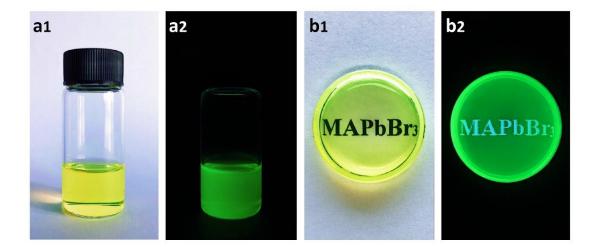
Supporting Information

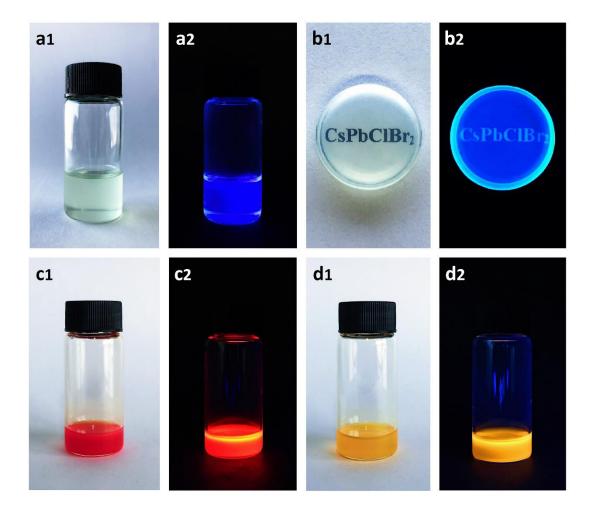
Highly Stable and Luminescent Perovskite-Polymer Composites from a Convenient and Universal Strategy

Yumeng Xin¹, Hongjie Zhao², Jiuyang Zhang¹*

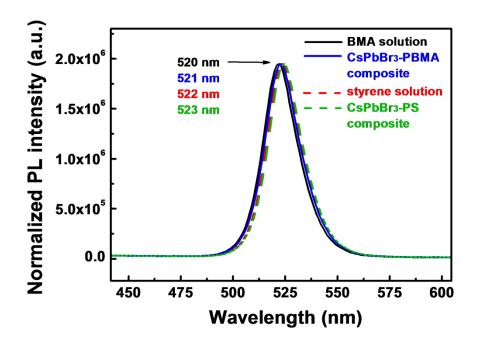
¹School of Chemistry and Chemical Engineering, Southeast University, Nanjing,

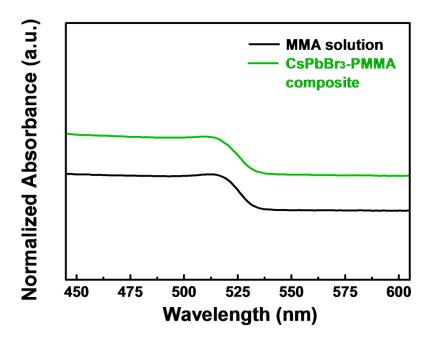

211189, PR China

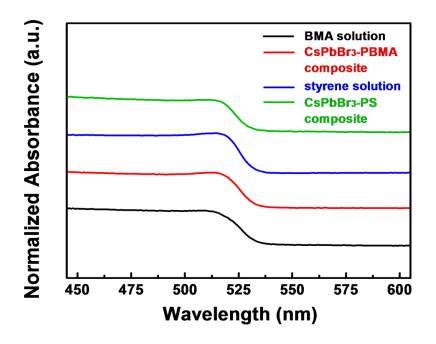
²School of Chemical Engineering & Technology, China University of Mining and

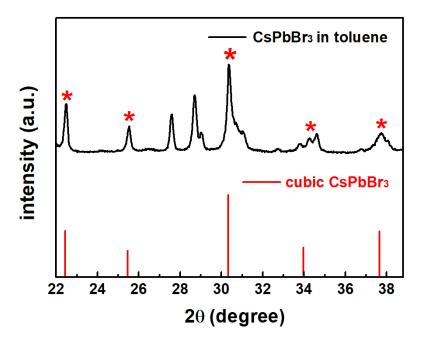

Technology, Xuzhou, 221116, PR China

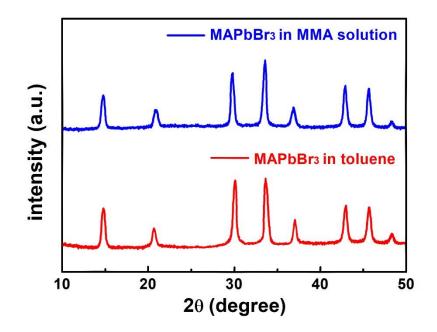
Corresponding Authors

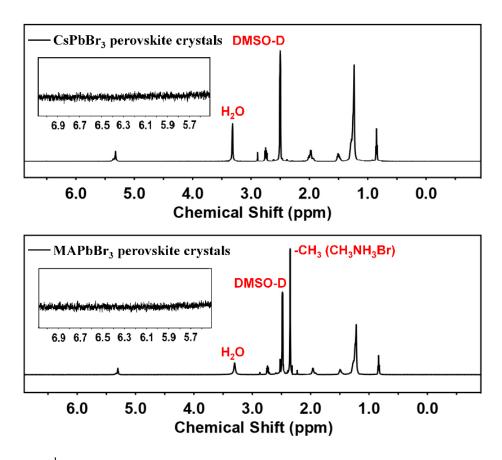

*E-mail: jiuyang@seu.edu.cn


Figure S1. Photos in room light (a1) and in UV-illumination (a2) of methylammonium lead bromide nanoparticles (MAPbBr₃) in bulk MMA; the photos of the polymerized MAPbBr₃-PMMA taken under room light (b1) and UV-illumination (b2).


Figure S2. Photos in room light (a1) and UV-illumination (a2) of CsPbClBr₂ inorganic perovskite quantum dots formed in bulk MMA; photos of disks (diameter: 3 cm) from CsPbClBr₂-PMMA composite under ambient room light (b1) and UV illumination (b2). Photos in room light (c1) and in UV-illumination (c2) of CsPbBr_{1.2}I_{1.8} inorganic perovskite quantum dots formed in toluene; the photos of CsPbBr_{1.2}I_{1.8} inorganic perovskite quantum dots formed in bulk MMA solution taken under room light (d1) and UV-illumination (d2).


Figure S3. Normalized PL spectra of emissive bulk BMA/styrene solution and the resulted CsPbBr₃-PBMA/CsPbBr₃-PS composite.


Figure S4. Normalized absorption spectra of emissive bulk MMA solution and the resulted CsPbBr₃-PMMA composite.


Figure S5. Normalized absorption spectra of emissive bulk BMA/styrene solution and the resulted CsPbBr₃-PBMA/CsPbBr₃-PS composite.

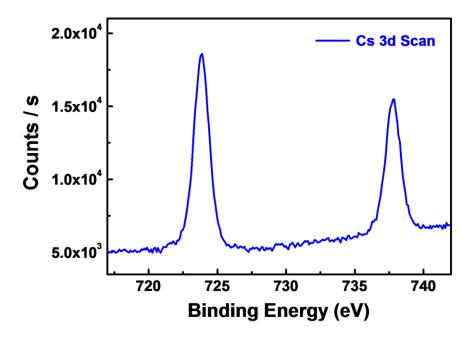

Figure S6. X-ray diffraction (XRD) patterns of CsPbBr₃ crystals obtained from toluene. The pattern is the same as CsPbBr₃ crystals obtained from MMA, indicating no small molecules of MMA incorporating into crystals.

Figure S7. X-ray diffraction (XRD) patterns of MAPbBr₃ crystals obtained from emissive bulk MMA solution and toluene. No obvious change was observed of crystals from MMA and toluene.

Figure S8. ¹H NMR spectra of CsPbBr₃ and MAPbBr₃ perovskite crystals (The inset is the zoom-in spectrum displaying signals from 6.0 to 0.0 ppm). No peaks residual MMA monomer observed in the ¹H NMR spectra (the signals in spectra were attributed to the oleylamine, oleic acid and methyl of CH₃NH₃Br, without the signals of MMA monomer.), showing that MMA did not exist in the final crystals.

Figure S9. X-ray photoelectron spectroscopy of the Cs element in the resulted CsPbBr₃-PMMA composite.

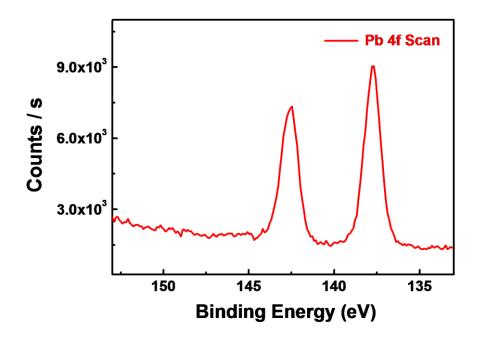
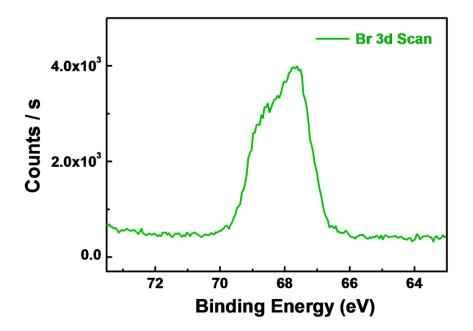
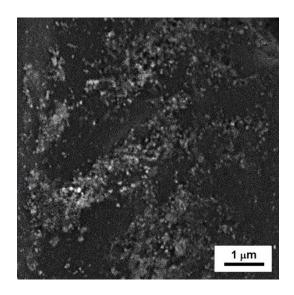




Figure S10. X-ray photoelectron spectroscopy of the Pb element in the resulted CsPbBr₃-PMMA composite.

Figure S11. X-ray photoelectron spectroscopy of the Br element in the resulted CsPbBr₃-PMMA composite. Weak peaks were observed due to the very small weight fraction of CsPbBr₃ in polymers.

Figure S12. Cross-section scanning electron microscope (SEM) image for the resulted CsPbBr₃-PMMA composite with high content of CsPbBr₃ crystals (100 μ L of the precursor solution was added into the mixture of solution with MMA (1.5 mL), EDMA (28 μ L) and TPO (5.19 mg)).

Table S1. Photoluminescence quantum yields (PLQYs) of the resulted CsPbBr₃-PMMA composite (10-50 nm) and the resulted CsPbBr₃-PMMA composite with large CsPbBr₃ particles (10-150 nm). The large size of CsPbBr₃ particles were prepared by adding 100 μ L of the precursor solution into the mixture of solution with MMA, EDMA and TPO.

PLQYs	CsPbBr ₃ Particles (10–50 nm)	CsPbBr ₃ Particles (10–150 nm)
The resulted CsPbBr ₃ -PMMA composite	54.6%	43.5%

Figure S13. Thermal gravimetric analysis (TGA) curves of the resulted CsPbBr₃-PMMA, CsPbBr₃-PBMA and CsPbBr₃-PS composite at a heating rate of 10 \degree min⁻¹ in N₂.

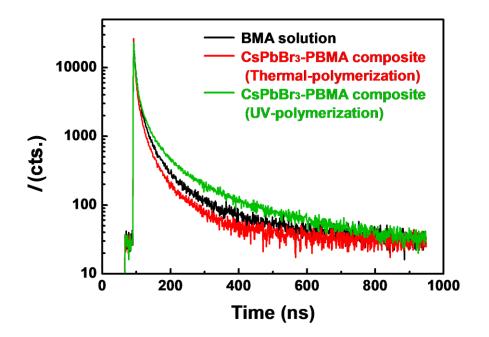

PLQYs	PMMA	РВМА	PS
Thermal polymerized			
CsPbBr ₃ -polymer	7.3%	9.2%	0.7%
composite			
UV-polymerized			
CsPbBr ₃ -polymer	54.6%	62.2%	a)
composite			

Table S2. Photoluminescence quantum yields (PLQYs) of the resultedCsPbBr₃-PMMA, CsPbBr₃-PBMA and CsPbBr₃-PS composite.

a) UV-polymerized CsPbBr₃-PS composite was not formed due to the low polymerization constant of styrene.

Table S3. Photoluminescence quantum yields (PLQYs) of the CsPbBr₃ crystals without TPO, CsPbBr₃ with TPO and CsPbBr₃ with TPO (under the UV-light for 1 h) in toluene (50 μ L of the precursor solution was added into the mixture of solution with toluene (1.5 mL) and TPO (5.19 mg)).

PLQYs	Without TPO	With TPO	With TPO (under the UV-light)
CsPbBr3 crystals in toluene	64.6%	62.2%	54.7%

Figure S14. Time-resolved PL decays and fitting curves of emissive bulk BMA solutions and the resulted CsPbBr₃-PBMA composite.

Sample	MMA solution	Thermal polymerized CsPbBr3-PMMA composite	UV-polymerized CsPbBr3-PMMA composite
$A_1^{a)}$	1.35×10^{6}	2.68×10 ⁵	5.71×10^{5}
$\tau_{1}\left(ns\right){}^{b)}$	3.0	3.0	3.5
$A_2^{a)}$	1.76×10^{6}	4.19×10 ⁵	6.47×10^5
$\tau_{2}\left(ns\right){}^{b)}$	16	21.7	20.6
$\tau_{avg} \left(ns \right)^{c)}$	14.4	20.2	18.4

Table S4. Triexponential fitting results of emissive bulk MMA solution and the resulted CsPbBr₃-PMMA composite.

Time-resolved PL decay curves were fitted by a diexponential (eqs 1 and 2) function.

^{a)} A₁ and A₂ represents weight, $[A(t) = A_0 + A_1 \exp(t-t_0)/\tau_1 + A_2 \exp(t-t_0)/\tau_2 \text{ (eqs 1)}]$; ^{b)} τ_1 and τ_2 represents PL lifetime; ^{c)} The average lifetime were calculated using $[\tau_{avg} = (A_1\tau_1^2 + A_1\tau_1^2)/(A_1\tau_1 + A_1\tau_1) \text{ (eqs 2)}].$

Sample	BMA solution	Thermal polymerized CsPbBr3-PBMA composite	UV-polymerized CsPbBr3-PBMA composite
$A_1^{(a)}$	4.32×10 ⁵	1.27×10^{6}	1.92×10^4
$\tau_{1}\left(ns\right){}^{b)}$	3.9	3.0	4.0
$\mathbf{A_2}^{\mathbf{a})}$	2.23×10 ⁵	1.41×10^{6}	7.74×10^4
$\tau_2 (ns)^{b)}$	25.6	18.2	35.4
$ au_{avg} \left(ns ight)^{c)}$	20.7	16.2	34.5

Table S5. Triexponential fitting results of emissive bulk BMA solution and the resulted CsPbBr₃-PBMA composite.

Time-resolved PL decay curves were fitted by a diexponential (eqs 1 and 2) function.

^{a)} A_1 and A_2 represents weight, $[A(t) = A_0 + A_1 exp - (t-t_0)/\tau_1 + A_2 exp - (t-t_0)/\tau_2 (eqs 1)]$; ^{b)} τ_1 and τ_2 represents PL lifetime; ^{c)} The average lifetime were calculated using $[\tau_{avg} =$

 $(A_1\tau_1^2 + A_1\tau_1^2)/(A_1\tau_1 + A_1\tau_1) \text{ (eqs 2)]}.$

Sample	Styrene solution	Thermal polymerized CsPbBr ₃ -PS composite
A ₁ ^{a)}	9.14×10^4	2.143×10 ⁶
$\tau_1 \left(ns \right)^{\left. b ight)}$	5.2	4.5
$A_2^{a)}$	6.33×10^4	1.76×10^{6}
$\tau_{2}\left(ns\right)^{\left.b\right)}$	37.9	17.8
$ au_{avg} \left(ns \right)^{c)}$	32.5	14.7

Table S6. Triexponential fitting results of emissive bulk styrene solution and the resulted CsPbBr₃-PS composite.

Time-resolved PL decay curves were fitted by a diexponential (eqs 1 and 2) function.

^{a)} A₁ and A₂ represents weight, $[A(t) = A_0 + A_1 \exp(t-t_0)/\tau_1 + A_2 \exp(t-t_0)/\tau_2 \text{ (eqs 1)}];$ ^{b)} τ_1 and τ_2 represents PL lifetime; ^{c)} The average lifetime were calculated using $[\tau_{avg} = (A_1\tau_1^2 + A_1\tau_1^2)/(A_1\tau_1 + A_1\tau_1) \text{ (eqs 2)}].$

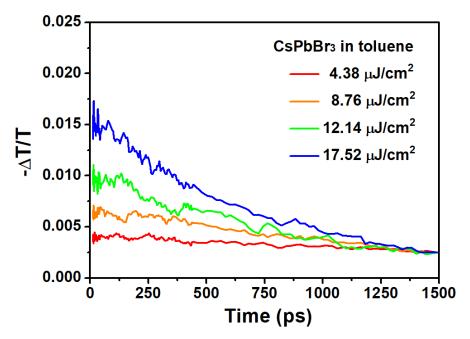


Figure S15. TA spectra of CsPbBr₃ in toluene.

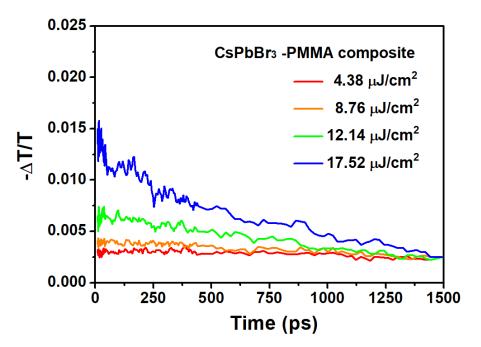
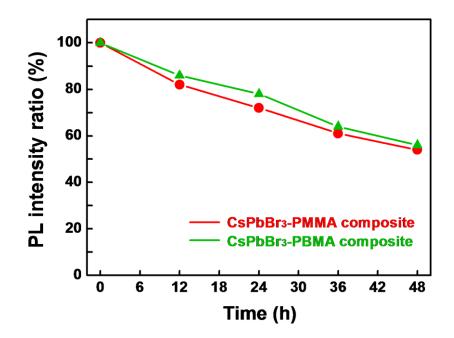



Figure S16. TA spectra of the resulted CsPbBr₃-PMMA composite.

Figure S17. Time-dependent PL intensity of CsPbBr₃-PMMA and CsPbBr₃-PBMA composites in water.

Table S7. Photoluminescence quantum yields (PLQYs) of the resulted CsPbBr₃-PMMA composite and MAPbBr₃-PMMA composite before or after heated to 80 °C and kept at this temperature for 24 h in nitrogen atmosphere.

PLQYs	Before heated	After heated
The resulted CsPbBr3-PMMA composite	62.4%	51.6%
The resulted MAPbBr ₃ -PMMA composite	49.8%	46.5%

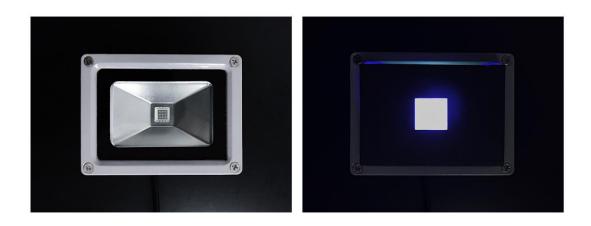


Figure S18. Photos are taken under ambient room light of blue LED (left) and white

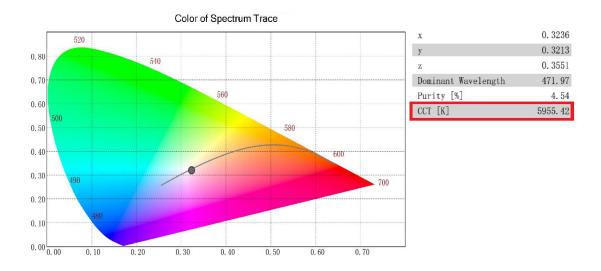
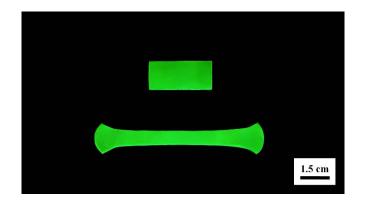



Figure S19. The color coordinates (gray dot) of obtained white LED in CIE diagram.

The color temperature (CCT) of the white LED was achieved at 5955.42 K.

Figure S20. The photos of the resulted CsPbBr₃-PBMA composite before (top) and after stretching (down) under UV-illumination.

Table S8. Photoluminescence quantum yields (PLQYs) of the resulted CsPbBr₃-PMMA composite and the resulted CsPbBr₃-PMMA composite with high content of CsPbBr₃ crystals.

PLQYs	Standard content of CsPbBr3 crystals	High content of CsPbBr ₃ crystals
The resulted		
CsPbBr ₃ -PMMA composite	54.6%	43.5%

Emitter Type	PL _{max}	Synthetic condition ^{a)}	PLQY _{max} in polymer martix	Ref.
	(IIIII)			
CsPbBr ₃ NCs	521	Air; RT;	62.2%	This
		In bulk monomers		work
MAPbBr _{3-x} Cl _x NCs	505	Air; RT; DMF and toulene	56%	[1]
CsPbBr ₃ NCs	513	Ar; 120 °C; ODE	53%	[2]
MAPbBr ₃ NPs	530	RT; DMF	48%	[3]
FAPbBr ₃ NPs	530	Air; RT; DMF, butanol and toluene	30%	[4]
MAPbBr ₃ NPs	527	Air; 80 °C; DMF and ODE	23%	[5]
MAPbBr ₃ amorphous NPs	505	Air; RT; butyrolactone and DMF	3.8%	[6]

Table S9. Comparison of this work with other current correlative research.

^{a)} Synthetic condition include whether usage of insert gas ,the synthetic temperature and solvent.

Abbreviations: Argon atmosphere (Ar); methylammonium cation (MA); formamidinium (FA); nanocrystals (NCs); nanoparticles (NPs); room temperature (RT); octadecene (ODE); dimethyl formamide (DMF).

References

- [1] Sun, H.; Yang, Z. Y.; Wei, M. Y.; Sun, W.; Li, X. Y.; Ye, S. Y.; Zhao, Y. B.; Tan, H. R.; Kynaston, E. L.; Schon, T. B.; Yan, H.; Lu, Z. H.; Ozin, G. A.; Sargent, E. H.; Seferos, D. S. Chemically Addressable Perovskite Nanocrystals for Light-Emitting Applications. *Adv. Mater.* 2017, 29, 17001153.
- [2] Meyns, M.; Peralvarez, M.; Heuer-Jungemann, A.; Hertog, W.; Ibanez, M.; Nafria, R.; Genc, A.; Arbiol, J.; Kovalenko, M. V.; Carreras, J.; Cabot, A.; Kanaras, A. G. Polymer-Enhanced Stability of Inorganic Perovskite Nanocrystals and Their Application in Color Conversion LEDs. *ACS Appl. Mat. Interfaces* 2016, *8*, 19579-19586.
- [3] Wang, Y. N.; He, J.; Chen, H.; Chen, J. S.; Zhu, R. D.; Ma, P.; Towers, A.; Lin, Y.; Gesquiere, A. J.; Wu, S. T.; Dong, Y. J. Ultrastable, Highly Luminescent Organic–Inorganic Perovskite–Polymer Composite Films. *Adv. Mater.* 2016, 28, 10710-10717.
- [4] Perumal, A.; Shendre1, S.; Li, M.; Eugene Tay, Y. K.; Sharma, V. K.; Chen, S.; Wei, Z.; Liu, Q.; Gao, Y.; Buenconsejo, P. J. S.; Tan, S. T.; Gan, C. L.; Xiong, Q.; Sum, T. C.; Demir, H. V. Specific Cell Surface Labeling of GPCRs using Split GFP. *Sci. Reports*, 2016, DOI: 10.1038/srep36733.
- [5] Schmidt, L. C.; Pertegas, A.; Gonzalez-Carrero, A.; Malinkiewicz, O.; Agouram, S.; Espallargas, G. M.; Bolink, H. J.; Galian, R. E.; Perez-Prieto, J. Nontemplate Synthesis of CH₃NH₃PbBr₃ Perovskite Nanoparticles. *J. Am. Chem. Soc.* 2014, *136*, 850-853.
- [6] Xing, J.; Yan, F.; Zhao, Y.; Chen, S.; Yu, H.; Zhang, Q.; Zeng, R.; Demir, H. V.; Sun, X.; Huan, A.; Xiong, Q. High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles. ACS Nano 2016, 10, 6623-6630.