Supporting Information ## An Epidermis-Like Hierarchical Smart Coating with a Hardness of Tooth Enamel Xiaodong Qi,¹ Dan Zhang,² Zhongbao Ma,¹ Wenxin Cao,³ Ying Hou,¹ Jiaqi Zhu,³ Yang Gan² and Ming Yang¹,* ¹Key Laboratory of Microsystems and Micronanostructures Manufacturing, ²School of chemistry and Chemical Engineering, ³Center for Composite Materials and Structures, Harbin Institute of Technology, 2 Yikuang Street, Harbin 150080, P.R. China ## A List of Figures and Tables - **Figure S1.** Cross-sectional SEM images of (PVA_{145k}/TA)₅₀@(PVA_{145k}-GO/TA)₁₀. - **Figure S2.** QCM results for the growth of first ten bilayers of PVA_{145k}/TA and $PVA_{145k}-GO/TA$. - **Figure S3.** a) The AFM image and b) thickness profiles of GO. - **Figure S4.** Compilation of UV-vis spectra of PVA_{47k}-GO/TA during the growth of first 10 bilayers on a) (PVA_{47k}/TA)₅₀ and b) glass substrates. - **Figure S5.** Compilation of UV-vis spectra of PVA_{145k}-GO/TA during the growth of the first 10 bilayers on a) $(PVA_{145k}/TA)_{50}$ and b) glass substrates. The insets are the plotting of absorbance at 345 nm against the number of bilayers. - **Figure S6.** SEM images of (PVA_{145k}-GO/TA)₁₀ growing on a) (PVA_{145k}/TA)₅₀ and b) glass substrates. - **Figure S7.** Cross-sectional SEM images of a) (PVA_{145k}/TA)₅₀@(PVA_{145k}-GO/TA)₁₀ and b) (PVA_{145k}-GO/TA)₁₀ on glass substrates. - **Figure S8.** Optical images of a) $(PVA_{47k}/TA)_{50}@(PVA_{47k}-GO/TA)_{10}$ and b) $(PVA_{47k}/TA)_{80}@(PVA_{47k}-GO/TA)_{10}$ with different scratch/healing cycles. - **Figure S9.** Optical and SEM images of a) $(PVA_{145k}/TA)_{30}@(PVA_{145k}-GO/TA)_{10}$, b) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{10}$ and c) $(PVA_{145k}/TA)_{80}@(PVA_{145k}-GO/TA)_{10}$ with a 50 μ m wide cut throughout the film before and after immersion in water for 30 min. - **Figure S10.** Optical images of a) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{10}$ and b) $(PVA_{145k}/TA)_{80}@(PVA_{145k}-GO/TA)_{10}$ with different cutting-healing cycles. The insets indicate the emergence of unrecovered surface scratch. - **Figure S11.** Optical images of a) $(PVA_{47k}/TA)_{50}@(PVA_{47k}-GO/TA)_{10}$, b) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{10}$, c) $(PVA_{47k}/TA)_{80}@(PVA_{47k}-GO/TA)_{10}$, and d) $(PVA_{145k}/TA)_{80}@(PVA_{145k}-GO/TA)_{10}$ scratched by a sand paper before and after immersion in water for 30 min. - **Figure S12.** Optical and SEM images of a) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_5$, b) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_8$ c) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{12}$ and d) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{20}$ with a 50 μ m wide cut throughout the film before and after immersion in water for 30 min. - **Figure S13.** Optical and SEM images of a) $(PVA_{47k}/TA)_{30}$, b) $(PVA_{47k}/TA)_{50}$, c) $(PVA_{47k}/TA)_{80}$, d) $(PVA_{145k}/TA)_{30}$, e) $(PVA_{145k}/TA)_{50}$ and f) $(PVA_{145k}/TA)_{80}$ with a 50 μ m wide cut throughout the film before and after immersion in water for 30 min. - **Figure S14** Optical and SEM images of a) $(PVA_{47k}\text{-}GO/TA)_{10}$, b) $(PVA_{47k}\text{-}GO/TA)_{50}$, c) $(PVA_{47k}\text{-}GO/TA)_{80}$, d) $(PVA_{145k}\text{-}GO/TA)_{10}$, e) $(PVA_{145k}\text{-}GO/TA)_{50}$ and f) $(PVA_{145k}\text{-}GO/TA)_{80}$ with a 50 μm wide cut throughout the film before and after immersion in water for 30 min. - **Figure S15.** a) Surface and b) Cross-sectional SEM images of $(PVA_{47k}/TA)_{50}$ coatings with a 50 μ m wide cut through the film before and after immersion in water for different lengths of time. - **Figure S16.** a) Surface and b) Cross-sectional SEM images of $(PVA_{47k}\text{-}GO/TA)_{10}$ coatings with a 50 μ m wide cut through the film before and after immersion in water for different lengths of time. - **Figure S17.** A side view of the self-healing process on an e-LBL film with a thickness of h and a width of w (not shown in this schematic drawing). The white rectangular region denotes the crack with a width of z. c_1 , c_2 and c_3 are polymer concentrations in the film, crack area and solution, respectively. k_{in} and k_{out} are the mass transfer coefficients into and out of the crack area. - **Figure S18.** Cross-sectional fluorescent optical images of a) $(PVA_{145k}/TA)_{50}$ and $(PVA_{145k}-GO/TA)_{10}$ after their immersion into PVA_{145k} -c solutions for 5 min and 1 min, respectively. The immersion time is chosen to avoid complete diffusion across the film so that the diffusion rate can be calculated. - **Figure S19**. TGA results for GO, $(PVA_{145k}/TA)_{50}$, $(PVA_{47k}/TA)_{50}$, $(PVA_{145k}-GO/TA)_{10}$ and $(PVA_{47k}-GO/TA)_{10}$. - **Figure S20.** IR spectra of PVA_{47k}, TA and the solutions after immersion of (PVA_{47k}/TA)₅₀, (PVA_{47k}/TA)₅₀@(PVA_{47k}-GO/TA)₅, (PVA_{47k}/TA)₅₀@(PVA_{47k}-GO/TA)₁₀, (PVA_{47k}/TA)₅₀@(PVA_{47k}-GO/TA)₂₀, and (PVA_{47k}-GO/TA)₁₀ into 50 mL DI water for 30 min. - **Figure S21.** Surface fluorescent optical images of $(PVA_{145k}/TA)_{50}(PVA_{145k}-c/TA)$ after the additional depositions of a) 0, b) 5, c) 10 and d) 20 bilayers of PVA_{145k} -GO/TA and e) 5 and f) 10 bilayers of PVA_{145k}/TA . - **Figure S22.** The plotting of TA absorbance against different lengths of immersion time in 50 mL water for a) $(PVA_{47k}\text{-}GO/TA)_{10}$ and $(PVA_{47k}\text{-}TA)_{50}$ with different bilayers of $(PVA_{47k}\text{-}GO/TA)$ and b) $(PVA_{145k}\text{-}GO/TA)_{10}$ and $(PVA_{145k}\text{-}TA)_{50}$ with different bilayers of $(PVA_{145k}\text{-}GO/TA)$ on the top. - **Figure S23.** a,b) Cross-sectional and c,d) surface fluorescent optical images of a,c) (PVA_{47k}-c-GO/TA)(PVA_{47k}-GO/TA)₉ and b,d) (PVA_{47k}-c-GO/TA)(PVA_{47k}-GO/TA)₁₉. The dotted surface fluorescence may be due to the high roughness of 1-LBL film growing on glass substrates. The insets in a and b indicate the thickness of the film. **Figure S24.** a,b) Cross-sectional and c,d) surface fluorescent optical images of a,c) (PVA_{145k}-c-GO/TA)(PVA_{145k}-GO/TA)₉ and b,d) (PVA_{145k}-c-GO/TA)(PVA_{145k}-GO/TA)₁₉. The dotted surface fluorescence may be due to the high roughness of l-LBL film growing on glass substrates. The insets in a and b indicate the thickness of the film. **Figure S25.** SEM images of a) $(PVA_{47k}/TA)_{50}@(PVA_{47k}-GO/TA)_{20}$ and b) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{20}$. **Figure S26.** Optical and SEM images of a) (PEG/TA)₅₀, b) (PEG-GO/TA)₁₀ and c) (PEG/TA)₅₀@(PEG-GO/TA)₁₀ coatings with a 50 μ m wide cut through the film before and after immersion in water for different lengths of time. **Figure S27.** Load-displacement curves for a) $(PVA_{145k}/TA)_{50}$, $(PVA_{145k}-GO/TA)_{10}$, $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{10}$ and b) the crack area after self-healing for $(PVA_{47k}/TA)_{50}@(PVA_{47k}-GO/TA)_{10}$ and $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{10}$. **Table S1.** A summary of modulus and hardness for different multilayers consisting of PVA_{145k} obtained from nanoindentation. **Table S2.** A summary of modulus and hardness for hybrid films before and after self-healing obtained from nanoindentation. Figure S1. Cross-sectional SEM images of $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{10}$. **Figure S2.** QCM results for the growth of first ten bilayers of PVA_{145k} /TA and PVA_{145k} -GO/TA. Figure S3. a) The AFM image and b) thickness profiles of GO. **Figure S4.** Compilation of UV-vis spectra of PVA_{47k}-GO/TA during the growth of first 10 bilayers on a) $(PVA_{47k}/TA)_{50}$ and b) glass substrates. **Figure S5.** Compilation of UV-vis spectra of PVA_{145k}-GO/TA during the growth of the first 10 bilayers on a) $(PVA_{145k}/TA)_{50}$ and b) glass substrates. The insets are the plotting of absorbance at 345 nm against the number of bilayers. **Figure S6.** SEM images of $(PVA_{145k}\text{-}GO/TA)_{10}$ growing on a) $(PVA_{145k}\text{/}TA)_{50}$ and b) glass substrates. **Figure S7.** Cross-sectional SEM images of a) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{10}$ and b) $(PVA_{145k}-GO/TA)_{10}$ on glass substrates. **Figure S8.** Optical images of a) $(PVA_{47k}/TA)_{50}@(PVA_{47k}-GO/TA)_{10}$ and b) $(PVA_{47k}/TA)_{80}@(PVA_{47k}-GO/TA)_{10}$ with different scratch/healing cycles. **Figure S9.** Optical and SEM images of a) $(PVA_{145k}/TA)_{30}@(PVA_{145k}-GO/TA)_{10}$, b) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{10}$ and c) $(PVA_{145k}/TA)_{80}@(PVA_{145k}-GO/TA)_{10}$ with a 50 μ m wide cut throughout the film before and after immersion in water for 30 min. **Figure S10.** Optical images of a) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{10}$ and b) $(PVA_{145k}/TA)_{80}@(PVA_{145k}-GO/TA)_{10}$ with different cutting-healing cycles. The insets indicate the emergence of unrecovered surface scratch. **Figure S11.** Optical images of a) $(PVA_{47k}/TA)_{50}@(PVA_{47k}-GO/TA)_{10}$, b) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{10}$, c) $(PVA_{47k}/TA)_{80}@(PVA_{47k}-GO/TA)_{10}$, and d) $(PVA_{145k}/TA)_{80}@(PVA_{145k}-GO/TA)_{10}$ scratched by a sand paper before and after immersion in water for 30 min. **Figure S12.** Optical and SEM images of a) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_5$, b) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_8$ c) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{12}$ and d) $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{20}$ with a 50 μ m wide cut throughout the film before and after immersion in water for 30 min. **Figure S13.** Optical and SEM images of a) $(PVA_{47k}/TA)_{30}$, b) $(PVA_{47k}/TA)_{50}$, c) $(PVA_{47k}/TA)_{80}$, d) $(PVA_{145k}/TA)_{30}$, e) $(PVA_{145k}/TA)_{50}$ and f) $(PVA_{145k}/TA)_{80}$ with a 50 μ m wide cut throughout the film before and after immersion in water for 30 min. **Figure S14** Optical and SEM images of a) $(PVA_{47k}\text{-}GO/TA)_{10}$, b) $(PVA_{47k}\text{-}GO/TA)_{50}$, c) $(PVA_{47k}\text{-}GO/TA)_{80}$, d) $(PVA_{145k}\text{-}GO/TA)_{10}$, e) $(PVA_{145k}\text{-}GO/TA)_{50}$ and f) $(PVA_{145k}\text{-}GO/TA)_{80}$ with a 50 μm wide cut throughout the film before and after immersion in water for 30 min. **Figure S15.** a) Surface and b) cross-sectional SEM images of $(PVA_{47k}/TA)_{50}$ with a 50 μ m wide cut throughout the film before and after immersion in water for different lengths of time. **Figure S16.** a) Surface and b) cross-sectional SEM images of $(PVA_{47k}\text{-}GO/TA)_{10}$ with a 50 μm wide cut throughout the film before and after immersion in water for different lengths of time. **Details about the development of theoretical model**: The flux (J) into and out of the crack area (Figure S17) can be expressed as $$J_{in} = Ak_{in}(c_1 - c_2) = hwk_{in}(c_1 - c_2)$$ (1) $$J_{out} = A'k_{out}(c_2 - c_3) = zwk_{out}(c_2 - c_3)$$ (2) where k_{in} and k_{out} are the mass transfer coefficients into and out of the crack with the cross-sectional areas of A and A, respectively; h is the thickness of the film, z is the length of the crack and w is the width of the film; c_1 , c_2 and c_3 are polymer concentrations in the film, crack area and solution, respectively. We also have $$V\frac{dc_2}{dt} = Ak_{in}(c_1 - c_2) - A'k_{out}(c_2 - c_3)$$ (3) where V is the volume of the crack part. We use the initial condition (t = 0; $c_2 = 0$) to integrate the mass balance which gives $$c_2 = \frac{Ak_{in}c_1 + A'k_{out}c_3}{Ak_{in} + A'k_{out}} \left(1 - e^{-\left(\frac{Ak_{in} + A'k_{out}}{V}\right)t}\right)$$ (4) Here c_1 can be regarded as a constant and c_3 can be essentially zero due to the large volume of the solution. Also consider that k_{out} is much smaller than k_{in} due to the interactions between PVA and TA, we have $$c_2 = c_1 \left(1 - e^{-\left(\frac{Ak_{in}}{V}\right)t} \right)$$ (5) After a time of t_e , an equilibrium is established, $$J_{in} = J_{out}$$ (6) So $$hwk_{in}(c_1 - c_2) = zwk_{out}(c_2 - c_3)$$ (7) Combining (5) and (7) gives $$hk_{in}e^{-\left(\frac{k_{in}A}{V}\right)t_e}c_1=zk_{out}\left(1-e^{-\left(\frac{k_{in}A}{V}\right)t_e}\right)c_1(8)$$ Then we have $$e^{-\left(\frac{k_{in}A}{V}\right)t_e} = \frac{zk_{out}}{hk_{in} + zk_{out}}$$ (9) According to (9), t_e is in reverse proportion to k_{out} . On the other hand, suppose that after a time period (t_r), a complete repair can be achieved. According to (5), t_r is mainly determined by and reversely proportional to k_{in} . As at the equilibrium, no further accumulation in the crack area can be expected, to make a full recovery, it is necessary to have $$t_r < t_\rho$$ **Figure S17.** A side view of the self-healing process on an e-LBL film with a thickness of h and a width of w (not shown in this schematic drawing). The white rectangular region denotes the crack with a width of z. c_1 , c_2 and c_3 are polymer concentrations in the film, crack area and solution, respectively. k_{in} and k_{out} are the mass transfer coefficients into and out of the crack area. **Figure S18.** Cross-sectional fluorescent optical images of a) $(PVA_{145k}/TA)_{50}$ and $(PVA_{145k}-GO/TA)_{10}$ after their immersion into PVA_{145k} -c solutions for 5 min and 1 min, respectively. The immersion time is chosen to avoid complete diffusion across the film so that the diffusion rate can be calculated. **Figure S19**. TGA results for GO, $(PVA_{145k}/TA)_{50}$, $(PVA_{47k}/TA)_{50}$, $(PVA_{145k}-GO/TA)_{10}$ and $(PVA_{47k}-GO/TA)_{10}$. The determination of GO contents in the film: Thermogravimetric analysis (TGA) was used to calculate the contents of GO in 1-LBL film (Figure S19). (PVA/TA)₅₀ can decompose completely when reaching 620 °C under oxygen atmosphere, however, GO does not fully decompose at a temperature as high as 800 °C. The above fact provides a simple method to calculate the percentage of GO in (PVA-GO/TA)₁₀. In Eq. 1, a and b are the remaining contents of GO and (PVA-GO/TA)₁₀ at 800 °C, respectively; x is therefore the contents of GO in (PVA-GO/TA)₁₀. $$ax = b \tag{1}$$ According to Eq. 1, there are approximately 30 % and 35 % GO in $(PVA_{47k}-GO/TA)_{10}$ and $(PVA_{145k}-GO/TA)_{10}$, respectively. **Figure S20.** IR spectra of PVA_{47k}, TA and the solutions after immersion of (PVA_{47k}/TA)₅₀, (PVA_{47k}/TA)₅₀@(PVA_{47k}-GO/TA)₅, (PVA_{47k}/TA)₅₀@(PVA_{47k}-GO/TA)₁₀, (PVA_{47k}/TA)₅₀@(PVA_{47k}-GO/TA)₁₀ into 50 mL DI water for 30 min. **Figure S21.** Surface fluorescent optical images of $(PVA_{145k}/TA)_{50}(PVA_{145k}-c/TA)$ after the additional depositions of a) 0, b) 5, c) 10 and d) 20 bilayers of PVA_{145k} -GO/TA and e) 5 and f) 10 bilayers of PVA_{145k} -TA. **Figure S22.** The plotting of TA absorbance against different lengths of immersion time in 50 mL water for a) $(PVA_{47k}\text{-}GO/TA)_{10}$ and $(PVA_{47k}\text{-}TA)_{50}$ with different bilayers of $(PVA_{47k}\text{-}GO/TA)$ and b) $(PVA_{145k}\text{-}GO/TA)_{10}$ and $(PVA_{145k}\text{-}TA)_{50}$ with different bilayers of $(PVA_{145k}\text{-}GO/TA)$ on the top. **Figure S23** a,b) Cross-sectional and c,d) surface fluorescent optical images of a,c) (PVA_{47k}-c-GO/TA)(PVA_{47k}-GO/TA)₉ and b,d) (PVA_{47k}-c-GO/TA)(PVA_{47k}-GO/TA)₁₉. The dotted surface fluorescence may be due to the high roughness of l-LBL film growing on glass substrates. The insets in a and b indicate the thickness of the film. **Figure S24.** a,b) Cross-sectional and c,d) surface fluorescent optical images of a,c) (PVA_{145k}-c-GO/TA)(PVA_{145k}-GO/TA)₉ and b,d) (PVA_{145k}-c-GO/TA)(PVA_{145k}-GO/TA)₁₉. The dotted surface fluorescence may be due to the high roughness of 1-LBL film growing on glass substrates. The insets in a and b indicate the thickness of the film. **Figure S26.** Optical and SEM images of a) (PEG/TA)₅₀, b) (PEG-GO/TA)₁₀ and c) (PEG/TA)₅₀@(PEG-GO/TA)₁₀ with a 50 μ m wide cut throughout the film before and after immersion in water for 30 min. **Figure S27.** Load-displacement curves for a) $(PVA_{145k}/TA)_{50}$, $(PVA_{145k}-GO/TA)_{10}$, $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{10}$ and b) the crack area after self-healing for $(PVA_{47k}/TA)_{50}@(PVA_{47k}-GO/TA)_{10}$ and $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{10}$. | Samples | Modulus <i>E</i> (GPa) | Hardness H (GPa) | |--|------------------------|------------------| | $(PVA_{145k}/TA)_{50}$ | 8.7±0.1 | 0.44 ± 0.02 | | $(PVA_{145k}\text{-}GO/TA)_{10}$ | 26.7 ± 0.4 | 2.18 ± 0.11 | | $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{10}$ | 25.1 ± 2.2 | 2.11 ± 0.22 | **Table S1.** A summary of modulus and hardness for different multilayers consisting of PVA_{145k} obtained from nanoindentation. | Modes | Samples | Modulus <i>E</i> (GPa) | Hardness <i>H</i> (GPa) | |------------------------|--|------------------------|-------------------------| | Before self- | $(PVA_{47k}/TA)_{50}@(PVA_{47k}-GO/TA)_{10}$ | 31.4±1.8 | 2.27±0.09 | | | $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{10}$ | 25.1±2.2 | 2.11±0.22 | | After self-
healing | $(PVA_{47k}/TA)_{50}@(PVA_{47k}-GO/TA)_{10}$ | 31.3±1.9 | 2.21±0.05 | | | $(PVA_{145k}/TA)_{50}@(PVA_{145k}-GO/TA)_{10}$ | 24.3±0.8 | 2.09±0.26 | **Table S2.** A summary of modulus and hardness for hybrid films before and after self-healing obtained from nanoindentation.