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Figure S1. Cross-sectional SEM images of (PVA1s/TA)s0@ (PVA145k-GO/TA) 0.
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Figure S2. QCM results for the growth of first ten bilayers of PVAwus/TA and PV Auask-
GO/TA.

Height (nm)

04

0 300 600 900
Position (nm)

Figure S3. a) The AFM image and b) thickness profiles of GO.
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Figure S4. Compilation of UV-vis spectra of PVA4-GO/TA during the growth of first 10

bilayers on a) (PVAsn/TA)s0and b) glass substrates.
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Figure S5. Compilation of UV-vis spectra of PV Aus-GO/TA during the growth of the first
10 bilayers on a) (PVAwsd/TA)so and b) glass substrates. The insets are the plotting of

absorbance at 345 nm against the number of bilayers.

and b)

glass substrates.

Figure S6. SEM images of (PVAuws-GO/TA)1o growing on a) (PVAuws/TA)so




Figure S7. Cross-sectional SEM images of a) (PVA1s/ TA)so@ (PVA1s-GO/TA) 10
and b) (PVA1ws-GO/TA)1o on glass substrates.

Figure S8. Optical images of a) (PVA/TA)s0@(PVA4-GO/ITA)10

and b)) (PVAmITA)se@(PVA-GOITA)w  with  different
scratch/healing cycles.
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Figure S9. Optical and SEM images of a) (PVAuws/TA)3@(PVAusk-
GO/TA)lo, b) (PVA145|</TA)50@(PVA145k-GO/TA)1o and C)
(PVAws/ TA)s0@(PVA15-GO/TA) 10 with a 50 um wide cut throughout the
film before and after immersion in water for 30 min.




Figure S10. Optical images of a) (PVAwusk/ TA)s0@(PVAwsk-GO/TA)10 and
b) (PVAwsd/TA)s@(PVAws-GOI/TA)w with different cutting-healing
cycles. The insets indicate the emergence of unrecovered surface scratch.
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Figure S11. Optical images of a) (PVAm/TA)ss@(PVAm-GO/TA)w, b)
(PVALd TA)s0@(PVA15k-GO/TA) 10, €) (PVAITA)s@(PVAm-GO/TA)w, and d)
(PVAwsd TA)s0@(PVA1sk-GO/TA)1o scratched by a sand paper before and after immersion
in water for 30 min.
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Figure S12. Optical and SEM images of a) (PVAws/TA)so@(PVAws-GOITA)s, b)
(PVAwsd/ TA)so@(PVA145k-GO/TA)s €) (PVA1sk/ TA)s0@(PVA1s-GO/TA)12 and d)
(PV A5/ TA)50@(PVA14s-GOITA)20 with a 50 um wide cut throughout the film before
and after immersion in water for 30 min.
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Figure S13. Optical and SEM images of a) (PVAs/TA)z0, b) (PV A TA)s0,
) (PVAITA)sg0, d) (PVA1sk/ TA)30, €) (PVALsi/ TA)so and ) (PVAwsd/ TA)so
with a 50 um wide cut throughout the film before and after immersion in
water for 30 min.
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(PVA145-GO/TA)z0

Figure S14 Optical and SEM images of a) (PVAs-GO/TA)1w, b) (PVAm-
GO/TA)so, €) (PVAsu-GOITA)s, d) (PVAws-GO/TA)w, €) (PVAussk-
GO/TA)s and f) (PVA1s-GO/TA)g with a 50 um wide cut throughout the
film before and after immersion in water for 30 min.
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Figure S15. a) Surface and b) cross-sectional SEM images of (PVA4/TA)so with a 50 um
wide cut throughout the film before and after immersion in water for different lengths of
time.

Figure S16. a) Surface and b) cross-sectional SEM images of (PVA4#«-GO/TA)1 with a 50
pm wide cut throughout the film before and after immersion in water for different lengths of
time.

Details about the development of theoretical model: The flux (J) into and out of the

crack area (Figure S17) can be expressed as
Jin = Akin(c1 — ¢3) = hwky (¢ — ¢2) (1)
Jout = A’kout(cz — C3) = ZWkoye(c; — ¢3) (2)

where kin and Koyt are the mass transfer coefficients into and out of the crack with the
cross-sectional areas of A and 4, respectively; h is the thickness of the film, z is the
length of the crack and w is the width of the film; ci, c2 and c3 are polymer

concentrations in the film, crack area and solution, respectively.

We also have

dc
VS Mlin(es — €2) ~ Ak — €5) (3)
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where V is the volume of the crack part.

We use the initial condition (t = 0; c2 = 0) to integrate the mass balance which
gives

o = Akincy + A'koyecs (1 B e_(Akin+I;4!kout)t) @
27 Ak + Akoye

Here c1 can be regarded as a constant and cs can be essentially zero due to the
large volume of the solution. Also consider that Kout is much smaller than kin due to the
interactions between PVA and TA, we have

AKin

C, =0 (1 - e_(T)t) (5)
After a time of te, an equilibrium is established,

Jin = Jout (6)
So
hwki,(c1 — ¢3) = zwkyy(c; — ¢3) (7)

Combining (5) and (7) gives

kinA kinA

hkl-ne_( 4 )tecl = zk,y: (1 — e_(T)te> c1(8)

Then we have

SOOI

¢ = hkg, + zk

)

According to (9), te is in reverse proportion to kout. On the other hand, suppose
that after a time period (tr), a complete repair can be achieved. According to (5), tr is
mainly determined by and reversely proportional to kin.

As at the equilibrium, no further accumulation in the crack area can be expected,

to make a full recovery, it is necessary to have

t, <t,
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Figure S17. A side view of the self-healing process on an e-LBL film with a
thickness of h and a width of w (not shown in this schematic drawing). The white
rectangular region denotes the crack with a width of z. ¢1, c2 and c3 are polymer
concentrations in the film, crack area and solution, respectively. kin and kout are the
mass transfer coefficients into and out of the crack area.

Figure S18. Cross-sectional fluorescent optical images of a) (PVAuws/TA)s and
(PVA1s-GO/TA)y after their immersion into PV Auask-c solutions for 5 min and 1 min,

respectively. The immersion time is chosen to avoid complete diffusion across the film so
that the diffusion rate can be calculated.
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Figure S19. TGA results for GO, (PVAuwsk/TA)s0, (PVAsud/TA)s0, (PVALsk-GO/TA)10 and
(PVA7-GO/TA)10.
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The determination of GO contents in the film: Thermogravimetric analysis (TGA)
was used to calculate the contents of GO in I-LBL film (Figure S19). (PVA/TA)so can
decompose completely when reaching 620 °C under oxygen atmosphere, however,
GO does not fully decompose at a temperature as high as 800 °C. The above fact
provides a simple method to calculate the percentage of GO in (PVA-GO/TA)1o. In
Eqg. 1, a and b are the remaining contents of GO and (PVA-GO/TA)o at 800 °C,
respectively; x is therefore the contents of GO in (PVA-GO/TA)1o0.

ax=D>b (D

According to Eq. 1, there are approximately 30 % and 35 % GO in (PVAsx-
GO/TA)w0and (PVAwsk-GO/TA)10, respectively.
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Figure S20. IR spectra of PVA47, TA and the solutions after
immersion of (PVAs/TA)s0, (PVATA)s0@(PVAs-GOI/TA)s,
(PVA47/TA)50@(PVA47x-GO/TA) 10, (PVA4ITA)50@ (PVA47k-
GO/TA)20, and (PVA47k-GO/TA)10 into 50 mL DI water for 30 min.
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Figure S21. Surface fluorescent optical images
of (PVA145k/TA)50(PVA145k'C/TA) after the
additional depositions of a) 0, b) 5, ¢) 10 and d)
20 bilayers of PVA15-GO/TA and e) 5 and f) 10
bilayers of PVAwusd/ TA.
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Figure S22. The plotting of TA absorbance against different lengths of immersion time in 50
mL water for a) (PVA4x-GO/TA)10 and (PVAs/TA)s with different bilayers of (PVAs-
GO/TA) and b) (PVA1sk-GO/TA)10 and (PVAwus/TA)se with different bilayers of (PVAu14sk-
GO/TA) on the ton.
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b)

d)

Figure S23 a,b) Cross-sectional and c,d) surface fluorescent optical images of a,c) (PVAs-C-
GO/TA)(PVA4#-GOITA)e and b,d) (PVA4sn-c-GO/TA)(PVA4-GO/TA)1e. The dotted surface
fluorescence may be due to the high roughness of I-LBL film growing on glass substrates. The

insets in a and b indicate the thickness of the film.

Figure S24. a,b) Cross-sectional and c,d) surface fluorescent optical images of a,c) (PVAussk-C-
GO/TA)(PVAmsk-GO/TA)g and b,d) (PVA145|<-C-GO/TA)(PVA145|<-GO/TA)19. The dotted surface
fluorescence may be due to the high roughness of I-LBL film growing on glass substrates. The

insets in a and b indicate the thickness of the film.

Figure S25. SEM images of a) (PVAm/TA)se@(PVAs-GO/TA)2 and b)
(PV ALK/ TA)50@(PVAsk-GO/TA)-0.




Figure S26. Optical and SEM images of a) (PEG/TA)so, b) (PEG-GO/TA)10 and
c) (PEG/TA)se@(PEG-GO/TA)10 with a 50 pum wide cut throughout the film
before and after immersion in water for 30 min.
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Figure S27. Load-displacement curves for a) (PVAuwusd/TA)s0, (PVA1sk-GOITA)o,
(PVAL5d TA)s50@(PVAwsc-GO/TA)0 and b) the crack area after self-healing for
(PVA47k/ TA)so@(PVA47k'GO/ TA)10 and (PVA145k/ TA)SO@(PVA145k-GO/ TA)10.
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Modulus E
Samples (GPa) Hardness H (GPa)
(PVA145K/ TA)s0 8.7£0.1 0.44+0.02
(PVA15k-GO/TA)10 26.7+0.4 2.18+0.11
(PVA5K TA)50@(PVA145k-GO/TA) 10 25.1+2.2 2.11+0.22

Table S1. A summary of modulus and hardness for different multilayers consisting of
PV Aussk obtained from nanoindentation.

Modulus E Hardness H

Modes Samples (GPa) (GPa)
Before self- (PVAngc')A})TSZ%DlgPVA“"' 31.4+1.8 2.27+0.09
healing (PVAlASké;TC))A%?,OA\?l gPVA145k- 25 149 2 2 115022
After self- (PVAMkéTC))A})'I?Z\C?lgPVAMk- 31.3£1.9 2.2120.05
healing (PVAlASkéTCI;EIE,Z\?lgPVAlASk' 94340 8 2 00+0.26

Table S2. A summary of modulus and hardness for hybrid films before and after self-
healing obtained from nanoindentation.




