# Insights on the mechanisms of H<sub>2</sub>S retention at low concentration on impregnated carbons

Randreanne L. C. B. Menezes; Karine O. Moura; Sebastião M. P. de Lucena; Diana C. S. Azevedo; Moises Bastos-Neto\*

Universidade Federal do Ceará - Departamento de Engenharia Química, Campus do Pici, bl. 709, 60760-400, Fortaleza - CE, Brazil

## CORRESPONDING AUTHOR

e-mail: mbn@ufc.br, telephone: +55 85 33669240, fax: +55 85 33669610

## S1. CHARACTERIZATION OF THE IMPREGNATED PHASES



Figure S1 – X-Ray diffractograms of the samples K43, K43-Fe and K43-Na.



Figure S2 – FTIR spectra of the samples K43, K43-Fe and K43-Na.



Figure S3 – XPS spectrum of Fe2p3/2 for the sample K43-Fe.



**Figure S4** – XPS spectrum of Na1s for the sample K43-Na.

Table S1 - Atomic concentration table results from XPS.

| Sample/Species | C1s   | O1s   | Na1s | Al2p | Si2p | Fe2p |
|----------------|-------|-------|------|------|------|------|
| Desorex K43    | 91.72 | 6.82  | 0.01 | 0.51 | 0.82 | 0.13 |
| Desorex K43-Fe | 90.59 | 7.10  | 0.18 | 0.68 | 1.15 | 0.30 |
| Desorex K43-Na | 85.21 | 10.49 | 0.59 | 1.26 | 2.22 | 0.23 |



**Figure S5** – Adsorption isotherms of  $CO_2$  at 0, 6, 25, 50 and 75 °C and pressures up to 5 bar were obtained with three different experimental systems.

### S2. MOLECULAR SIMULATION DETAILS

There is no experimental data of  $H_2S$  adsorption heat on graphite surface, thus the reference used to calculate the carbon- $H_2S$  interaction parameter was the experimental adsorption heat of 40 kJ/mol obtained at infinite dilution on Westvaco's WVA 1100 activated carbon (Bagreev et al. <sup>1</sup>). Instead of a graphite surface, the calculation was done in a pore of 7 Å center-to-center (approximately equal to an effective pore of 4 Å) assuming that the experimental value at infinite dilution corresponds to the heat released during the filling of the smaller (more energetic) pores of the WVA 1100 carbon. For  $\varepsilon_{solid-solid} = 36.4$  K, the value of 40 kJ/mol is obtained at the same concentration of 500 ppm  $H_2S$  used in the experiment. Therefore the Lennard-Jones parameters used were: carbon with  $\sigma = 3,4$  Å (Steele) and a new  $\varepsilon_{s-s} = 36.4$  K (this work). Molecule of  $H_2S$ : model of Kristof and Liszi <sup>2</sup>.

With the corrected epsilon value we calculated the adsorbed amounts of  $H_2S$  from 0 to 4000 ppm (0 to 400 Pa) in the center-to-center pores of 7 and 8.9 Å (approximately 4 and 6 Å effective) (Figure S6). An important aspect in the isotherms of figure S6 is the abrupt drop in the adsorption capacity between the pores of 7 and 8.9 Å.



**Figure S6** – Simulated adsorption isotherms of H<sub>2</sub>S at 298 K on slit pores of 7 and 8.9 Å.

According to the methodology used previously (Lucena et al.  $^3$ ), from the isotherms simulated in the individual pores it is possible to predict the adsorption isotherm in activated carbons. The total gas uptake ( $Q_{total}$ ) for a carbon is determined by the sum of the products of the total volume of each pore ( $V_{pt}$ ) by the simulated uptake ( $q_{pore}$ ) in each pore:

$$Q_{total} = \sum_{m=1}^{M} V_{pt_m} q_{pore_m}$$

We observed that the PSDs of the carbons K43, K43-Na and K43-Fe can be approximated by two pores of 7 and 8.9 Å (approximately 4 and 6 Å effective) without significant loss of precision. Thus, every volume determined by the  $CO_2$  isotherm at 273 was attributed to the pore of 7 Å and every volume of  $N_2$  at 77 K to the pore of 8.9 Å.

The final physical adsorption values of  $H_2S$  at 298 K and 100 ppm are 0.2, 0.18 and 0.3 mg/g on the activated carbons K43, K43-Fe and K43-Na respectively (Table S2)

**Table S2** – Simulated total uptake of  $H_2S$  ( $Q_{total}$ ) on the activated carbons at 298 K and 100 ppm (10 Pa).

|                                                                     | K43                             |                                                      | K43-Fe                          |                                                      | K43-Na                          |                                |  |  |
|---------------------------------------------------------------------|---------------------------------|------------------------------------------------------|---------------------------------|------------------------------------------------------|---------------------------------|--------------------------------|--|--|
|                                                                     | $V_p CO_2$ (cm <sup>3</sup> /g) | $\begin{array}{c} V_p \ N_2 \\ (cm^3/g) \end{array}$ | $V_p CO_2$ (cm <sup>3</sup> /g) | $\begin{array}{c} V_p \ N_2 \\ (cm^3/g) \end{array}$ | $V_p CO_2$ (cm <sup>3</sup> /g) | $V_p N_2$ (cm <sup>3</sup> /g) |  |  |
|                                                                     | 0.0207                          | 0.37                                                 | 0.0177                          | 0.36                                                 | 0.0426                          | 0.3                            |  |  |
|                                                                     | Pores                           |                                                      |                                 |                                                      |                                 |                                |  |  |
|                                                                     | 7 Å                             | 8.9 Å                                                | 7 Å                             | 8.9 Å                                                | 7 Å                             | 8.9 Å                          |  |  |
| Theoretical H <sub>2</sub> S<br>Adsorbed<br>(mmol/cm <sup>3</sup> ) | 0.1621                          | 0.0068                                               | 0.1621                          | 0.0068                                               | 0.1621                          | 0.0068                         |  |  |
| q <sub>pore</sub> (mmol/g)                                          | 0.0033                          | 0.0025                                               | 0.0025                          | 0.0024                                               | 0.0069                          | 0.0020                         |  |  |
| Q <sub>total</sub> (mg/g)                                           | 0.2                             |                                                      | 0.18                            |                                                      | 0.3                             |                                |  |  |

The force field was validated for a complete H<sub>2</sub>S isotherm on the Norit RB4 activated carbon (experimental data extracted from Cruz et al. <sup>4</sup>). Unlike the carbons K43-Fe and K43-Na, the activated carbon Norit RB4 has no impregnating material. It has an area of 1320 m<sup>2</sup>/g and a wider PSD, reason for which it is better represented by 3 pores with center-to-center sizes of 7, 8.9 and 18.5 Å (approximately 4, 6 and 15.5 Å effective). Based on the RB4 PSD, the determined pore volumes are 0.0178, 0.166 and 0.389 cm<sup>3</sup>/g for the pores of 7, 8.9 and 18.5 Å, respectively. The experimental and simulated H<sub>2</sub>S isotherms at 298 K are compared in Figure S7, showing a very good match between both curves.



**Figure S7** – Comparison between simulated and experimental data for H<sub>2</sub>S adsorption on carbon Norit RB4 – Model validation.

#### References

- (1) Bagreev, A.; Adib, F.; Bandosz, T. J., Initial heats of H2S adsorption on activated carbons: Effect of surface features. *Journal of Colloid and Interface Science*, **1999**, 219, 327–332.
- (2) Kristof, T.; Liszi, J., Effective intermolecular potential for fluid hydrogen sulfide. *J. Phys. Chem.* B, **1997**, 101, 5480–5483.
- (3) Lucena, S. M. P.; Gomes, V. A.; Gonçalves, D. V.; Mileo, P. G. M.; Silvino, P. F. G., Molecular simulation of the accumulation of alkanes from natural gas in carbonaceous materials. *Carbon*, **2013**, 61, 624–632.
- (4) Cruz, A.J.; Pires, J.; Carvalho, A.P.; de Carvalho, M.B., Physical adsorption of H2S related to the conservation of works of art: The role of the pore structure at low relative pressure. *Adsorption*, **2005**, 11, 569–576.