Insights on the mechanisms of H₂S retention at low concentration on impregnated carbons Randreanne L. C. B. Menezes; Karine O. Moura; Sebastião M. P. de Lucena; Diana C. S. Azevedo; Moises Bastos-Neto* Universidade Federal do Ceará - Departamento de Engenharia Química, Campus do Pici, bl. 709, 60760-400, Fortaleza - CE, Brazil ## CORRESPONDING AUTHOR e-mail: mbn@ufc.br, telephone: +55 85 33669240, fax: +55 85 33669610 ## S1. CHARACTERIZATION OF THE IMPREGNATED PHASES Figure S1 – X-Ray diffractograms of the samples K43, K43-Fe and K43-Na. Figure S2 – FTIR spectra of the samples K43, K43-Fe and K43-Na. Figure S3 – XPS spectrum of Fe2p3/2 for the sample K43-Fe. **Figure S4** – XPS spectrum of Na1s for the sample K43-Na. Table S1 - Atomic concentration table results from XPS. | Sample/Species | C1s | O1s | Na1s | Al2p | Si2p | Fe2p | |----------------|-------|-------|------|------|------|------| | Desorex K43 | 91.72 | 6.82 | 0.01 | 0.51 | 0.82 | 0.13 | | Desorex K43-Fe | 90.59 | 7.10 | 0.18 | 0.68 | 1.15 | 0.30 | | Desorex K43-Na | 85.21 | 10.49 | 0.59 | 1.26 | 2.22 | 0.23 | **Figure S5** – Adsorption isotherms of CO_2 at 0, 6, 25, 50 and 75 °C and pressures up to 5 bar were obtained with three different experimental systems. ### S2. MOLECULAR SIMULATION DETAILS There is no experimental data of H_2S adsorption heat on graphite surface, thus the reference used to calculate the carbon- H_2S interaction parameter was the experimental adsorption heat of 40 kJ/mol obtained at infinite dilution on Westvaco's WVA 1100 activated carbon (Bagreev et al. ¹). Instead of a graphite surface, the calculation was done in a pore of 7 Å center-to-center (approximately equal to an effective pore of 4 Å) assuming that the experimental value at infinite dilution corresponds to the heat released during the filling of the smaller (more energetic) pores of the WVA 1100 carbon. For $\varepsilon_{solid-solid} = 36.4$ K, the value of 40 kJ/mol is obtained at the same concentration of 500 ppm H_2S used in the experiment. Therefore the Lennard-Jones parameters used were: carbon with $\sigma = 3,4$ Å (Steele) and a new $\varepsilon_{s-s} = 36.4$ K (this work). Molecule of H_2S : model of Kristof and Liszi ². With the corrected epsilon value we calculated the adsorbed amounts of H_2S from 0 to 4000 ppm (0 to 400 Pa) in the center-to-center pores of 7 and 8.9 Å (approximately 4 and 6 Å effective) (Figure S6). An important aspect in the isotherms of figure S6 is the abrupt drop in the adsorption capacity between the pores of 7 and 8.9 Å. **Figure S6** – Simulated adsorption isotherms of H₂S at 298 K on slit pores of 7 and 8.9 Å. According to the methodology used previously (Lucena et al. 3), from the isotherms simulated in the individual pores it is possible to predict the adsorption isotherm in activated carbons. The total gas uptake (Q_{total}) for a carbon is determined by the sum of the products of the total volume of each pore (V_{pt}) by the simulated uptake (q_{pore}) in each pore: $$Q_{total} = \sum_{m=1}^{M} V_{pt_m} q_{pore_m}$$ We observed that the PSDs of the carbons K43, K43-Na and K43-Fe can be approximated by two pores of 7 and 8.9 Å (approximately 4 and 6 Å effective) without significant loss of precision. Thus, every volume determined by the CO_2 isotherm at 273 was attributed to the pore of 7 Å and every volume of N_2 at 77 K to the pore of 8.9 Å. The final physical adsorption values of H_2S at 298 K and 100 ppm are 0.2, 0.18 and 0.3 mg/g on the activated carbons K43, K43-Fe and K43-Na respectively (Table S2) **Table S2** – Simulated total uptake of H_2S (Q_{total}) on the activated carbons at 298 K and 100 ppm (10 Pa). | | K43 | | K43-Fe | | K43-Na | | | | |---|---------------------------------|--|---------------------------------|--|---------------------------------|--------------------------------|--|--| | | $V_p CO_2$ (cm ³ /g) | $\begin{array}{c} V_p \ N_2 \\ (cm^3/g) \end{array}$ | $V_p CO_2$ (cm ³ /g) | $\begin{array}{c} V_p \ N_2 \\ (cm^3/g) \end{array}$ | $V_p CO_2$ (cm ³ /g) | $V_p N_2$ (cm ³ /g) | | | | | 0.0207 | 0.37 | 0.0177 | 0.36 | 0.0426 | 0.3 | | | | | Pores | | | | | | | | | | 7 Å | 8.9 Å | 7 Å | 8.9 Å | 7 Å | 8.9 Å | | | | Theoretical H ₂ S
Adsorbed
(mmol/cm ³) | 0.1621 | 0.0068 | 0.1621 | 0.0068 | 0.1621 | 0.0068 | | | | q _{pore} (mmol/g) | 0.0033 | 0.0025 | 0.0025 | 0.0024 | 0.0069 | 0.0020 | | | | Q _{total} (mg/g) | 0.2 | | 0.18 | | 0.3 | | | | The force field was validated for a complete H₂S isotherm on the Norit RB4 activated carbon (experimental data extracted from Cruz et al. ⁴). Unlike the carbons K43-Fe and K43-Na, the activated carbon Norit RB4 has no impregnating material. It has an area of 1320 m²/g and a wider PSD, reason for which it is better represented by 3 pores with center-to-center sizes of 7, 8.9 and 18.5 Å (approximately 4, 6 and 15.5 Å effective). Based on the RB4 PSD, the determined pore volumes are 0.0178, 0.166 and 0.389 cm³/g for the pores of 7, 8.9 and 18.5 Å, respectively. The experimental and simulated H₂S isotherms at 298 K are compared in Figure S7, showing a very good match between both curves. **Figure S7** – Comparison between simulated and experimental data for H₂S adsorption on carbon Norit RB4 – Model validation. #### References - (1) Bagreev, A.; Adib, F.; Bandosz, T. J., Initial heats of H2S adsorption on activated carbons: Effect of surface features. *Journal of Colloid and Interface Science*, **1999**, 219, 327–332. - (2) Kristof, T.; Liszi, J., Effective intermolecular potential for fluid hydrogen sulfide. *J. Phys. Chem.* B, **1997**, 101, 5480–5483. - (3) Lucena, S. M. P.; Gomes, V. A.; Gonçalves, D. V.; Mileo, P. G. M.; Silvino, P. F. G., Molecular simulation of the accumulation of alkanes from natural gas in carbonaceous materials. *Carbon*, **2013**, 61, 624–632. - (4) Cruz, A.J.; Pires, J.; Carvalho, A.P.; de Carvalho, M.B., Physical adsorption of H2S related to the conservation of works of art: The role of the pore structure at low relative pressure. *Adsorption*, **2005**, 11, 569–576.