Supporting Information

Insights into the Oil Adsorption and Cyclodextrin Extraction Process on Rough Silica Surface by Molecular Dynamics Simulation

Xinzhe Zhu^{†,‡}, Daoyi Chen^{†,‡}, Yan Zhang^{†,‡}, Guozhong Wu^{*,†,‡}

[†] Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China

^{*} School of Environment, Tsinghua University, Beijing 100084, China

*Corresponding Author:

Phone: +86 0755 2603 0544

Fax: +86 0755 2603 0544

Email: w.guozhong@sz.tsinghua.edu.cn

Fig. S1 Side view of the unit structure of the silica groove with width (w), height (h), step width (s), and length (l).

Species	Atom type		Non-bond parameters			
Species			charge	Sigma (nm)	Epsilon(kJ/mol)	
Silica	Tetrahedral silicon		2.100	0.37064	7.70065×10^{-6}	
	Bridging oxygen		-1.050	0.35532	0.6495	
	Hydroxyl oxygen		-0.950	0.35532	0.6495	
	Hydroxyl hydrogen		0.425	0	0	
Dodecane	Carbon in CH3 group		-0.270	0.36527	0.32635	
	Carbon in CH ₂ group		-0.180	0.35814	0.23430	
	Carbon in CH1 group		-0.090	0.35636	0.13389	
	Hydrogen in CH3 group		0.090	0.23876	0.10042	
	Hydrogen in CH2 group		0.090	0.23876	0.14644	
		Hydrogen in CH1 group	0.090	0.23876	0.18828	
β–cyclodextrin	Carbon in the ring connected with OH		0.140	0.35636	0.13389	
	Carbon in the ring		0.100	0.35636	0.13389	
	Carbon in the ring connected with another		0.300	0.35636	0.13389	
	Carbon in the chains		0.050	0.35814	0.23430	
	Oxygen in the ring		-0.400	0.29399	0.41840	
	Oxygen in the OH group		-0.660	0.31538	0.63639	
	Hydrogen in the chains		0.090	0.04000	0.19246	
	Hydrogen in the rings		0.100	0.04000	0.19246	
	Hydrogen in the OH group		0.430	0.04000	0.19246	
Bonds for clayFF force field			b ()		1- (1-1/m - 1/m - ²)	
Species i		Species j	$\mathfrak{v}_0(\mathbf{nm})$		κ _b (κJ/mol/nm)	
Hydroxyl oxygen		Hydroxyl hydrogen	0.1		463532.808	

Table S1 Force field parameters for dodecane, silica and β -cyclodextrin in this study

Fig. S2 Density profile of oil along the z-direction on the smooth silica surface. Red dotted line represents the top of the silica surface.

Fig. S3 Snapshots of oil (green) during adsorption on the rough silica surface (R₄)

Fig. S4 Snapshots of the oil (green) detachment process from the smooth silica surface (R₀) in water (red)

Fig. S5 Snapshots of oil droplet (green) movement above the silica surface (R₃) in water (red)

Fig. S6 Snapshots of oil droplet (green) movement above the silica surface (R₂) in water (red).

Fig. S7 Molecular configuration of the residual oil molecules inside the silica groove (top: surface R_2 ; bottom: surface R_3)

Fig. ition of oil clusters inside the groove. Panel A shows only one cruster because an on nolecules are parallel to each other. Panel B shows two clusters which contains 3 and 8 oil molecules, respectively. Panel C shows three clusters which contains 1, 4 and 8 oil molecules, respectively. Panel D shows four clusters which contains 3, 1, 4, and 3 oil molecules, respectively.

D

Fig. S9 Penetration of water (red) through the interfaces between the sequestrated oil (green) and the internal well of silica grooves (R₂).