Supporting Information: Theory for the Liquid–Liquid Phase Separation in Aqueous Antibody Solutions

Miha Kastelic^{\dagger,\ddagger} and Vojko Vlachy^{$*,\dagger$}

 †Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI–1000 Ljubljana, Slovenia
‡Current address: National Institute of Chemistry, Hajdrihova 19, SI–1001 Ljubljana, Slovenia

E-mail: vojko.vlachy@fkkt.uni-lj.si

S1 Attraction range affects the coexistence curve

Here we show how the increase of attraction range among sites A, B, and C affects the liquid-liquid phase separation curve. This results supplement the section "The symmetric case" of the main text, therefore $\varepsilon_{AB} = \varepsilon_{AC} = \varepsilon_{BC} = \varepsilon$ and $\varepsilon_{AA} = \varepsilon_{BB} = \varepsilon_{CC} = 0$. For associated attraction range ω we assume to vary from 0.025 σ , 0.050 σ , 0.075 σ , to 0.100 σ . Next we calculate the liquid-liquid separation curves as a function of ω . Results are shown in Figure S1.

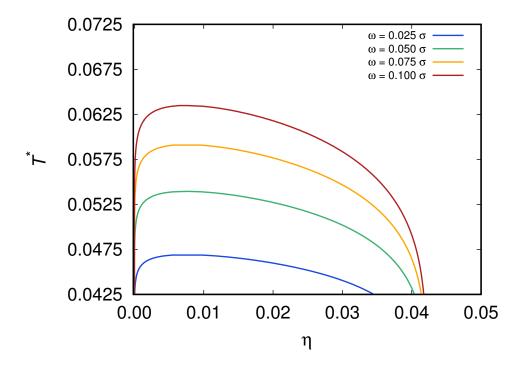


Figure S1: Liquid–liquid coexistence curves of the symmetric case ($\varepsilon_{AB} = \varepsilon_{AC} = \varepsilon_{BC} = \varepsilon$) as a function of ω , which varies in the range from 0.025 σ , 0.050 σ , 0.075 σ , to 0.100 σ . As before, $T^* = k_B T/\varepsilon$.

We see the similar trend as in Figure 3: larger ω value shift the temperature of critical point toward higher values, while the critical concentration (critical η) does not change much.