7, 131.9, 130.5, 129.0, 128.3, 126.1, 122.6, 120.7, 119.5, 113.7, 111.3, 65.0, 19.4, 16.7; HRMS (EI+, m/z) calcd for C₁₉H₁₈ClNO[M⁺] : 311.1077, found : 311.1075.

Spectral data for (Z)-2-methyl-3-(3-(4-(trifluoromethyl)phenyl)-1*H*-indol-2-yl)but-2-en-1-ol (5e):

Light brown oil (0.062 g, 0.18 mmol, 62%); ¹H NMR (600 MHz, C₆D₆): δ 7.89 (bs, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.46 ~ 7.45 (m, 4H), 7.26 ~ 7.23 (m, 1H), 7.21 ~ 7.18 (m, 1H), 7.13 (d, *J* = 8.0 Hz, 1H), 3.54 (s, 2H), 1.66 (s, 3H), 1.62 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 140.1, 136.9, 136.5, 135.7, 129.3, 128.3, 127.5, 126.0, 125.7 (*J*_{C-F} = 3.0), 122.8, 120.9, 119.4, 113.4, 111.4, 64.9, 19.4, 16.8; HRMS (EI+, m/z) calcd for C₂₀H₁₈F₃NO[M⁺] : 345.1340, found : 345.1343.

Spectral data for (Z)-3-(3-(3-methoxyphenyl)-1*H*-indol-2-yl)-2-methylbut-2-en-1-ol (5f):

Light brown oil (0.088 g, 0.29 mmol, 88%); ¹H NMR (600 MHz, CDCl₃): δ 7.94 (d, *J* = 7.9 Hz, 1H), 7.86 (bs, 1H), 7.28 ~ 7.27 (m, 1H), 7.25 ~ 7.16 (m, 5H), 6.76 ~ 6.75 (m, 1H), 3.68 (s, 2H), 3.37 (s, 3H), 1.75 (s, 3H), 1.69 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 160.4, 137.6, 136.2, 136.1, 135.8, 129.8, 128.3, 126.1, 122.4, 121.8, 120.6, 119.8, 115.1, 114.8, 111.9, 111.2, 65.2, 54.7, 19.6, 16.7; HRMS (EI+, m/z) calcd for C₂₀H₂₁NO₂[M⁺] : 307.1572, found : 307.1576.

Spectral data for (Z)-3-(3-(3-chlorophenyl)-1*H*-indol-2-yl)-2-methylbut-2-en-1-ol (5g):

Light brown oil (0.084 g, 0.27 mmol, 84%); ¹H NMR (600 MHz, C₆D₆): δ 7.99 (bs, 1H), 7.79 (d, *J* = 7.9 Hz, 1H), 7.66 (s, 1H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.16 ~ 7.09 (m, 3H), 6.96 (t, *J* = 7.9 Hz, 1H), 3.56 (s, 2H), 1.66 (s, 3H), 1.65 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 138.3, 136.6, 136.3, 135.7, 134.7, 130.0, 129.2, 127.6, 127.3, 126.1, 126.0, 122.6, 120.8, 119.4, 113.4, 111.3, 64.9, 19.4, 16.7; HRMS (EI+, m/z) calcd for C₁₉H₁₈CINO[M⁺] : 311.1077, found : 311.1080.

Spectral data for (Z)-2-methyl-3-(3-(naphthalen-2-yl)-1*H*-indol-2-yl)but-2-en-1-ol (5h):

Light yellow solid (0.060 g, 0.18 mmol, 60%); ¹H NMR (600 MHz, CDCl₃): δ 8.58 (bs, 1H), 7.96 (s, 1H), 7.88 ~ 7.80 (m, 4H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.50 ~ 7.43 (m, 2H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.23 (t, *J* = 7.9 Hz, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 3.96 (s, 2H), 1.94 (s, 3H), 1.89 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 136.3, 135.8, 135.2, 133.7, 133.0, 131.9, 127.9, 127.8, 127.7, 127.3, 127.2, 126.4, 126.0, 125.4, 122.2, 120.2, 119.2, 114.5, 110.9, 65.4, 19.7, 17.1; HRMS (EI+, m/z) calcd for C₂₃H₂₂NO[M⁺] : 327.1623, found : 327.1625.

Spectral data for (Z)-2-methyl-3-phenyl-3-(3-phenyl-1*H*-indol-2-yl)prop-2-en-1-ol (5i):

Light brown oil (0.085 g, 0.25 mmol, 85%); ¹H NMR (600 MHz, CDCl₃): δ 7.99 (bs, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.59 (d, *J* = 7.7 Hz, 2H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.33 ~ 7.24 (m, 7H), 7.19 (t, *J* = 7.5 Hz, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 3.88 (s, 2H), 1.88 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 140.2, 138.5, 135.8, 135.2, 134.3, 129.8, 129.4, 129.3, 128.7, 128.2, 127.4, 126.9, 126.4, 122.5, 120.2, 119.4, 116.6, 110.8, 65.6, 18.0; HRMS (EI+, m/z) calcd for C₂₄H₂₁NO[M⁺] : 339.1623, found : 277.1627.

Spectral data for (Z)-3-(3-phenyl-1*H*-indol-2-yl)but-2-en-1-ol (5j):

Pale yellow oil (0.096 g, 0.30 mmol, 96%); ¹H NMR (400 MHz, C₆D₆): δ 8.60 (bs, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.48 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.21 ~ 7.16 (m, 3H), 7.12 ~ 7.03 (m, 3H), 5.55 ~ 5.51 (m, 1H), 3.66 (d, *J* = 7.2 Hz, 2H), 1.73 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 136.2, 136.1, 133.6, 132.4, 132.4, 129.9, 129.7, 128.8, 126.3, 122.8, 120.6, 119.8, 116.1, 111.5, 60.1, 23.7; HRMS (EI+, m/z) calcd for C₁₈H₁₇NO[M⁺] : 263.1310, found : 263.1312.

Spectral data for (Z)-3-(3-phenyl-1*H*-indol-2-yl)prop-2-en-1-ol (5k):

Pale yellow oil (0.080 g, 0.32 mmol, 80%); ¹H NMR (400 MHz, C₆D₆): δ 10.3 (bs, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.59 (dd, J = 8.4, 1.2 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.24 ~ 7.12 (m,
4H), 6.73 (d, J = 12.0 Hz, 1H), 5.41 ~ 5.35 (m, 1H), 3.75 (d, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz, C₆D₆): δ 137.3, 135.6, 131.7, 130.6, 128.8, 128.2, 126.6, 125.7, 125.3, 123.6, 120.7, 120.3, 119.3, 111.6, 58.8; HRMS (ESI+, m/z) calcd for C₁₇H₁₆NO[M+H] : 250.1232, found : 250.1230.

Spectral data for (Z)-2-methyl-3-(3-methyl-1*H*-indol-2-yl)-3-phenylprop-2-en-1-ol (5l):

Pale yellow oil (0.084 g, 0.30 mmol, 84%); ¹H NMR (600 MHz, C₆D₆): δ 7.85 (bs, 1H), 7.59 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.24 ~ 7.18 (m, 2H), 7.10 (d, *J* = 4.5 Hz, 4H), 7.06 ~ 7.02 (m, 2H), 3.84 (s, 2H), 2.02 (s, 3H), 1.89 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 141.0, 137.1, 136.1, 130.4, 134.4, 132.0, 130.1, 129.7, 128.3, 127.2, 122.3, 119.6, 119.2, 111.0, 110.6, 65.3, 18.5, 9.4; HRMS (EI+, m/z) calcd for C₁₉H₁₉NO[M⁺] : 277.1467, found : 277.1463.

Spectral data for (Z)-3-(3-isopropyl-1*H*-indol-2-yl)-2-methyl-3-phenylprop-2-en-1-ol (5m):

Pale yellow oil (0.082 g, 0.27 mmol, 82%); ¹H NMR (400 MHz, C₆D₆): δ 7.81 (d, *J* = 8.0 Hz, 1H), 7.63 (bs, 1H), 7.20 ~ 7.17 (m, 1H), 7.14 ~ 7.01 (m, 7H), 3.83 (s, 2H), 3.00 (p, *J* = 7.2 Hz, 1H), 1.90 (s, 3H), 1.33 (s, 3H), 1.31 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 141.3, 138.1, 136.7, 133.0, 132.1, 129.9, 128.2, 127.3, 127.1, 121.9, 121.0, 120.5, 119.3, 111.4, 65.4, 26.7, 22.8, 18.1; HRMS (EI+, m/z) calcd for C₂₁H₂₃NO[M⁺] : 305.1780, found : 305.1774.

Spectral data for (Z)-3-(3-cyclohexyl-1*H*-indol-2-yl)-2-methyl-3-phenylprop-2-en-1-ol (5n):

Pale yellow oil (0.086 g, 0.25 mmol, 86%); ¹H NMR (600 MHz, C₆D₆): δ 7.87 (d, *J* = 7.8 Hz, 1H), 7.81 (bs, 1H), 7.21 ~ 7.15 (m, 4H), 7.11 ~ 7.08 (m, 3H), 7.04 ~ 7.01 (m, 1H), 3.86 (s, 2H), 2.65 ~ 2.61 (m, 1H), 1.98 ~ 1.95 (m, 2H), 1.90 (s, 3H), 1.71 ~ 1.69 (m, 4H), 1.64 ~ 1.62 (m, 1H), 1.24 ~ 1.11 (m, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 141.4, 137.8, 136.7, 133.3, 132.5, 130.0, 128.2, 127.7, 127.2, 121.8, 121.3, 120.0, 119.2, 111.4, 65.4, 37.3, 33.1, 27.6, 26.6, 18.2; HRMS (EI+, m/z) calcd for C₂₄H₂₇NO[M⁺] : 345.2093, found : 345.2094.

Spectral data for (Z)-2-methyl-3-(5-methyl-3-phenyl-1*H*-indol-2-yl)but-2-en-1-ol (50):

Pale yellow oil (0.061 g, 0.21 mmol, 61%); ¹H NMR (600 MHz, CDCl₃): δ 8.34 (bs, 1H), 7.51 (s, 1H), 7.49 ~ 7.44 (m, 2H), 7.40 (t, *J* = 8.0 Hz, 2H), 7.28 ~ 7.22 (m, 2H), 7.02 (d, *J* = 8.2 Hz, 1H), 3.88 (s, 2H), 2.43 (s, 3H), 1.95 (s, 3H), 1.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 136.1, 135.6, 135.6, 133.6, 129.4, 129.2, 128.5, 127.4, 126.0, 125.8, 123.7, 118.8, 114.2, 110.5, 65.4, 21.5, 19.7, 16.9; HRMS (ESI+, m/z) calcd for C₂₀H₂₂NO[M+H] : 292.1701, found : 292.1698.

Spectral data for (Z)-3-(5-methoxy-3-phenyl-1*H*-indol-2-yl)-2-methylbut-2-en-1-ol (5p):

Yellow oil (0.045 g, 0.15 mmol, 45%); ¹H NMR (600 MHz, CDCl₃): δ 8.33 (bs, 1H), 7.46 (d, J = 8.3 Hz, 2H), 7.41 (t, J = 8.2 Hz, 2H), 7.29 ~ 7.23 (m, 2H), 7.18 (s, 1H), 6.87 ~ 6.84 (m, 1H), 3.89 (s, 2H), 3.81 (s, 3H), 1.93 (s, 3H), 1.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 154.6, 136.9, 135.7, 135.6, 130.4, 129.0, 128.6, 127.5, 126.0, 125.9, 114.5, 112.4, 111.6, 101.1, 65.5, 56.0, 19.7, 16.9; HRMS (ESI+, m/z) calcd for C₂₀H₂₂NO₂[M+H] : 308.1651, found : 308.1646.

Spectral data for (Z)-3-(5-chloro-3-phenyl-1*H*-indol-2-yl)-2-methylbut-2-en-1-ol (5q):

Light brown oil (0.082 g, 0.26 mmol, 82%); ¹H NMR (400 MHz, C₆D₆): δ 7.93 (d, *J* = 1.2 Hz, 1H), 7.84 (bs, 1H), 7.42 ~ 7.40 (m, 2H), 7.24 ~ 7.17 (m, 3H), 7.09 ~ 7.05 (m, 1H), 6.85 (d, *J* = 8.8 Hz, 1H), 3.56 (s, 2H), 1.65 (s, 6H); ¹³C NMR (100 MHz, C₆D₆): δ 137.5, 136.3, 135.4, 134.0, 129.3, 129.0, 128.9, 126.5, 126.4, 125.8, 122.7, 119.3, 114.8, 112.2, 65.1, 19.4, 16.8; HRMS (EI+, m/z) calcd for C₁₉H₁₈ClNO[M⁺] : 311.1077, found : 311.1073.

Spectral data for (Z)-ethyl 2-(4-hydroxy-3-methylbut-2-en-2-yl)-3-phenyl-1*H*-indole-5carboxylate (5r):

Pale yellow oil (0.072 g, 0.21 mmol, 72%); ¹H NMR (600 MHz, C₆D₆): δ 9.00 (s, 1H), 8.36 (dd, J = 8.5, 1.4 Hz, 1H), 8.18 (bs, 1H), 7.54 (dd, J = 8.2, 1.1 Hz, 2H), 7.19 (t, J = 7.7 Hz, 2H), 7.09 (d, J = 8.6 Hz, 1H), 7.06 (t, J = 7.4 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.61 (s, 2H), 1.67 (s, 3H), 1.66 (s, 3H), 1.05 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 167.5, 138.2, 137.4, 136.4, 135.4, 139.5, 129.0, 127.6, 126.6, 125.8, 124.2, 123.5, 122.6, 116.2, 111.0, 65.1, 60.6, 19.4, 16.9, 14.4; HRMS (EI+, m/z) calcd for C₂₂H₂₃NO₃[M⁺] : 349.1678,

found : 349.1673.

Spectral data for (Z)-3-(3-(4-fluorophenyl)-1*H*-indol-2-yl)prop-2-en-1-ol (5s):

Light brown oil (1.0 g, 3.74 mmol, 60%); ¹H NMR (600 MHz, CDCl₃): δ 10.26 (s, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.46 ~ 7.40 (m, 3H), 7.23 ~ 7.21 (m, 1H), 7.16 ~ 7.09 (m, 3H), 6.72 (d, *J* = 11.9 Hz, 1H), 5.93 (dt, *J* = 11.8, 6.9 Hz, 1H), 4.42 (d, *J* = 6.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 162.5, 160.9, 136.6, 131.54, 131.49, 131.3, 130.7, 127.3, 125.6, 125.4, 123.3, 120.2, 119.6, 117.8, 115.4, 115.3, 111.4, 59.1; HRMS (ESI, m/z) calcd for C₁₇H₁₄FNO[M+H] : 268.1132, found : 268.1125.

Spectral data for (S)-5-benzyl-3,4-dimethyl-1-phenyl-1*H*-pyrrol-2(5*H*)-one (6a):

Light yellow solid (0.169 g, 0.61 mmol, 61%); ¹H NMR (600 MHz, C₆D₆): δ 7.71 (d, *J* = 8.6 Hz, 2H), 7.25 (t, *J* = 8.0 Hz, 2H), 6.98 ~ 6.95 (m, 4H), 6.71 (d, *J* = 7.6 Hz, 2H), 4.06 (s, 1H), 2.75 (dd, *J* = 14.5, 5.7 Hz, 1H), 2.51 (dd, *J* = 14.5, 3.1 Hz, 1H), 1.57 (d, *J* = 0.8 Hz, 3H), 1.39 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 170.2, 147.7, 138.6, 135.4, 130.4, 129.4, 129.2, 128.2, 126.9, 123.7, 121.2, 62.5, 34.9, 12.4, 8.6; HRMS (EI+, m/z) calcd for C₁₉H₁₉NO[M⁺] : 277.1467, found : 277.1465.

Spectral data for (S)-5-(4-methoxybenzyl)-3,4-dimethyl-1-phenyl-1*H*-pyrrol-2(5*H*)-one (6b):

Yellow oil (0.021 g, 0.07 mmol, 21%); ¹H NMR (400 MHz, C₆D₆): δ 7.74 (dd, J = 2.8, 1.6 Hz, 2H), 7.29 ~ 7.25 (m, 2H), 7.00 ~ 6.95 (m, 1H), 6.65 (dd, J = 8.4, 1.2 Hz, 2H), 6.60 (dd, J = 8.8, 1.2 Hz, 2H), 4.06 (s, 1H), 3.20 (d, J = 1.2 Hz, 3H), 2.80 (dd, J = 16.8, 5.6 Hz, 1H), 2.50 (dd, J = 14.4, 3.2 Hz, 1H), 1.58 (s, 3H), 1.44 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 170.3, 159.0, 147.8, 138.7, 131.9, 130.5, 130.4, 129.2, 123.7, 121.2, 113.7, 62.7, 54.6, 33.9, 12.4, 8.6; HRMS (EI+, m/z) calcd for C₂₀H₂₁NO₂[M⁺] : 307.1572, found : 307.1570.

Spectral data for (S)-3,4-dimethyl-5-(4-methylbenzyl)-1-phenyl-1*H*-pyrrol-2(5*H*)-one (6c):

Yellow oil (0.038 g, 0.13 mmol, 38%); ¹H NMR (400 MHz, C₆D₆): δ 7.73 (d, *J* = 8.4 Hz, 2H), 7.26 (t, *J* = 7.8 Hz, 2H), 6.98 (t, *J* = 7.4 Hz, 1H), 6.82 (d, *J* = 7.6 Hz, 2H), 6.67 (d, *J* = 8.0 Hz, 2H), 4.07 (s, 1H), 2.79 (dd, *J* = 14.4, 5.6 Hz, 1H), 2.54 (dd, *J* = 14.4, 3.2 Hz, 1H), 2.00 (s, 3H), 1.58 (s, 3H), 1.43 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 170.2, 147.8, 138.7, 136.3, 132.3, 130.5, 129.4, 129.2, 129.0, 123.7, 121.2, 62.6, 34.5, 21.0, 12.4, 8.6; HRMS (EI+, m/z) calcd for C₂₀H₂₁NO[M⁺] : 291.1623, found : 291.1620.

Spectral data for (S)-5-(4-chlorobenzyl)-3,4-dimethyl-1-phenyl-1*H*-pyrrol-2(5*H*)-one (6d):

Light yellow oil (0.072 g, 0.23 mmol, 72%); ¹H NMR (400 MHz, C₆D₆): δ 7.62 (d, *J* = 8.0 Hz, 2H), 7.23 (t, *J* = 7.6 Hz, 2H), 6.96 (t, *J* = 7.3 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 2H), 6.43 (d, *J* = 8.2 Hz, 2H), 3.99 (s, 1H), 2.64 (dd, *J* = 14.4, 5.4 Hz, 1H), 2.33 (dd, *J* = 14.4, 3.0 Hz, 1H), 1.54 (s, 3H), 1.34 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 170.0, 147.4, 138.4, 133.8, 132.9, 130.7, 130.7, 129.2, 128.2, 123.9, 121.2, 62.2, 34.0, 12.3, 8.5; HRMS (EI+, m/z) calcd for C₁₉H₁₈CINO[M⁺] : 311.1077, found : 311.1080.

Spectral data for (S)-3,4-dimethyl-1-phenyl-5-(4-(trifluoromethyl)benzyl)-1*H*-pyrrol-2(5*H*)-one (6e):

Off white solid (0.086 g, 0.25 mmol, 86%); ¹H NMR (400 MHz, C₆D₆): δ 7.60 (dd, *J* = 8.8, 1.2 Hz, 2H), 7.23 (t, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 6.97 (t, *J* = 7.2 Hz, 1H), 6.55 (d, *J* = 8.4 Hz, 2H), 4.00 (s, 1H), 2.65 (dd, *J* = 14.4, 5.6 Hz, 1H), 2.33 (dd, *J* = 14.4, 3.2 Hz, 1H), 1.51 (d, *J* = 0.8 Hz, 3H), 1.32 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 169.9, 147.2, 139.7, 138.2, 130.7, 129.7, 129.2, 128.9, (*J*_{C-F} = 268.1), 125.0 (*J*_{C-F} = 5.5), 124.0, 121.2, 62.0, 34.5, 12.2, 8.5; HRMS (EI+, m/z) calcd for C₂₀H₁₈F₃NO[M⁺] : 345.1340, found : 345.1347.

Spectral data for (S)-5-(3-methoxybenzyl)-3,4-dimethyl-1-phenyl-1*H*-pyrrol-2(5*H*)-one (6f):

Sticky yellow solid (0.065 g, 0.21 mmol, 65%); ¹H NMR (600 MHz, C₆D₆): δ 7.71 (d, J = 7.7 Hz, 2H), 7.23 (t, J = 7.5 Hz, 2H), 6.96 ~ 6.91 (m, 2H), 7.71 (dd, J = 8.2, 2.6 Hz, 1H), 6.43 (t, J = 1.9 Hz, 1H), 6.39 (d, J = 7.6 Hz, 1H), 4.08 (s, 1H), 3.28 (s, 3H), 2.78 (dd, J = 14.5, 5.6 Hz, 1H), 2.51 (dd, J = 14.5, 3.4 Hz, 1H), 1.57 (s, 3H), 1.42 (s, 3H); ¹³C NMR (150

MHz, C₆D₆): δ 170.3, 159.8, 147.8, 138.6, 137.0, 130.4, 129.2, 129.1, 123.7, 121.7, 121.2, 115.2, 112.6, 62.5, 54.7, 34.8, 12.3, 8.6; HRMS (EI+, m/z) calcd for C₂₀H₂₁NO₂[M⁺] : 307.1572, found : 307.1575.

Spectral data for (S)-5-(3-chlorobenzyl)-3,4-dimethyl-1-phenyl-1*H*-pyrrol-2(5*H*)-one (6g):

Light yellow solid (0.078 g, 0.25 mmol, 78%); ¹H NMR (400 MHz, C₆D₆): δ 7.61 (d, *J* = 8.0 Hz, 2H), 7.23 (t, *J* = 7.8 Hz, 2H), 6.96 (t, *J* = 7.2 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.75 (s, 1H), 6.65 (t, *J* = 7.8 Hz, 1H), 6.44 (d, *J* = 8.0 Hz, 1H), 4.00 (s, 1H), 2.62 (dd, *J* = 14.4, 5.6 Hz, 1H), 2.34 (dd, *J* = 14.8, 3.2 Hz, 1H), 1.55 (s, 3H), 1.35 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 170.0, 147.4, 138.3, 137.5, 133.9, 130.7, 129.6, 129.4, 129.2, 127.5, 127.1, 123.9, 121.3, 62.1, 34.4, 12.2, 8.5; HRMS (EI+, m/z) calcd for C₁₉H₁₈ClNO[M⁺] : 311.1077, found : 311.1079.

Spectral data for (S)-3,4-dimethyl-5-(naphthalen-2-ylmethyl)-1-phenyl-1*H*-pyrrol-2(5*H*)-one (6h):

Light yellow solid (0.052 g, 0.16 mmol, 52%); ¹H NMR (600 MHz, C₆D₆): δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.27 (t, *J* = 8.0 Hz, 2H), 7.23 ~ 7.16 (m, 3H), 6.99 (t, *J* = 7.4 Hz, 1H), 6.89 (dd, *J* = 8.4, 1.6 Hz, 1H), 4.15 (s, 1H), 2.89 (dd, *J* = 14.5, 5.9 Hz, 1H), 2.69 (dd, *J* = 14.5, 3.4 Hz, 1H), 1.50 (s, 3H), 1.41 (s, 3H); ¹³C NMR (150 MHz, C₆D₆): δ 170.1, 147.8, 138.6, 133.6, 133.2, 132.8, 130.5, 129.2, 128.3, 128.0, 127.9, 127.7, 127.5, 126.2, 125.8, 123.8, 121.4, 62.6, 35.2, 12.4, 8.5; HRMS (EI+, m/z) calcd

for C₂₃H₂₁NO[M⁺] : 327.1623, found : 327.1625.

Spectral data for (S)-5-benzyl-4-methyl-1,3-diphenyl-1*H*-pyrrol-2(5*H*)-one (6i):

Sticky brown solid (0.070 g, 0.21 mmol, 70%); ¹H NMR (400 MHz, C₆D₆): δ 7.79 (dd, J = 8.8, 0.8 Hz, 2H), 7.29 (t, J = 7.8 Hz, 2H), 7.19 ~ 7.12 (m, 2H), 7.06 ~ 7.01 (m, 4H), 6.93 ~ 6.90 (m, 3H), 6.54 (dd, J = 6.4, 1.6 Hz, 2H), 4.90 ~ 4.88 (m, 1H), 2.94 (dd, J = 14.0, 4.8 Hz, 1H), 2.53 (dd, J = 14.4, 3.2 Hz, 1H), 1.81 (d, J = 1.2 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 170.1, 149.2, 138.4, 134.7, 133.6, 131.4, 129.8, 129.2, 128.8, 128.7, 128.2, 127.7, 126.9, 124.1, 121.5, 60.6, 35.2, 10.1; HRMS (EI+, m/z) calcd for C₂₄H₂₁NO[M⁺] : 339.1623, found : 339.1629.

Spectral data for (S)-5-ethyl-4-methyl-1,3-diphenyl-1*H*-pyrrol-2(5*H*)-one (6l):

Pale yellow oil (0.088 g, 0.32 mmol, 88%); ¹H NMR (400 MHz, C₆D₆): δ 7.68 (d, *J* = 11.5 Hz, 2H), 7.22 (t, *J* = 7.5 Hz, 2H), 7.17 ~ 7.04 (m, 5H), 6.96 (t, *J* = 7.4 Hz, 1H), 4.71 (t, *J* = 1.5 Hz, 1H), 2.01 (d, *J* = 1.6 Hz, 3H), 1.61 ~ 1.51 (m, 1H), 1.23 ~ 1.13 (m, 1H), 0.23 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 170.4, 150.1, 138.2, 133.6, 131.1, 129.1, 128.9, 128.7, 128.4, 124.3, 122.1, 61.2, 21.6, 10.2, 5.3; HRMS (EI+, m/z) calcd for C₁₉H₁₉NO[M⁺] : 277.1467, found : 277.1469.

Spectral data for (S)-5-isobutyl-4-methyl-1,3-diphenyl-1*H*-pyrrol-2(5*H*)-one (6m):

Pale yellow oil (0.090 g, 0.29 mmol, 90%); ¹H NMR (400 MHz, C₆D₆): δ 7.78 (d, *J* = 8.4 Hz, 2H), 7.29 (t, *J* = 7.8 Hz, 2H), 7.22 ~ 7.19 (m, 2H), 7.15 ~ 7.11 (m, 3H), 7.03 ~ 6.99 (m, 1H), 4.89 (t, *J* = 1.6 Hz, 1H), 2.07 (s, 3H), 1.59 ~ 1.53 (m, 1H), 1.39 ~ 1.27 (m, 2H), 0.53 (d, *J* = 6.4 Hz, 3H), 0.49 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 170.2, 151.5, 138.5, 133.9, 130.5, 129.0, 128.8, 128.7, 128.5, 124.3, 122.2, 60.6, 38.5, 23.6, 23.4, 23.3, 10.3; HRMS (EI+, m/z) calcd for C₂₁H₂₃NO[M⁺] : 305.1780, found : 305.1778.

Spectral data for (S)-5-(cyclohexylmethyl)-4-methyl-1,3-diphenyl-1*H*-pyrrol-2(5*H*)-one (6n):

Pale yellow oil (0.082 g, 0.24 mmol, 82%); ¹H NMR (400 MHz, C₆D₆): δ 7.83 (d, *J* = 8.4 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.25 ~ 7.20 (m, 2H), 7.18 ~ 7.13 (m, 3H), 7.05 (t, *J* = 7.4 Hz, 1H), 4.90 ~ 4.87 (m, 1H), 2.11 (s, 3H), 1.60 ~ 1.53 (m, 1H), 1.46 ~ 1.32 (m, 6H), 1.07 ~ 0.87 (m, 4H), 0.59 ~ 0.50 (m, 2H); ¹³C NMR (100 MHz, C₆D₆): δ 170.2, 151.6, 138.6, 134.1, 130.6, 129.1, 128.8, 128.6, 128.5, 124.3, 122.2, 60.2, 37.6, 34.0, 33.9, 32.9, 26.3, 10.3; HRMS (EI+, m/z) calcd for C₂₄H₂₇NO[M⁺] : 345.2093, found : 345.2097.

Spectral data for (S)-5-benzyl-3,4-dimethyl-1-(p-tolyl)-1H-pyrrol-2(5H)-one (60):

Pale yellow oil (0.045 g, 0.15 mmol, 45%); ¹H NMR (400 MHz, C₆D₆): δ 7.62 (d, *J* = 8.5 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 7.01 ~ 6.95 (m, 3H), 6.75 (dd, *J* = 7.9, 1.8 Hz, 2H), 4.11 (s, 1H), 2.80 (dd, *J* = 14.4, 5.7 Hz, 1H), 2.56 (dd, *J* = 14.4, 3.3 Hz, 1H), 2.15 (s, 3H), 1.58 (s, 3H), 1.42 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 170.1, 147.6, 136.1, 135.6, 133.1, 130.5, 129.8, 129.4, 128.2, 126.9, 121.4, 62.7, 35.0, 20.8, 12.4, 8.6; HRMS (EI+, m/z) calcd for C₂₀H₂₁NO[M⁺] : 291.1623, found : 291.1622.

Spectral data for (S)-5-benzyl-1-(4-chlorophenyl)-3,4-dimethyl-1*H*-pyrrol-2(5*H*)-one (6q):

Light brown oil (0.072 g, 0.23 mmol, 72%); ¹H NMR (400 MHz, C₆D₆): δ 7.45 ~ 7.41 (m, 2H), 7.20 ~ 7.17 (m, 2H), 6.98 ~ 6.94 (m, 3H), 6.63 (dd, *J* = 7.3, 3.8 Hz, 2H), 3.89 (s, 1H), 2.63 (dd, *J* = 14.4, 5.6 Hz, 1H), 2.43 (dd, *J* = 14.4, 3.4 Hz, 1H), 1.53 (s, 3H), 1.39 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 170.1, 148.0, 137.0, 135.1, 130.4, 129.3, 129.2, 128.9, 128.2, 127.1, 122.3, 62.5, 34.8, 12.3, 8.5; HRMS (EI+, m/z) calcd for C₁₉H₁₈ClNO[M⁺] : 311.1077, found : 311.1074.

Spectral data for (S)-ethyl 4-(2-benzyl-3,4-dimethyl-5-oxo-2,5-dihydro-1*H*-pyrrol-1-yl)benzoate (6r):

Pale yellow solid (0.074 g, 0.21 mmol, 74%); ¹H NMR (500 MHz, C₆D₆): δ 8.27 (d, J = 8.5 Hz, 2H), 7.71 (d, J = 8.5 Hz, 2H), 6.95 ~ 6.92 (m, 3H), 6.62 (dd, J = 7.5, 3.5 Hz, 2H), 4.19 (q, J = 7.0 Hz, 2H), 3.94 (s, 1H), 2.71 (dd, J = 15.0, 6.0 Hz, 1H), 2.58 (dd, J = 14.5, 3.0 Hz, 1H),

1.52 (s, 3H), 1.40 (s, 3H), 1.06 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, C₆D₆): δ 170.3, 166.0, 148.5, 142.4, 134.9, 131.0, 130.4, 129.3, 128.2, 127.1, 125.7, 119.9, 62.3, 60.6, 34.7, 14.3, 12.4, 8.4; HRMS (EI+, m/z) calcd for C₂₂H₂₃NO₃[M⁺] : 305.1780, found : 305.1778.

Spectral data for Deuterated (S)-5-benzyl-3,4-dimethyl-1-phenyl-1*H*-pyrrol-2(5*H*)-one (d-6a):

Light brown oil (0.055 g, 0.19 mmol, 54%); ¹H NMR (400 MHz, C₆D₆): δ 7.70 (d, *J* = 7.6 Hz, 2H), 7.25 (t, *J* = 7.4 Hz, 2H), 6.99 ~ 6.96 (m, 4H), 6.71 (d, *J* = 7.6 Hz, 2H), 4.08 (s, 0.67H, 0.33D), 2.76 (dd, *J* = 14.4, 5.6 Hz, 0.23H, 0.77D), 2.53 (d, *J* = 12.8 Hz, 0.23H, 0.77D), 1.56 (d, *J* = 7.2 Hz, 1.5H, 1.5D), 1.40 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 170.2, 147.7, 138.6, 135.4, 130.4, 129.4, 129.2, 128.2, 126.9, 123.7, 121.2, 62.5 (d, *J* = 9 Hz), 35.0 ~ 34.4 (m), 12.4, 8.5 ~ 8.2 (m); HRMS (ESI+, m/z) calcd for C₁₉H₁₃D₆NO[M+H] : 284.1921, found : 284.1895.

Spectral data for (*Z*)-3-(3-(4-fluorophenyl)-1-isopropyl-1*H*-indol-2-yl)prop-2-en-1-ol (*Z*-7):

Light brown oil (0.125 g, 0.41 mmol, 68%); ¹H NMR (600 MHz, CDCl₃): δ 7.65 (d, J = 7.9 Hz, 1H), 7.55 (d, J = 8.3 Hz, 1H), 7.44 ~ 7.42 (m, 2H), 7.23 (t, J = 7.1 Hz, 1H), 7.14 ~ 7.10 (m, 3H), 6.56 (d, J = 11.3 Hz, 1H), 5.93 (dt, J = 11.3, 6.5 Hz, 1H), 4.78 ~ 4.70 (m, 1H), 3.66 (dd, J = 6.5, 1.5 Hz, 2H), 1.64 (s, 3H), 1.63 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 162.0, 160.4, 135.8, 135.1, 131.8, 131.3, 131.2, 131.1, 127.5, 121.9, 119.8, 119.7, 119.3, 115.6, 115.2, 115.1, 111.4, 60.3, 48.0, 21.7.

Spectral data for (*E*)-3-(3-(4-fluorophenyl)-1-isopropyl-1*H*-indol-2-yl)acrylaldehyde (*E*-8):

Light yellow oil (0.050 g, 0.16 mmol, 100%); ¹H NMR (600 MHz, CDCl₃): δ 9.55 (d, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 8.5 Hz, 1H), 7.55 (d, *J* = 16.3 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.38 ~ 7.35 (m, 2H), 7.29 (t, *J* = 7.8 Hz, 1H), 7.17 (t, *J* = 8.7 Hz, 2H), 7.11 (t, *J* = 7.3 Hz, 1H), 6.30 (dd, *J* = 16.2, 7.6 Hz, 1H), 4.99 ~ 4.93 (m, 1H), 1.72 (s, 3H), 1.71 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 193.3, 163.1, 161.4, 141.0, 137.5, 131.9, 131.9, 130.4, 129.9, 129.5, 128.3, 124.6, 122.7, 121.0, 120.6, 116.0, 115.8, 112.5, 48.2, 21.8; HRMS (ESI+, m/z) calcd for C₂₀H₁₉FNO[M+H] : 308.1451, found : 308.1448.

(5) a) X-ray crystallographic structure and data for compound (3a)

Table 55. Crystal data and structure refinement for	JI a18520.	
Identification code	a18320	
Empirical formula	C19 H19 N O	
Formula weight	277.35	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 5.913(3) Å	α= 90°.
	b = 15.050(8) Å	β= 90°.
	c = 17.042(9) Å	$\gamma = 90^{\circ}$.
Volume	1516.7(14) Å ³	
Z	4	
Density (calculated)	1.215 Mg/m ³	
Absorption coefficient	0.074 mm ⁻¹	
F(000)	592	
Crystal size	0.58 x 0.12 x 0.08 mm ³	
Theta range for data collection	1.81 to 25.23°.	
Index ranges	-7<=h<=6, -18<=k<=12, -20<=l<=1	
Reflections collected	10993	
Independent reflections	2637 [R(int) = 0.0500]	
Completeness to theta = 25.23°	98.9 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.9941 and 0.9581	
Refinement method	Full-matrix least-squares on F	72
Data / restraints / parameters	2637 / 0 / 190	
Goodness-of-fit on F ²	1.016	
Final R indices [I>2sigma(I)]	R1 = 0.0590, wR2 = 0.1189	
R indices (all data)	R1 = 0.1242, wR2 = 0.1456	
Absolute structure parameter	0(3)	
Largest diff. peak and hole	0.176 and -0.177 e.Å $^{\text{-3}}$	

Table S3. Crystal data and structure refinement for a18320.

	х	У	Z	U(eq)
C(1)	621(5)	8951(2)	2571(2)	43(1)
C(2)	2352(6)	8789(3)	3091(3)	60(1)
C(3)	2164(7)	9057(3)	3846(3)	74(1)
C(4)	305(8)	9489(3)	4103(3)	73(1)
C(5)	-1433(7)	9678(3)	3593(3)	68(1)
C(6)	-1256(5)	9404(3)	2814(2)	58(1)
C(7)	-705(5)	8874(2)	1203(2)	44(1)
C(8)	-785(5)	9696(3)	908(2)	52(1)
C(9)	663(5)	10474(2)	1022(2)	49(1)
C(10)	2750(6)	10480(3)	1396(2)	61(1)
C(11)	4032(7)	11236(4)	1442(2)	73(1)
C(12)	3223(9)	12015(3)	1127(3)	82(1)
C(13)	1179(8)	12029(3)	764(3)	76(1)
C(14)	-84(6)	11270(3)	709(2)	60(1)
C(15)	-2300(5)	8160(2)	1009(2)	50(1)
C(16)	-4109(6)	8343(3)	418(2)	71(1)
C(17)	-2094(6)	7373(3)	1359(2)	54(1)
C(18)	-3689(6)	6607(2)	1268(3)	75(1)
C(19)	-121(6)	7197(2)	1883(2)	63(1)
N(1)	958(4)	8681(2)	1783(2)	46(1)
O(1)	1725(4)	7787(2)	1733(1)	58(1)

Table S4. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å $^2x \ 10^3$) for a18320. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

1.367(4)
1.375(5)
1.418(4)
1.353(5)
0.9300
1.350(6)
0.9300
1.376(6)
0.9300
1.393(5)
0.9300
0.9300
1.336(4)
1.424(4)
1.468(4)
1.464(5)
0.9300
1.383(5)
1.389(5)
1.369(5)
0.9300
1.376(6)
0.9300
1.358(6)
0.9300
1.368(5)
0.9300
0.9300
1.332(4)
1.495(5)
0.9600
0.9600
0.9600
1.492(5)

Table S5. Bond lengths [Å] and angles [°] for a18320.

C(17)-C(18)	1.498(5)
C(18)-H(18A)	0.9600
C(18)-H(18B)	0.9600
C(18)-H(18C)	0.9600
C(19)-O(1)	1.430(4)
C(19)-H(19A)	0.9700
C(19)-H(19B)	0.9700
N(1)-O(1)	1.422(4)
C(6)-C(1)-C(2)	119.8(4)
C(6)-C(1)-N(1)	123.0(3)
C(2)-C(1)-N(1)	117.0(3)
C(3)-C(2)-C(1)	119.9(4)
C(3)-C(2)-H(2)	120.1
C(1)-C(2)-H(2)	120.1
C(4)-C(3)-C(2)	121.3(4)
C(4)-C(3)-H(3)	119.3
C(2)-C(3)-H(3)	119.3
C(3)-C(4)-C(5)	120.1(4)
C(3)-C(4)-H(4)	119.9
C(5)-C(4)-H(4)	119.9
C(4)-C(5)-C(6)	119.0(4)
C(4)-C(5)-H(5)	120.5
C(6)-C(5)-H(5)	120.5
C(1)-C(6)-C(5)	119.8(4)
C(1)-C(6)-H(6)	120.1
C(5)-C(6)-H(6)	120.1
C(8)-C(7)-N(1)	118.4(3)
C(8)-C(7)-C(15)	124.7(3)
N(1)-C(7)-C(15)	116.8(3)
C(7)-C(8)-C(9)	132.0(3)
C(7)-C(8)-H(8)	114.0
C(9)-C(8)-H(8)	114.0
C(14)-C(9)-C(10)	117.1(3)
C(14)-C(9)-C(8)	117.0(3)
C(10)-C(9)-C(8)	125.8(3)

C(11)-C(10)-C(9)	121.5(4)
C(11)-C(10)-H(10)	119.2
C(9)-C(10)-H(10)	119.2
C(10)-C(11)-C(12)	119.6(4)
C(10)-C(11)-H(11)	120.2
C(12)-C(11)-H(11)	120.2
C(13)-C(12)-C(11)	120.0(4)
С(13)-С(12)-Н(12)	120.0
С(11)-С(12)-Н(12)	120.0
C(12)-C(13)-C(14)	120.3(4)
C(12)-C(13)-H(13)	119.9
C(14)-C(13)-H(13)	119.9
C(13)-C(14)-C(9)	121.5(4)
C(13)-C(14)-H(14)	119.3
C(9)-C(14)-H(14)	119.3
C(17)-C(15)-C(7)	119.4(3)
C(17)-C(15)-C(16)	122.1(3)
C(7)-C(15)-C(16)	118.5(3)
C(15)-C(16)-H(16A)	109.5
C(15)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(15)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(15)-C(17)-C(19)	119.8(3)
C(15)-C(17)-C(18)	125.5(4)
C(19)-C(17)-C(18)	114.7(3)
C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
O(1)-C(19)-C(17)	112.3(3)
O(1)-C(19)-H(19A)	109.1
C(17)-C(19)-H(19A)	109.1

O(1)-C(19)-H(19B)	109.1
C(17)-C(19)-H(19B)	109.1
H(19A)-C(19)-H(19B)	107.9
C(1)-N(1)-O(1)	111.9(2)
C(1)-N(1)-C(7)	120.1(3)
O(1)-N(1)-C(7)	111.8(3)
N(1)-O(1)-C(19)	109.5(2)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	48(2)	41(2)	41(2)	2(2)	0(2)	-4(2)
C(2)	60(2)	69(3)	52(3)	3(2)	-7(2)	5(2)
C(3)	83(3)	84(3)	54(3)	1(3)	-19(2)	-4(2)
C(4)	104(3)	65(3)	51(3)	-5(2)	8(3)	-17(3)
C(5)	79(3)	57(3)	67(3)	-13(3)	16(3)	5(2)
C(6)	55(2)	67(3)	52(3)	-4(2)	4(2)	6(2)
C(7)	47(2)	44(2)	40(2)	-5(2)	-1(2)	-3(2)
C(8)	56(2)	52(2)	48(3)	2(2)	-1(2)	-1(2)
C(9)	57(2)	50(3)	41(2)	-3(2)	6(2)	-4(2)
C(10)	59(2)	64(3)	60(3)	-4(2)	11(2)	-7(2)
C(11)	67(2)	88(3)	65(3)	-11(3)	13(2)	-19(3)
C(12)	106(3)	71(3)	70(3)	-16(3)	23(3)	-31(3)
C(13)	104(3)	49(3)	76(3)	-1(3)	21(3)	-6(3)
C(14)	71(2)	48(3)	60(3)	-1(2)	8(2)	0(2)
C(15)	57(2)	47(2)	46(3)	-6(2)	6(2)	2(2)
C(16)	74(2)	74(3)	64(3)	-6(2)	-18(3)	-9(2)
C(17)	60(2)	45(3)	57(3)	-6(2)	16(2)	5(2)
C(18)	77(2)	48(2)	100(4)	-10(3)	6(3)	-8(2)
C(19)	80(2)	38(2)	71(3)	1(2)	8(2)	10(2)
N(1)	50(1)	43(2)	45(2)	0(2)	1(2)	9(1)
O(1)	56(1)	48(2)	69(2)	-5(2)	10(1)	15(1)

Table S6. Anisotropic displacement parameters (Å ${}^{2}x 10{}^{3}$)for a18320. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}$ [${}^{h}2a{}^{*2}U^{11} + ... + 2 h k a{}^{*}b{}^{*}U^{12}$]

	Х	У	Z	U(eq)
H(2)	3649	8495	2924	73
H(3)	3338	8942	4194	88
H(4)	199	9660	4627	88
H(5)	-2706	9983	3765	82
H(6)	-2412	9529	2461	70
H(8)	-1984	9791	565	62
H(10)	3289	9958	1621	73
H(11)	5440	11222	1685	88
H(12)	4076	12532	1163	99
H(13)	636	12557	551	92
H(14)	-1475	11289	455	72
H(16A)	-3969	8943	232	106
H(16B)	-5565	8264	657	106
H(16C)	-3956	7939	-15	106
H(18A)	-3172	6117	1581	112
H(18B)	-3745	6431	727	112
H(18C)	-5172	6781	1438	112
H(19A)	-592	7261	2425	75
H(19B)	381	6590	1808	75

Table S7. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å 2 x 10^3) for a18320.

b) X-ray crystallographic structure and data for compound (5c')

Tuble 56. Crystal data and structure fermement for	of 101052E1_1E.		
Identification code	161032lt_pl		
Empirical formula	C22 H23 N O2		
Formula weight	333.41		
Temperature	99(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 7.345(4) Å	$\alpha = 90^{\circ}$.	
	b = 14.462(8) Å	$\beta = 92.936(12)^{\circ}$.	
	c = 17.703(10) Å	$\gamma = 90^{\circ}$.	
Volume	1878.0(18) Å ³		
Z	4		
Density (calculated)	1.179 Mg/m ³		
Absorption coefficient	0.075 mm ⁻¹		
F(000)	712		
Crystal size	0.22 x 0.20 x 0.15 mm ³		
Theta range for data collection	1.819 to 26.455°.		
Index ranges	-9<=h<=6, -17<=k<=17, -21<=l<=22		
Reflections collected	13355		
Independent reflections	3792 [R(int) = 0.0843]		
Completeness to theta = 25.242°	99.7 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9484 and 0.6665		
Refinement method	Full-matrix least-squares on H	72	
Data / restraints / parameters	3792 / 0 / 230		
Goodness-of-fit on F ²	1.049		
Final R indices [I>2sigma(I)]	R1 = 0.0638, $wR2 = 0.1605$		
R indices (all data)	R1 = 0.0910, wR2 = 0.1780		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.261 and -0.319 e.Å - ³		

	X	у	Z	U(eq)
O(1)	9665(2)	2364(1)	4131(1)	29(1)
O(2)	12382(2)	2148(1)	3636(1)	34(1)
N(1)	4502(2)	2971(1)	2511(1)	26(1)
C(1)	13555(3)	5924(2)	1942(2)	38(1)
C(2)	11840(3)	5348(2)	1986(1)	28(1)
C(3)	10385(3)	5642(2)	2398(1)	30(1)
C(4)	8799(3)	5126(2)	2423(1)	29(1)
C(5)	8613(3)	4275(2)	2045(1)	24(1)
C(6)	6957(3)	3695(1)	2079(1)	24(1)
C(7)	5975(3)	3535(1)	2706(1)	24(1)
C(8)	6248(3)	3873(2)	3488(1)	27(1)
C(9)	7787(3)	3708(2)	3903(1)	28(1)
C(10)	9331(3)	3141(2)	3615(1)	29(1)
C(11)	11241(3)	1902(2)	4057(1)	26(1)
C(12)	11386(3)	1058(2)	4547(1)	32(1)
C(13)	8168(4)	4115(2)	4674(2)	44(1)
C(14)	4694(3)	4450(2)	3774(2)	36(1)
C(15)	4532(3)	2733(1)	1770(1)	24(1)
C(16)	6051(3)	3188(1)	1470(1)	24(1)
C(17)	11656(3)	4504(2)	1605(1)	27(1)
C(18)	10078(3)	3974(2)	1634(1)	25(1)
C(19)	6309(3)	3097(2)	697(1)	28(1)
C(20)	5115(3)	2559(2)	262(1)	32(1)
C(21)	3648(3)	2095(2)	575(1)	31(1)
C(22)	3341(3)	2178(2)	1330(1)	29(1)

Table S9. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å 2 x 10³) for 161032LT_PL. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(11)	1.349(3)
O(1)-C(10)	1.461(3)
O(2)-C(11)	1.204(3)
N(1)-C(15)	1.358(3)
N(1)-C(7)	1.384(3)
N(1)-H(20)	0.8791
C(1)-C(2)	1.515(3)
C(1)-H(1)	0.9800
C(1)-H(12)	0.9800
C(1)-H(13)	0.9800
C(2)-C(3)	1.392(3)
C(2)-C(17)	1.397(3)
C(3)-C(4)	1.385(3)
C(3)-H(14)	0.9500
C(4)-C(5)	1.404(3)
C(4)-H(15)	0.9500
C(5)-C(18)	1.399(3)
C(5)-C(6)	1.481(3)
C(6)-C(7)	1.374(3)
C(6)-C(16)	1.439(3)
C(7)-C(8)	1.471(3)
C(8)-C(9)	1.338(3)
C(8)-C(14)	1.522(3)
C(9)-C(13)	1.501(4)
C(9)-C(10)	1.509(3)
C(10)-H(21)	0.9900
C(10)-H(22)	0.9900
C(11)-C(12)	1.498(3)
C(12)-H(2)	0.9800
C(12)-H(3)	0.9800
C(12)-H(23)	0.9800
C(13)-H(4)	0.9800
C(13)-H(5)	0.9800
C(13)-H(6)	0.9800

Table S10. Bond lengths [Å] and angles [°] for $161032LT_PL$.

C(14)-H(7)	0.9800
C(14)-H(8)	0.9800
C(14)-H(9)	0.9800
C(15)-C(22)	1.394(3)
C(15)-C(16)	1.421(3)
C(16)-C(19)	1.397(3)
C(17)-C(18)	1.393(3)
C(17)-H(11)	0.9500
C(18)-H(10)	0.9500
C(19)-C(20)	1.377(3)
C(19)-H(19)	0.9500
C(20)-C(21)	1.407(3)
C(20)-H(18)	0.9500
C(21)-C(22)	1.372(3)
C(21)-H(17)	0.9500
C(22)-H(16)	0.9500
C(11)-O(1)-C(10)	115.97(16)
C(15)-N(1)-C(7)	109.81(18)
C(15)-N(1)-H(20)	125.1
C(7)-N(1)-H(20)	125.1
C(2)-C(1)-H(1)	109.5
C(2)-C(1)-H(12)	109.5
H(1)-C(1)-H(12)	109.5
C(2)-C(1)-H(13)	109.5
H(1)-C(1)-H(13)	109.5
H(12)-C(1)-H(13)	109.5
C(3)-C(2)-C(17)	117.5(2)
C(3)-C(2)-C(1)	121.5(2)
C(17)-C(2)-C(1)	121.0(2)
C(4)-C(3)-C(2)	121.4(2)
C(4)-C(3)-H(14)	119.3
C(2)-C(3)-H(14)	119.3
C(3)-C(4)-C(5)	121.2(2)
C(3)-C(4)-H(15)	119.4
C(5)-C(4)-H(15)	119.4

C(18)-C(5)-C(4)	117.5(2)
C(18)-C(5)-C(6)	120.0(2)
C(4)-C(5)-C(6)	122.50(19)
C(7)-C(6)-C(16)	106.18(19)
C(7)-C(6)-C(5)	126.4(2)
C(16)-C(6)-C(5)	127.4(2)
C(6)-C(7)-N(1)	109.5(2)
C(6)-C(7)-C(8)	130.7(2)
N(1)-C(7)-C(8)	119.82(19)
C(9)-C(8)-C(7)	121.9(2)
C(9)-C(8)-C(14)	122.8(2)
C(7)-C(8)-C(14)	115.3(2)
C(8)-C(9)-C(13)	122.9(2)
C(8)-C(9)-C(10)	122.7(2)
C(13)-C(9)-C(10)	114.3(2)
O(1)-C(10)-C(9)	108.20(18)
O(1)-C(10)-H(21)	110.1
C(9)-C(10)-H(21)	110.1
O(1)-C(10)-H(22)	110.1
C(9)-C(10)-H(22)	110.1
H(21)-C(10)-H(22)	108.4
O(2)-C(11)-O(1)	122.8(2)
O(2)-C(11)-C(12)	124.7(2)
O(1)-C(11)-C(12)	112.51(18)
C(11)-C(12)-H(2)	109.5
C(11)-C(12)-H(3)	109.5
H(2)-C(12)-H(3)	109.5
C(11)-C(12)-H(23)	109.5
H(2)-C(12)-H(23)	109.5
H(3)-C(12)-H(23)	109.5
C(9)-C(13)-H(4)	109.5
C(9)-C(13)-H(5)	109.5
H(4)-C(13)-H(5)	109.5
C(9)-C(13)-H(6)	109.5
H(4)-C(13)-H(6)	109.5
H(5)-C(13)-H(6)	109.5

C(8)-C(14)-H(7)	109.5
C(8)-C(14)-H(8)	109.5
H(7)-C(14)-H(8)	109.5
C(8)-C(14)-H(9)	109.5
H(7)-C(14)-H(9)	109.5
H(8)-C(14)-H(9)	109.5
N(1)-C(15)-C(22)	130.1(2)
N(1)-C(15)-C(16)	107.2(2)
C(22)-C(15)-C(16)	122.7(2)
C(19)-C(16)-C(15)	118.1(2)
C(19)-C(16)-C(6)	134.6(2)
C(15)-C(16)-C(6)	107.3(2)
C(18)-C(17)-C(2)	121.5(2)
C(18)-C(17)-H(11)	119.2
C(2)-C(17)-H(11)	119.2
C(17)-C(18)-C(5)	120.8(2)
C(17)-C(18)-H(10)	119.6
C(5)-C(18)-H(10)	119.6
C(20)-C(19)-C(16)	119.1(2)
C(20)-C(19)-H(19)	120.5
C(16)-C(19)-H(19)	120.5
C(19)-C(20)-C(21)	121.9(2)
C(19)-C(20)-H(18)	119.1
C(21)-C(20)-H(18)	119.1
C(22)-C(21)-C(20)	120.6(2)
C(22)-C(21)-H(17)	119.7
C(20)-C(21)-H(17)	119.7
C(21)-C(22)-C(15)	117.6(2)
C(21)-C(22)-H(16)	121.2
C(15)-C(22)-H(16)	121.2

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
O(1)	25(1)	29(1)	34(1)	4(1)	6(1)	-2(1)	
O(2)	26(1)	39(1)	37(1)	5(1)	9(1)	-3(1)	
N(1)	21(1)	24(1)	34(1)	4(1)	7(1)	-1(1)	
C(1)	29(1)	30(1)	55(2)	6(1)	-2(1)	-6(1)	
C(2)	22(1)	24(1)	38(1)	11(1)	-3(1)	-3(1)	
C(3)	33(1)	19(1)	38(1)	1(1)	0(1)	-2(1)	
C(4)	27(1)	24(1)	35(1)	1(1)	6(1)	2(1)	
C(5)	21(1)	20(1)	32(1)	5(1)	4(1)	0(1)	
C(6)	21(1)	19(1)	31(1)	3(1)	6(1)	3(1)	
C(7)	21(1)	18(1)	35(1)	2(1)	6(1)	3(1)	
C(8)	25(1)	18(1)	39(1)	1(1)	10(1)	-2(1)	
C(9)	29(1)	21(1)	36(1)	-2(1)	7(1)	-7(1)	
C(10)	26(1)	29(1)	34(1)	6(1)	4(1)	-3(1)	
C(11)	24(1)	27(1)	26(1)	-3(1)	2(1)	-4(1)	
C(12)	32(1)	29(1)	34(1)	3(1)	3(1)	-3(1)	
C(13)	42(2)	42(2)	48(2)	-13(1)	1(1)	-13(1)	
C(14)	35(1)	26(1)	47(2)	-3(1)	12(1)	2(1)	
C(15)	22(1)	21(1)	30(1)	5(1)	5(1)	5(1)	
C(16)	18(1)	19(1)	35(1)	3(1)	4(1)	3(1)	
C(17)	19(1)	26(1)	38(1)	8(1)	4(1)	3(1)	
C(18)	24(1)	20(1)	32(1)	4(1)	4(1)	1(1)	
C(19)	23(1)	29(1)	33(1)	3(1)	6(1)	3(1)	
C(20)	30(1)	35(1)	30(1)	-1(1)	4(1)	4(1)	
C(21)	29(1)	28(1)	36(1)	-2(1)	-2(1)	3(1)	
C(22)	21(1)	23(1)	43(2)	4(1)	3(1)	2(1)	

Table S11. Anisotropic displacement parameters (Å $^2x 10^3$) for 161032LT_PL. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	X	у	Z	U(eq)	
H(20)	3671	2794	2821	31	
H(1)	13387	6378	1534	57	
H(12)	14585	5520	1839	57	
H(13)	13802	6246	2423	57	
H(14)	10480	6208	2669	36	
H(15)	7820	5352	2700	34	
H(21)	9004	2911	3099	35	
H(22)	10442	3525	3594	35	
H(2)	10989	515	4252	47	
H(3)	10608	1132	4977	47	
H(23)	12654	975	4734	47	
H(4)	7021	4315	4882	66	
H(5)	8984	4648	4637	66	
H(6)	8749	3648	5008	66	
H(7)	5015	5107	3754	54	
H(8)	4483	4277	4298	54	
H(9)	3585	4338	3456	54	
H(11)	12630	4287	1320	33	
H(10)	9996	3401	1372	30	
H(19)	7293	3403	474	34	
H(18)	5289	2498	-263	38	
H(17)	2861	1722	261	37	
H(16)	2353	1868	1546	35	

Table S12. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å 2 x 10 3) for 161032LT_PL.

c) X-ray crystallographic structure and data for compound (6h)

······································			
Identification code	d18946		
Empirical formula	C23 H21 N O		
Formula weight	327.41	327.41	
Temperature	200(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P c a 21		
Unit cell dimensions	a = 24.6486(10) Å	α= 90°.	
	b = 6.5021(3) Å	β= 90°.	
	c = 10.8527(4) Å	$\gamma = 90^{\circ}.$	
Volume	1739.34(12) Å ³		
Z	4		
Density (calculated)	1.250 Mg/m^3		
Absorption coefficient	0.076 mm ⁻¹		
F(000)	696		
Crystal size	0.15 x 0.13 x 0.03 mm ³	0.15 x 0.13 x 0.03 mm ³	
Theta range for data collection	2.50 to 25.04°.	2.50 to 25.04°.	
Index ranges	-29<=h<=29, -7<=k<=7	-29<=h<=29, -7<=k<=7, -12<=l<=12	
Reflections collected	24731		
Independent reflections	3059 [R(int) = 0.0476]	3059 [R(int) = 0.0476]	
Completeness to theta = 25.04°	99.6 %	99.6 %	
Absorption correction	multi-scan	multi-scan	
Max. and min. transmission	0.9977 and 0.9887		
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²	
Data / restraints / parameters	3059 / 1 / 229		
Goodness-of-fit on F ²	1.141		
Final R indices [I>2sigma(I)]	R1 = 0.0337, wR2 = 0.0	0835	
R indices (all data)	R1 = 0.0473, wR2 = 0.0	R1 = 0.0473, wR2 = 0.0951	
Absolute structure parameter	-0.7(17)	-0.7(17)	
Extinction coefficient	0.029(3)	0.029(3)	
Largest diff. peak and hole	0.118 and -0.145 e.Å $^{\rm -3}$	0.118 and -0.145 e.Å ⁻³	

Table S13. Crystal data and structure refinement for d18946.

	Х	У	Ζ	U(eq)
 C(1)	6828(1)	7172(3)	4114(2)	40(1)
C(2)	6691(1)	6838(3)	2807(2)	39(1)
C(3)	6795(1)	8462(3)	1873(2)	52(1)
C(4)	6494(1)	4940(3)	2679(2)	40(1)
C(5)	6310(1)	3921(3)	1517(2)	52(1)
C(6)	6487(1)	3834(3)	3892(2)	41(1)
C(7)	5920(1)	3099(3)	4294(2)	46(1)
C(8)	5483(1)	4711(3)	4209(2)	42(1)
C(9)	5460(1)	6335(3)	5015(2)	41(1)
C(10)	5058(1)	7884(3)	4915(2)	40(1)
C(11)	4667(1)	7746(4)	3965(2)	45(1)
C(12)	4688(1)	6041(4)	3160(2)	53(1)
C(13)	5080(1)	4592(4)	3275(2)	53(1)
C(14)	4275(1)	9334(4)	3847(2)	54(1)
C(15)	4272(1)	10959(4)	4626(2)	56(1)
C(16)	4650(1)	11067(4)	5597(2)	53(1)
C(17)	5032(1)	9575(3)	5736(2)	46(1)
C(18)	6823(1)	4979(3)	5994(2)	40(1)
C(19)	6964(1)	2996(3)	6361(2)	46(1)
C(20)	7079(1)	2610(4)	7596(2)	52(1)
C(21)	7054(1)	4164(4)	8451(2)	54(1)
C(22)	6915(1)	6122(4)	8082(2)	52(1)
C(23)	6794(1)	6539(4)	6862(2)	47(1)
N(1)	6709(1)	5384(2)	4735(2)	39(1)
O(1)	7025(1)	8735(2)	4565(2)	51(1)

Table S14. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å $^2x \ 10^3$) for d18946. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-O(1)	1.229(2)
C(1)-N(1)	1.375(3)
C(1)-C(2)	1.474(3)
C(2)-C(4)	1.334(3)
C(2)-C(3)	1.485(3)
C(3)-H(3A)	0.9800
C(3)-H(3B)	0.9800
C(3)-H(3C)	0.9800
C(4)-C(5)	1.494(3)
C(4)-C(6)	1.501(3)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-N(1)	1.468(3)
C(6)-C(7)	1.539(3)
C(6)-H(6)	1.0000
C(7)-C(8)	1.506(3)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(8)-C(9)	1.372(3)
C(8)-C(13)	1.421(3)
C(9)-C(10)	1.417(3)
C(9)-H(9)	0.9500
C(10)-C(11)	1.415(3)
C(10)-C(17)	1.417(3)
C(11)-C(12)	1.413(3)
C(11)-C(14)	1.420(3)
C(12)-C(13)	1.356(3)
C(12)-H(12)	0.9500
C(13)-H(13)	0.9500
C(14)-C(15)	1.353(3)
C(14)-H(14)	0.9500
C(15)-C(16)	1.408(4)
C(15)-H(15)	0.9500

Table S15. Bond lengths [Å] and angles $[\circ]$ for d18946.

C(16)-C(17)	1.361(3)
C(16)-H(16)	0.9500
C(17)-H(17)	0.9500
C(18)-C(23)	1.386(3)
C(18)-C(19)	1.394(3)
C(18)-N(1)	1.419(3)
C(19)-C(20)	1.393(3)
C(19)-H(19)	0.9500
C(20)-C(21)	1.374(3)
C(20)-H(20)	0.9500
C(21)-C(22)	1.378(3)
C(21)-H(21)	0.9500
C(22)-C(23)	1.384(3)
C(22)-H(22)	0.9500
C(23)-H(23)	0.9500
O(1)-C(1)-N(1)	125.99(18)
O(1)-C(1)-C(2)	126.6(2)
N(1)-C(1)-C(2)	107.41(16)
C(4)-C(2)-C(1)	108.66(18)
C(4)-C(2)-C(3)	130.48(19)
C(1)-C(2)-C(3)	120.84(17)
C(2)-C(3)-H(3A)	109.5
C(2)-C(3)-H(3B)	109.5
H(3A)-C(3)-H(3B)	109.5
C(2)-C(3)-H(3C)	109.5
H(3A)-C(3)-H(3C)	109.5
H(3B)-C(3)-H(3C)	109.5
C(2)-C(4)-C(5)	127.52(19)
C(2)-C(4)-C(6)	110.86(18)
C(5)-C(4)-C(6)	121.61(17)
C(4)-C(5)-H(5A)	109.5
C(4)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(4)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5

H(5B)-C(5)-H(5C)	109.5
N(1)-C(6)-C(4)	102.33(15)
N(1)-C(6)-C(7)	112.10(16)
C(4)-C(6)-C(7)	114.05(17)
N(1)-C(6)-H(6)	109.4
C(4)-C(6)-H(6)	109.4
C(7)-C(6)-H(6)	109.4
C(8)-C(7)-C(6)	114.57(16)
C(8)-C(7)-H(7A)	108.6
C(6)-C(7)-H(7A)	108.6
C(8)-C(7)-H(7B)	108.6
C(6)-C(7)-H(7B)	108.6
H(7A)-C(7)-H(7B)	107.6
C(9)-C(8)-C(13)	118.0(2)
C(9)-C(8)-C(7)	121.71(18)
C(13)-C(8)-C(7)	120.32(18)
C(8)-C(9)-C(10)	121.74(18)
C(8)-C(9)-H(9)	119.1
C(10)-C(9)-H(9)	119.1
C(11)-C(10)-C(17)	118.42(19)
C(11)-C(10)-C(9)	119.21(19)
C(17)-C(10)-C(9)	122.38(18)
C(12)-C(11)-C(10)	118.34(19)
C(12)-C(11)-C(14)	122.7(2)
C(10)-C(11)-C(14)	119.0(2)
C(13)-C(12)-C(11)	121.0(2)
C(13)-C(12)-H(12)	119.5
C(11)-C(12)-H(12)	119.5
C(12)-C(13)-C(8)	121.7(2)
C(12)-C(13)-H(13)	119.1
C(8)-C(13)-H(13)	119.1
C(15)-C(14)-C(11)	120.9(2)
C(15)-C(14)-H(14)	119.5
C(11)-C(14)-H(14)	119.5
C(14)-C(15)-C(16)	120.3(2)
C(14)-C(15)-H(15)	119.9
C(16)-C(15)-H(15)	119.9
-------------------	------------
C(17)-C(16)-C(15)	120.3(2)
C(17)-C(16)-H(16)	119.8
C(15)-C(16)-H(16)	119.8
C(16)-C(17)-C(10)	121.0(2)
C(16)-C(17)-H(17)	119.5
C(10)-C(17)-H(17)	119.5
C(23)-C(18)-C(19)	119.72(19)
C(23)-C(18)-N(1)	120.58(19)
C(19)-C(18)-N(1)	119.70(18)
C(20)-C(19)-C(18)	119.5(2)
C(20)-C(19)-H(19)	120.2
C(18)-C(19)-H(19)	120.2
C(21)-C(20)-C(19)	120.5(2)
C(21)-C(20)-H(20)	119.7
C(19)-C(20)-H(20)	119.7
C(20)-C(21)-C(22)	119.6(2)
C(20)-C(21)-H(21)	120.2
C(22)-C(21)-H(21)	120.2
C(21)-C(22)-C(23)	120.9(2)
C(21)-C(22)-H(22)	119.6
C(23)-C(22)-H(22)	119.6
C(22)-C(23)-C(18)	119.7(2)
C(22)-C(23)-H(23)	120.2
C(18)-C(23)-H(23)	120.2
C(1)-N(1)-C(18)	125.94(16)
C(1)-N(1)-C(6)	110.74(15)
C(18)-N(1)-C(6)	123.13(16)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	39(1)	34(1)	47(1)	-2(1)	0(1)	0(1)
C(2)	37(1)	38(1)	42(1)	0(1)	-1(1)	2(1)
C(3)	55(1)	47(1)	54(1)	10(1)	-8(1)	-4(1)
C(4)	42(1)	40(1)	40(1)	-2(1)	3(1)	2(1)
C(5)	66(1)	48(1)	43(1)	-4(1)	-1(1)	-4(1)
C(6)	48(1)	33(1)	40(1)	-4(1)	3(1)	-2(1)
C(7)	53(1)	39(1)	47(1)	-1(1)	2(1)	-9(1)
C(8)	44(1)	42(1)	40(1)	1(1)	5(1)	-11(1)
C(9)	40(1)	49(1)	33(1)	1(1)	1(1)	-9(1)
C(10)	35(1)	48(1)	36(1)	3(1)	5(1)	-8(1)
C(11)	38(1)	60(1)	37(1)	3(1)	4(1)	-9(1)
C(12)	44(1)	72(2)	42(1)	-3(1)	-4(1)	-11(1)
C(13)	52(1)	63(2)	44(1)	-8(1)	0(1)	-16(1)
C(14)	38(1)	77(2)	47(1)	11(1)	0(1)	-1(1)
C(15)	45(1)	63(1)	59(1)	8(1)	9(1)	6(1)
C(16)	47(1)	53(1)	60(1)	-1(1)	11(1)	-2(1)
C(17)	41(1)	53(1)	43(1)	-2(1)	1(1)	-7(1)
C(18)	36(1)	45(1)	38(1)	-2(1)	3(1)	-1(1)
C(19)	47(1)	46(1)	44(1)	0(1)	5(1)	1(1)
C(20)	48(1)	59(1)	48(1)	7(1)	5(1)	2(1)
C(21)	41(1)	82(2)	39(1)	2(1)	1(1)	-5(1)
C(22)	44(1)	71(2)	42(1)	-14(1)	4(1)	-2(1)
C(23)	45(1)	50(1)	46(1)	-9(1)	2(1)	1(1)
N(1)	45(1)	35(1)	38(1)	-4(1)	0(1)	-3(1)
O(1)	62(1)	36(1)	55(1)	-6(1)	-5(1)	-6(1)

Table S16. Anisotropic displacement parameters (Å $^2x 10^3$)for d18946. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	х	У	Z	U(eq)
H(3A)	7034	7920	1230	78
H(3B)	6968	9646	2270	78
H(3C)	6450	8892	1504	78
H(5A)	6287	4944	856	78
H(5B)	5952	3302	1647	78
H(5C)	6570	2847	1286	78
H(6)	6738	2629	3854	49
H(7A)	5814	1913	3774	56
H(7B)	5941	2609	5156	56
H(9)	5721	6423	5657	49
H(12)	4423	5907	2529	63
H(13)	5086	3468	2716	64
H(14)	4010	9254	3212	65
H(15)	4015	12031	4518	67
H(16)	4638	12188	6158	64
H(17)	5285	9668	6394	55
H(19)	6980	1915	5773	55
H(20)	7177	1261	7848	62
H(21)	7131	3890	9293	65
H(22)	6903	7200	8672	63
H(23)	6691	7888	6621	56

Table S17. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å $^2x \ 10^3$) for d18946.

S77

S79

5.048

 $\overbrace{}^{1.997}_{1.993}$

7, 388 7, 367 7, 367 7, 367 7, 283 7, 283 7, 289 7, 289 7, 284 6, 533 6, 533 6, 533 6, 533 6, 533 6, 533 6, 533 6, 533 6, 533 6, 533 6, 533 6, 532 6, 533 6, 532 6,

.05

.50

S101

.3.709 4.181

2.009

1.636

-1.095

-3.901

-1.083

.1.700

1

-1.689

-1.082

-1.114

 $\checkmark \stackrel{1.752}{1.749}$

-

.....

 $\bigwedge^{1.695}_{1.693}$

4.305 4.293 4.281 4.269 4.266

3

.1719

N

Т

3.947 3.919 3.862 3.833 2.326 2.097 1.737

-1.166

3.691 3.662 3.601 3.571

3.680 3.651 3.526 3.497 |||

S146

1

3.923 3.893 3.886 3.885 3.855

5112

-1.190

4.065
4.020
4.006
3.961 4.537

3.187

Ĩ.

2.199

-1.184

-2.115

-1.154

 $\bigwedge ^{1.847}_{1.841}$

-3.895

1.952

2.371

1.960

S184

1.663

Ť.

____19.44 ____16.70

1.942

S194

-1.880

-1.734

3.677

-3.844

S202

26.74 22.83 18.12

2.429

-1.651

 $\begin{array}{c}
4.233 \\
4.221 \\
4.210 \\
4.198 \\
\end{array}$ -3.611

·1.583

2.550 2.550 2.550 2.550 2.550 2.550 2.550 $\bigwedge^{1.814}_{1.811}$

-4.113

62.70

12.38

20.83

35.00

120004000000 1200004000001

147.5 136.0 136.0 135.5 135.5 133.0 133.0 133.0 133.0 133.0 133.0 122.5 122.2 122.2 122.2 122.1 122.0 122.0 121.4 121.4 121.4

1.6441.632

3.668 3.665 3.657 3.657 3.654

¹H NOE of compound 4a

¹H NOE of compound **4a**

