Supporting Information

Low-Temperature and Atmospheric Sample Digestion Using Dielectric Barrier Discharge

Yijing Luo[†], Yuan Yang[†], Yao Lin[†], Yunfei Tian[‡], Li Wu[‡], Lu Yang[§], Xiandeng Hou^{†,‡}, Chengbin Zheng^{†*}

[†]Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China

[‡]Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China

[§]National Research Council Canada, 1200 Montreal Rd, Ottawa, Ontario, K1A 0R6, Canada.

*Corresponding author:

Fax: +86 28 85412907; Phone: +86-28-85415810

E-mails: <u>abinscu@scu.edu.cn</u> (C. B. Zheng)

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Table of Content

- 1. The power, voltage and frequency of AC voltage
- 2. Schematic diagram of digestion and analytical procedure
- 3. The instrumental parameters of ICP-MS
- 4. Instrumental parameters of EPR experiments
- 5. Effects of operation conditions on the sample digestion
- 6. The effects to COD detection
- 7. The ion chromatogram for solutions of HNO₃-DBD-digestion method
- The comparison of intensities of elements of digestion blanks of H₂O-DBD-digestion method, H₂O₂-DBD-digestion method, HNO₃-DBD-digestion method and microwave digestion method, respectively
- 9. Comparison of performance with other similar digestion methods

Table S1. The power, voltage and frequency of AC voltage				
Power (W)	Voltage (V)	Frequency (Hz)		
10	15	0.85		
15	20	0.95		
20	30	0.85		
30	40	0.95		
35	45	1.00		
40	55	0.90		
50	65	0.95		
55	75	0.90		

1. The power, voltage and frequency of AC voltage

2. Schematic diagram of digestion and analytical procedure

Figure S1. Schematic diagram of digestion and analytical procedure.

3. The instrumental parameters of ICP-MS

Table 52. The institumental Laraneters of ICL-Wis			
Parameter	Values		
RF power (W)	1550		
Nebulizer gas flow rate (L min ⁻¹)	1.0		
Auxiliary gas flow rate (L min ⁻¹)	1.0		
Plasma gas flow rate (L min ⁻¹)	15.0		
Scanning mode	Peaking hopping		
Dwell time (ms)	30		

Table S2. The Instrumental Parameters of ICP-MS

4. Instrumental parameters of EPR experiments

DMPO (5,5-dimethyl-1-pyrrolidine-N-oxide) was used as the spin-trapping agent in the EPR experiment. H_2O_2 and deionized water were mixed (4 mL) and digested by DBD. 40 µL DMPO was added immediately as soon as discharge stopped. The mixture adding DMPO was transferred into a 200 µL capillary tube, which was then inserted into the cavity of the EPR spectrometer.

The EPR spectra were obtained at room temperature with center field of 3480.00 G, sweep width of 100.00 G, receiver gain of 10 dB, modulation frequency of 100 kHz, microwave power of 20.00 mW, and sweep time of 60.00 s.

5. Effects of operation conditions on the sample digestion

Figure S2. Effects of operation conditions on the sample digestion. (a) Effect of carrier gas: air (left), argon (right). (b) Effect of gas flow rate: 20, 40, 100, 200 mL min⁻¹, respectively. (c) Effect of speed of peristaltic pump: 1, 5, 10, 12 mL min⁻¹, respectively. (d) Effect of concentration: 4%, 10%, 20% and 30% H₂O₂ (v/v). (e) Effect of output power: 10 W, 20 W, 35 W and 50 W. (f) Effect of digestion time: 0 min, 10 min, 20 min and 40 min. (g) Effect of concentration: 6%, 15%, 24% and 33% HNO₃ (v/v). (h) Effect of output power: 15 W, 30 W, 40 W and 55 W. (i) Effect of digestion time: 0 min, 10 min, 20 min and 40 min and 40 min. Conditions in all experiments above: 0.0240 g rice power in 4 mL solutions.

6. The effects to COD detection

Figure S3. The effects to COD detection. (a) The interferences of reaction between hydrogen peroxide and dichromate. (b) The interferences of reaction between nitrite and dichromate.

7. The ion chromatogram for solutions of HNO₃-DBD-digestion method

Figure S4. The ion chromatogram for solutions of HNO_3 -DBD-digestion method. (a) HNO_3 blank solution before digestion. (b) Rice powder dissolved in HNO_3 before digestion. (c) Rice powder dissolved in HNO_3 after digestion.

8. The comparison of intensities of elements of digestion blanks of H_2O -DBD-digestion method, H_2O_2 -DBD-digestion method, HNO_3 -DBD-digestion method and microwave digestion method, respectively

Figure S5. The comparison of intensities of elements of digestion blanks of H_2O -DBD-digestion method, H_2O_2 -DBD-digestion method, HNO₃-DBD-digestion method and microwave digestion method, respectively.

9. Comparison of performance with other similar digestion methods

Digestion method	Sample	Digestion	Digestion conditions	Detection	LOD	Reference
		regents				
Focused	Commercial	$50 \ \mu L \ NH_4NO_3$	(i) 5 s at maximum power for sample	ICP-OES	Al, 0.09 ^a ; Ba, 0.05 ^a ; Ca, 0.03 ^a ;	1
Microwave-Induced	medicinal plant:	$(6 \text{ mol } L^{-1})$ for	ignition; (ii) oxygen flow rate was		Fe, 0.01 ^a ; Mg, 0.02 ^a ; Mn,	
Combustion (FMIC)	100-1500 mg	ignition, 10 mL	increased from 2 to 15 L min ⁻¹ ; (iii)	increased from 2 to 15 L min ⁻¹ ; (iii)		
		HNO ₃ (4 mol	after cooling 10 min, 10 mL HNO ₃			
		L^{-1}) as the	$(4 \text{ mol } L^{-1})$ was added and a reflux			
		absorbing	step was performed under focused			
		solution	microwave radiation, at 125° C for 5			
			min.			
MW-UV	Chocolate, 0.6 g	10 mL HNO ₃ (4	550 W, ramp 20 min and hold for	ICP-MS	As, 0.87 ^b ; Cd, 0.98 ^b ; Ni, 29.7 ^b ;	2
		$mol L^{-1}$)	40 min; cooling, ~ 15 min.		Pb, 7.85 ^b	
Fe ₃ O ₄ MNPs	Fish samples,	HNO ₃ , 100 μL;	Irradiation at 80° C, 6 min	HG-AFS,	HG-AFS: As, 0.01-0.06 ^a ; Sb:	3
accelerated MWD	DORM-3 or	H ₂ O ₂ , 6 mL		ICP-MS	0.03-0.08 ^a	
	DORM-4, 0.1 g				ICP-MS: As, 0.002-0.005 ^a ;	

Table S3. Comparison of performance with other similar digestion methods

Sb: 0.005-0.01^a

UV-assisted Fenton	Rice samples, 0.05 g	0.2% (m/v) Fe ⁰ ,	Ultraviolet radiation with ultraviolet	HG-AFS	Cd, 0.02 ^a	4
digestion		18% (v/v) H ₂ O ₂	lamp for 50 min, separate excess Fe^0			
		and 0.75% HNO ₃	and dilute solutions to 2 mL			
MWD	Hydrogenated fats and	HNO ₃ , 3 mL;	800 W, ramp 2 min and hold for 15	Graphite	Ni, 1.14 ^b	5
	chocolate bars, 0.5 g	H ₂ O ₂ , 1 mL	min; cooling, ~ 1 h	furnace		
				AAS		
PHB-DEA	Water and food	HNO ₃ , 6 mL;	6 min for 250 W, 6 min for 400 W, 6	AAS	Pb, 1.05 ^b , Cd, 0.42 ^b , Zn, 0.13 ^b	6
accelerated MWD	samples, 0.1 mL for	H ₂ O ₂ , 2 mL	min for 550 W, 6 min for 250 W,			
	liquid samples and 0.1		ventilation: 8 min			
	g for solid samples					
MWD	Exotic food: 0.25 mL	HNO ₃ , 6 mL;	Increasing the temperature up to	ICP-MS	Mg, 0.5 ^a ; Mn, 0.15 ^a ; As, 0.15 ^a ;	7
	of liquid samples and	H ₂ O ₂ , 1 mL	200 °C in 15 min; holding it at 200 °C		Cd, 0.035 ^a ; Co, 0.01 ^a ; Cr, 0.2 ^a ;	
	0.25 g for solid		for 15 min; cooling at room		Zn, 0.2 ^a	
	samples		temperature			
Dry-ashing	Infant formulas:	Dry ashing:	Dry ashing: 500° C for 6 h, heating	ICP-MS;	ICP-MS: Mo, 0.06 ^b ; Se, 0.13 ^b ;	8

	wet-digestion, 2 g;	H ₂ SO ₄ , 2 mL;	and HNO ₃ .		ICP-OES: Mo, 0.91 ^b ; Se,
	MWD, 1 g	HNO ₃ , 1 mL.	Wet-digestion: start form 50 $^\circ\!\mathrm{C}$ to		5.89 ^b ; Cr, 4.44 ^b
		Wet-digestion:	150-160 $^\circ C$ for 10-12 h, cool at room		
		25 mL HNO ₃ , 1	temperature.		
		$mL H_2O_2.$	MWD: 190°C, 15 min; 1000 W, 30		
		MWD: 7 mL	min; cooling ~ 15 min.		
		HNO ₃ , 1 mL			
		H_2O_2 .			
$^{1}, ^{b} ng g^{-1}.$					
	¹ , ^b ng g ⁻¹ .	¹ , ^b ng g ⁻¹ .	MWD, 1 g HNO ₃ , 1 mL. Wet-digestion: 25 mL HNO_3 , 1 mL H ₂ O ₂ . MWD: 7 mL HNO ₃ , 1 mL HNO ₃ , 1 mL HNO ₃ , 1 mL H ₂ O ₂ .	$\begin{array}{cccc} \text{MWD, 1 g} & \text{HNO}_3, 1 \text{ mL}, & \text{und 11} \text{NO}_3, \\ \text{MWD, 1 g} & \text{HNO}_3, 1 \text{ mL}. & \text{Wet-digestion: start form 50 °C to} \\ & \text{Wet-digestion:} & 150\text{-}160 °C \text{ for 10}\text{-}12 \text{ h, cool at room} \\ & 25 \text{ mL HNO}_3, 1 & \text{temperature.} \\ & \text{mL H}_2\text{O}_2. & \text{MWD: 190 °C, 15 min; 1000 W, 30} \\ & \text{MWD: 7 mL} & \text{min; cooling } \sim 15 \text{ min.} \\ & \text{HNO}_3, 1 \text{ mL} \\ & \text{H}_2\text{O}_2. \end{array}$	$\begin{array}{cccc} \text{MWD, 1 g} & \text{HNO_3, 1 mL.} & \text{Wet-digestion: start form 50 \ \C} & \text{to} \\ & \text{Wet-digestion:} & 150\text{-}160^\circ\text{C} & \text{for 10-12 h, cool at room} \\ & 25 \text{ mL HNO_3, 1} & \text{temperature.} \\ & \text{mL H}_2\text{O}_2. & \text{MWD: 190^\circ\text{C}, 15 min; 1000 W, 30} \\ & \text{MWD: 7 mL} & \text{min; cooling} \sim 15 \text{min.} \\ & \text{HNO_3, 1 mL} \\ & \text{H2O_2.} \end{array}$

REFERENCES

(1) Mesko, M.F., Pereira, J.S., Moraes, D.P., Brain, J.S., Mello, P.A., Paniz, J.N.G., Nobrega, J.A., Korn, M.G.A, Flores, E.M.M. *Anal. Chem.* **2010**, *82*, 2155–2160.

(2) Hartwig, C.A.; Pereira, R.M.; Rondan, F.S.; Cruz, S.M.; Duarte, F.A.; Flores, E.M.M.; Mesko, M.F. J. Anal. At. Spectrom. **2016**, *31*, 523-530.

(3) Jia, Y.; Yu, H.M.; Wu, L.; Hou, X.D.; Yang, L.; Zheng, C.B. Anal. Chem. 2015, 87, 5866-5871.

(4) Yu, H.M.; Ai, X.; Xu, K.L.; Zheng, C.B.; Hou, X.D. Analyst. 2016, 141, 1512-1518.

(5) Dohnalova, L.; Bucek, P.; Vobornik, P.; Dohnal, V. Food Chem. 2017, 217, 456-460.

(6) Tuzen, M.; Sahiner, S.; Hazer, B. Food Chem. 2016, 210, 115-120.

(7) Llorent-Martínez, E.J.; Córdova, M.L.F.; Ortega-Barrales, P.; Ruiz-Medina, A. *Microchem. J.* 2013, 110, 444-451.

(8) Khan, N.; Jeong, I.S.; Hwang, I.M.; Kim, J.S.; Choi, S.H.; Nho, E.Y.; Choi, J.Y.; Kwak, B.M.; Ahn, J.H.; Yoon, T.; Kim, K.S. *Food Chem.* **2013**, *141*, 3566-3570.