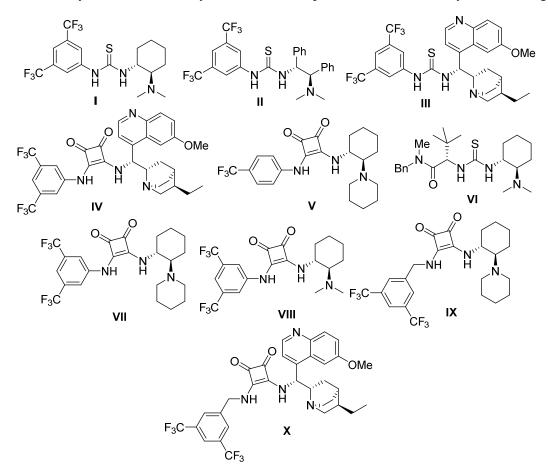
Organocatalytic Asymmetric Synthesis of α -Oxetanyl and

α-Azetidinyl Tertiary Alkyl Fluorides and Chlorides

Ransheng Ding and Christian Wolf*

Department of Chemistry, Georgetown University, Washington, DC 20057, USA


Table of Contents

1.	General Information	S 2
2.	Optimization Studies	S 3
3.	Synthesis Procedures and Compound Characterization	S6
	3.1. Representative example of the organocatalytic Michael addition (above 1 mmol scale)	S6
	3.2. Synthesis of catalyst VI	S6
	3.3. Synthesis of N-Boc-3-fluorooxindoles	S7
	3.4. Synthesis of 1-fluoro-2-tetralone	S9
	3.5. General procedure for the organocatalysis with N-Boc-3-fluorooxindoles	S10
	3.6. General procedure for the organocatalysis with N-Boc-3-chlorooxindole	S18
	3.7. General procedure for the organocatalysis with 1-fluoro-2-tetralone and ethyl 2-fluoro-3-oxo-3-phenylpropanoate	S20
	3.8. Selective Transformations	S23
	3.8.1. Oxindole ring methanolysis	S23
	3.8.2. Stereoselective cyclopropanation	S24
	3.8.3. Reductive spiro pyrrolidine synthesis	S25
	3.8.4. Diastereoselective oxetane ring opening	S26
4.	¹ H, ¹³ C, ¹⁹ F NMR Spectra	S28
5.	Crystallographic Data	S85
6.	Determination of the Relative Configuration of Compound 11 and 13	S87
7.	HPLC Chromatograms	S92
8.	References	S115

General Information

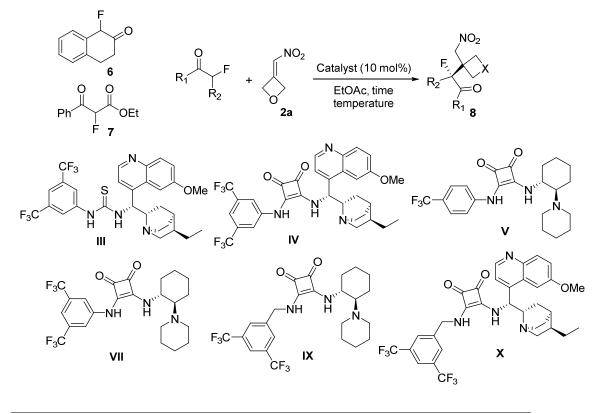
All commercially available reagents and solvents were used without further purification unless noted otherwise. Methyl *tert*-butyl ether and ethyl acetate were stored over 4Å molecular sieves prior to use. Reaction products were purified by column chromatography on silica gel (particle size 32-63 µm) unless stated otherwise. NMR spectra were obtained at 400 MHz (¹H NMR), 100 MHz (¹³C NMR), and 376 MHz (¹⁹F NMR) in CDCl₃. Chemical shifts are reported in ppm relative to tetramethylsilane. *N*-Boc-3-chlorooxindole, ¹ ethyl 2-fluoro-3-oxo-3-phenylpropanoate, ² nitroalkene **2a**, **2c**, ³ and **2b**, ⁴ were synthesized following previously reported procedures. Catalysts **II**, ⁵ **IV**, ⁶ **VII**, **VIII**, ⁷ **IX**, **X**, ⁸ were prepared as described in the literature. Catalysts **I**, **III** and **V** are commercially available and were used without further purification.

The reaction products were first prepared in racemic form to develop a chiral HPLC method for ee analysis. The isolated asymmetric reaction products were then analyzed accordingly.

1. Optimization Studies

Organocatalysis with N-Boc-3-fluorooxindole^a

	L 1a	F N Boc +	NO ₂ X 2a, X=0 2b, X=NCbz	Catalyst (10 Solvent, † 25 °C	mol%)	$X_{=0}$
F ₃ C	CF ₃ N N'''	N F	CF ₃	S Ph N N'' H H I	Ph F ₃ C	
F ₃ C F ₃ C		N:	DMe F₃C−		N,``	
Entry	Catalyst	2	Time	Solvent	Conversion (%) ^b	ee (%) ^c
1	Ι	2a	18 h	MTBE	100	80
2	II	2a	18 h	MTBE	100	24
3	III	2a	18 h	MTBE	100	26
4	IV	2a	18 h	MTBE	100	65
5	\mathbf{V}	2a	18 h	MTBE	73	91
6	VI	2a	7 h	MTBE	100	94
7	VI	2b	24 h	MTBE	64	93
8	\mathbf{V}	2b	24 h	EtOAc	73	92
9 ^d	V	2b	24 h	EtOAc	98	93

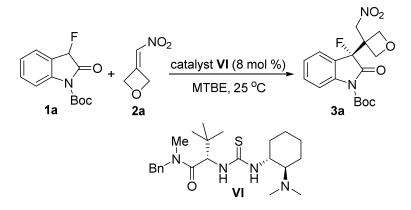

[a] Reaction conditions: Michael acceptor **2** (0.15 mmol), organocatalyst (10 mol%), **1a** (1.1 equiv.), solvent (0.45 mL) at 25 °C. [b] Determined by ¹H NMR. [c] Determined by chiral HPLC. [d] 1.4 equivalent of **1a** was used.

Organocatalysis with N-Boc-3-chlorooxindole^a

		$ \begin{array}{c} CI \\ NO_2 \\ Boc \\ O \end{array} $	Catalyst (10 r EtOAc, tin temperatu	nol%)	O_2 O_2 O_2 O_2 O_2 O_2 O_2
F	CF ₃	4 2a			S 5 S N N N H H N VI
Fa Fa	-NH	H F ₃ C			
Entry	Catalyst	Temperature	Time	Yield (%) ^b	ee (%) ^c
1			18 h	81	53
2	\mathbf{V}	25 °C	24 h	73	63
3	3 VI		48 h	48	60
4	4 V -10		70 h	94	72
5	5 VII -15 °C		48 h	52	63
6	VIII	-15 °C	48 h	45	63
7	IX	-15 °C	70 h	80	90

[a] Reaction conditions: Michael acceptor **2a** (0.15 mmol), organocatalyst (10 mol%), **4** (1.2 equiv.) in ethyl acetate (0.45 mL). [b] Isolated yield. [c] Determined by chiral HPLC.

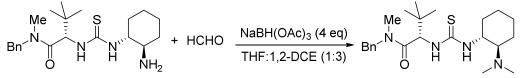
Organocatalysis with other fluoroenolates^a



Entry	Nucleophile	Catalyst	Temperature	Time	Yield (%) ^b	ee (%) ^c
1	6	V	25 °C	48 h	63	82
2	6	IX	25 °C	48 h	58	83
3	6	IX	0 °C	110 h	84	87
4	7	III	25 °C	18 h	62	38
5	7	IV	-15 °C	70 h	28	-37
6	7	\mathbf{V}	25 °C	18 h	24	-66
7	7	VII	25 °C	18 h	55	-22
8	7	IX	0 °C	70 h	98	78
9	7	IX	-15 °C	70 h	98	79
10	7	X	0 °C	65 h	58	60

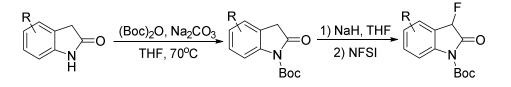
[a] Reaction conditions: Michael acceptor 2a (0.15 mmol), organocatalyst (10 mol%), nucleophile 6 or 7 (1.2 equiv.) in ethyl acetate (0.45 mL). [b] Isolated yield. [c] Determined by chiral HPLC. The "-"sign indicates a reversal of the sense of the asymmetric induction as seen by chiral HPLC.

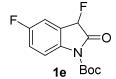
Synthesis Procedures and Compound Characterization


3.1. Representative example of the organocatalytic Michael addition (above 1 mmol scale)

First, *N*-Boc-3-fluorooxindole **1a** (773.9 mg, 3.08 mmol), nitroalkene **2a** (322.2 mg, 2.80 mmol) and catalyst **VI** (92.8 mg, 0.22 mmol) were placed into an oven-dried vial. Then, MTBE (1.25 mL) was added. The vial was then capped and stirred for 22 hours at room temperature. Upon completion, the solvent was evaporated by a gentle flow of nitrogen. The residue was purified by column chromatography (3.5:1 hexanes/ethyl acetate) to give **3a** (873 mg, 2.38 mmol) in 85% yield as a white solid. The ee was determined as 94% using Phenomenex Amylose-1, hexanes/ethanol 90:10, flow rate = 1mL/min condition. $t_R(major) = 10.4 \text{ min}, t_R(minor) = 11.5 \text{ min}.$

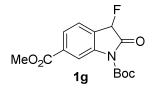
3.2. Synthesis of catalyst VI


Catalyst **VI** was synthesized following a literature procedure,⁹ the last reductive methylation step was modified to improve the yield as described below.

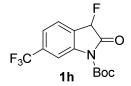

To a solution of (S)-2-(3-((1R,2R)-2-aminocyclohexyl)thioureido)-N-benzyl-N-3,3trimethylbutanamide (396 mg, 1.01 mmol) in THF:1,2-dichloroethane (1:3, 40 mL) was added formaldehyde (37% aqueous solution, 185.5 mg, 2.32 mmol). The solution was stirred at room temperature for 15 minutes and then cooled to 0 °C. Sodium triacetoxyborohydride (856.3 mg, 4.04 mmol) was added in one portion. The reaction mixture was allowed to warm to room temperature and stirred for 18 hours. A saturated aqueous solution of sodium bicarbonate (10 mL) was added to quench the reaction. The mixture was poured onto brine (60 mL) and extracted with dichloromethane (15 mL, 3 times). The organic layers were combined, dried over anhydrous Na₂SO₄, filtrated, and concentrated under reduced pressure. The residue was purified by flash chromatography using 4% - 12% MeOH/dichloromethane as mobile phase to give catalyst **VI** (356.9 mg, 0.85 mmol) in 84% yield as an off-white amorphous solid. This compound exists as a 4:1 mixture of rotamers. ¹H NMR (400 MHz, CDCl₃, major rotamer) $\delta = 1.06$ (s, 9H), 1.14 - 1.38 (m, 4H), 1.67 - 1.77 (m, 1H), 1.81 (d, J = 8.3 Hz, 1H), 1.84 - 1.91 (m, 1H), 2.28 (s, 6H), 2.37 - 2.56 (m, 2H), 3.17 (s, 3H), 3.44 - 3.68 (m, 1H), 4.39 (d, J = 14.6 Hz, 1H), 4.79 (d, J = 14.6 Hz, 1H), 5.55 (d, J = 9.2 Hz, 1H), 6.88 (br, 1H), 7.08 (br, 1H), 7.27 - 7.36 (m, 5H). ¹³C NMR (100 MHz, CDCl₃, major rotamer) $\delta = 22.1, 24.7, 25.1, 27.0, 33.2, 36.2, 36.3, 40.2, 51.4, 54.5, 55.6, 60.6, 66.9, 127.5, 128.3, 128.7, 137.1, 172.4, 182.9$. Anal. Calcd. for C₂₃H₃₈N₄OS: C, 65.99; H, 9.15; N, 13.38. Found: C, 65.87; H, 9.17; N, 13.36.

3.3. Synthesis of N-Boc-3-fluorooxindoles

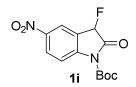
N-Boc-3-fluorooxindoles 1a - 1j were prepared via a two-step synthesis from 2-oxindoles following a literature procedure.¹⁰ Compounds 1e, 1g, 1h, 1i are new and fully characterized.



N-Boc-3,5-difluorooxindole (1e)

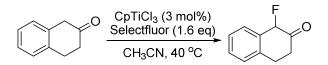

Compound **1e** was synthesized from 5-fluoro-2-oxindole in 44% overall yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ = 1.63 (s, 9H), 5.69 (d, *J* = 50.8 Hz, 1H), 7.15 (ddd, *J* = 9.0, 8.3, 2.8 Hz, 1H), 7.22 (dd, *J* = 7.7, 2.0 Hz, 1H), 7.89 (dd, *J* = 9.1, 4.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.2, 84.8 (dd, *J*_{C-F} = 191.0, 1.7 Hz), 85.4, 113.5 (dd, *J*_{C-F} = 24.8, 1.1 Hz), 117.3 (dd, *J*_{C-F} = 7.6, 1.5 Hz), 118.5 (dd, *J*_{C-F} = 22.9, 3.2 Hz), 123.4 (dd, *J*_{C-F} = 16.5, 8.3 Hz), 137.0 (dd, *J*_{C-F} = 5.0, 2.8 Hz), 148.7, 160.1 (dd, *J*_{C-F} = 245.7, 3.3 Hz), 168.5 (d, *J*_{C-F} = 17.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -188.3 (d, *J* = 50.9 Hz, 1F), -116.6 (m, 1F). Anal. Calcd. for C₁₃H₁₃F₂NO₃: C, 57.99; H, 4.87; N, 5.20. Found: C, 57.88; H, 5.21; N, 5.60.

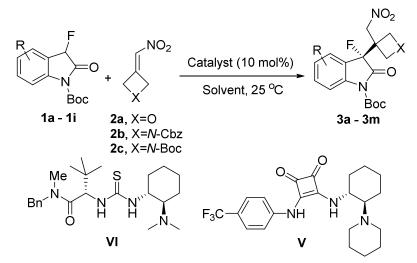
Methyl *N*-Boc-3-fluorooxindole-6-carboxylate (**1g**)


Compound **1g** was synthesized from methyl 2-oxindole-6-carboxylate in 38% overall yield as a white solid. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.66$ (s, 9H), 3.95 (s, 3H), 5.75 (d, J = 50.5 Hz, 1H), 7.58 (dd, J = 7.8, 1.7 Hz, 1H), 7.95 (d, J = 7.8 Hz, 1H), 8.53 (d, J = 1.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 28.2$, 52.7, 84.7 (d, $J_{C-F} = 191.1$ Hz), 85.7, 116.7 (d, $J_{C-F} = 1.3$ Hz), 126.0, 126.1 (d, $J_{C-F} = 16.2$ Hz), 126.6 (d, $J_{C-F} = 2.7$ Hz), 133.6 (d, $J_{C-F} = 3.2$ Hz), 141.1 (d, $J_{C-F} = 4.8$ Hz), 148.4, 166.1 (d, $J_{C-F} = 1.3$ Hz), 168.6 (d, $J_{C-F} = 17.9$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -189.8$ (d, J = 50.5 Hz, 1F). Anal. Calcd. for C₁₅H₁₆FNO₅: C, 58.25; H, 5.21; N, 4.53. Found: C, 58.60; H, 5.48; N, 4.33.

N-Boc-3-fluoro-6-trifluoromethyl-2-oxoindole (1h)

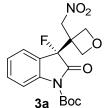
Compound **1h** was synthesized from 6-trifluoromethyl-2-oxindole in 44% overall yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ = 1.65 (s, 9H), 5.76 (d, *J* = 50.6 Hz, 1H), 7.53 (dd, *J* = 8.2, 1.7 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 8.22 (d, *J* = 1.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.1, 84.5 (d, *J*_{C-F} = 191.5 Hz), 86.0, 113.2 (qd, *J*_{C-F} = 3.9, 1.0 Hz), 122.2 (qd, *J*_{C-F} = 3.7, 3.4 Hz), 124.9 (d, *J*_{C-F} = 1.2 Hz), 125.3 (dq, *J*_{C-F} = 16.3, 1.3 Hz), 126.4, 134.0 (qd, *J*_{C-F} = 32.7, 3.1 Hz), 141.5 (d, *J*_{C-F} = 4.8 Hz), 148.5, 168.2 (d, *J*_{C-F} = 17.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -189.9 (d, *J* = 50.6 Hz, 1F), -63.0 (s, 3F). Anal. Calcd. for C₁₄H₁₃F₄NO₃: C, 52.67; H, 4.10; N, 4.39. Found: C, 52.48; H, 3.76; N, 4.54.


N-Boc-3-fluoro-5-nitro-2-oxoindole (1i)


Compound **1i** was synthesized from 5-nitro-2-oxindole in 34% overall yield as a pale-yellow solid. ¹H NMR (400 MHz, CDCl₃) δ = 1.65 (s, 9H), 5.79 (d, *J* = 50.7 Hz, 1H), 8.11 (d, *J* = 8.6, 1.3 Hz, 1H), 8.34 – 8.41 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.1, 84.0 (d, *J*_{C-F} = 192.9 Hz), 86.6, 116.2 (d, *J*_{C-F} = 1.2 Hz), 121.8, 122.8 (d, *J*_{C-F} = 16.7 Hz), 127.9 (d, *J*_{C-F} = 2.7 Hz),

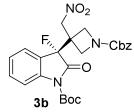
145.0 (d, $J_{C-F} = 3.0$ Hz), 146.0 (d, $J_{C-F} = 4.3$ Hz), 148.3, 167.8 (d, $J_{C-F} = 17.9$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -189.4 (d, J = 50.6 Hz, 1F). Anal. Calcd. for C₁₃H₁₃FN₂O₅: C, 52.71; H, 4.42; N, 9.46. Found: C, 53.04; H, 4.79; N, 9.25.

3.4. Synthesis of 1-fluoro-2-tetralone

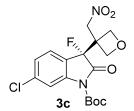

To a solution of β -tetralone (219.3 mg, 1.50 mmol) and selectfluor (850.2 mg, 2.40 mmol) in anhydrous acetonitrile (10 mL) was added cyclopentadienyltitanium(IV) trichloride (9.8 mg, 0.05 mmol). The reaction mixture was heated to 40 °C and stirred for 18 hours. Upon completion, the mixture was pour onto brine (40 mL) and extracted with ethyl acetate (8 mL, 3 times). The organic layers were combined, dried over anhydrous MgSO₄, filtrated, and concentrated under reduced pressure. The residue was purified by flash chromatography system using 1 – 8% ethyl acetate-hexanes to afford 1-fluoro-2-tetralone (135.6 mg, 0.83 mmol) in 55% yield as an amber oil. This compound slowly decomposes at room temperature and should be stored under -20 °C. ¹H NMR (400 MHz, CDCl₃) δ = 2.58 (m, 1H), 2.76 (m, 1H), 3.11 – 3.17 (m, 2H), 5.83 (d, *J* = 49.0 Hz, 1H), 7.25 (dd, *J* = 5.9, 2.4 Hz, 1H), 7.31 – 7.38 (m, 2H), 7.50 (dd, *J* = 6.2, 3.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 27.1, 34.6, 90.8 (d, *J* = 190.5 Hz), 125.1 (d, *J* = 8.0 Hz), 127.3, 127.4, 128.8 (d, *J* = 1.8 Hz), 132.4 (d, *J* = 18.4 Hz), 135.5 (d, *J* = 5.1 Hz), 203.7 (d, *J* = 13.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -197.4 (d, *J* = 49.0 Hz). Anal. Calcd. for C₁₀H₉FO: C, 73.16; H, 5.53; N, 0. Found: C, 73.36; H, 5.40; N, 0.14.

3.5. General procedure for the organocatalysis with N-Boc-3-fluorooxindoles

First, *N*-Boc-3-fluorooxindole **1** (0.165 mmol for nitroalkene **2a**, 0.210 mmol for nitroalkene **2b** or **2c**), nitroalkene (0.150 mmol) and organocatalyst (0.015 mmol, cat. **VI** for nitroalkene **2a**, cat. **V** for nitroalkene **2b** or **2c**) were placed into an oven-dried vial. Then, the solvent (0.45 mL, MTBE for nitroalkene **2a**, ethyl acetate for nitroalkene **2b** or **2c**) was added. The vial was then capped and stirred for 6 hours (nitroalkene **2a**) or 24 hours (nitroalkene **2b** or **2c**). Upon completion, the solvent was evaporated by a gentle flow of nitrogen and the residue was purified by column chromatography as described below. Racemic reaction products for HPLC analysis were obtained by applying racemic catalyst **I** in the above procedure.

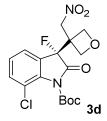

N-Boc-(*R*)-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3a**)

Compound **3a** was obtained from *N*-Boc-3-fluorooxindole **1a** (41.5 mg, 0.165 mmol) and nitroalkene **2a** (17.3 mg, 0.150 mmol) using catalyst **VI** (6.3 mg, 0.015 mmol) by following the procedure described above. Chromatography (3.5:1 hexanes/ethyl acetate) gave 49.7 mg (0.136 mmol, 90%) of a white solid. Mp 82.5-84.4 °C. ¹H NMR (400 MHz, CDCl₃) δ =1.63 (s, 9H), 4.63 (dd, *J* = 7.4, 3.0 Hz, 1H), 4.70 (s, 2H), 4.84 (dd, *J* = 6.7, 3.5 Hz, 1H), 5.31 (dd, *J* = 6.8, 1.7 Hz, 1H), 5.57 (dd, *J* = 7.4, 1.8 Hz, 1H), 7.18 – 7.25 (m, 2H), 7.46 – 7.55 (m, 1H), 7.95 (dd, *J* = 8.3, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.1, 48.2 (d, *J*_{C-F} = 30.0 Hz), 73.2 (d, *J*_{C-F} = 4.6 Hz), 73.8 (d, *J*_{C-F} = 4.2 Hz), 76.7 (d, *J*_{C-F} = 4.4 Hz), 85.8, 90.5 (d, *J*_{C-F} = 191.0 Hz), 116.4 (d, *J*_{C-F} = 1.6 Hz), 121.0 (d, *J*_{C-F} = 19.2 Hz), 124.9 (d, *J*_{C-F} = 1.3 Hz), 125.5


(d, $J_{C-F} = 2.9$ Hz), 133.1 (d, $J_{C-F} = 3.4$ Hz), 141.3 (d, $J_{C-F} = 5.4$ Hz), 148.3, 168.7 (d, $J_{C-F} = 21.9$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -150.6$. The ee was determined as 94% using Phenomenex Amylose-1, hexanes/ethanol 90:10, flow rate = 1mL/min condition. t_R(major) = 9.1 min, t_R(minor) = 19.0 min. Anal. Calcd. for C₁₇H₁₉FN₂O₆: C, 55.74; H, 5.23; N, 7.65. Found: C, 55.65; H, 5.50; N, 7.57.

N-Boc-(*S*)-3-fluoro-3-(*N*-Cbz-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (**3b**)

Compound **3b** was obtained from *N*-Boc-3-fluorooxindole **1a** (52.8 mg, 0.210 mmol) and nitroalkene **2b** (37.3 mg, 0.150 mmol) using catalyst **V** (6.3 mg, 0.015 mmol) by following the procedure described above. Chromatography (3.5:1 hexanes/ethyl acetate) gave 69.0 mg (0.138 mmol, 93%) of a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ = 1.63 (s, 9H), 4.08 (d, *J* = 9.7 Hz, 1H), 4.27 (d, *J* = 6.4 Hz, 1H), 4.46 – 4.61 (m, 2H), 4.64 (d, *J* = 9.0 Hz, 1H), 4.97 (d, *J* = 9.8 Hz, 1H), 5.12 (s, 2H), 7.21 (ddd, *J* = 7.6, 7.5, 1.4 Hz, 1H), 7.28 (dd, *J* = 7.8, 1.9 Hz, 1H), 7.31 – 7.41 (m, 5H), 7.51 (ddd, *J* = 7.9, 7.9 1.7 Hz, 1H), 7.95 (dd, *J* = 8.1, 1.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.1, 42.8 (d, *J*_{C-F} = 30.2 Hz), 52.6, 52.8, 67.4, 76.5, 85.9, 90.5 (d, *J*_{C-F} = 192.0 Hz), 116.5, 120.9 (d, *J*_{C-F} = 19.0 Hz), 124.8, 125.6 (d, *J*_{C-F} = 2.9 Hz), 128.2, 128.4, 128.7, 133.2 (d, *J*_{C-F} = 3.2 Hz), 136.2, 141.3 (d, *J*_{C-F} = 5.5 Hz), 148.3, 156.4, 168.5 (d, *J*_{C-F} = 21.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -152.8, -152.1. The ee was determined as 92% using Phenomenex Amylose-1, hexanes/ethanol 90:10, flow rate = 1mL/min condition. t_R(major) = 17.4 min, t_R(minor) =27.2 min. Anal. Calcd. for C₂₅H₂₆FN₃O₇: C, 60.12; H, 5.25; N, 8.41. Found: C, 59.91; H, 5.35; N, 8.66.


N-Boc-(R)-6-chloro-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3c**)

Compound **3c** was obtained from *N*-Boc-3-fluoro-6-chloro-2-oxoindole **1c** (47.1 mg, 0.165 mmol) and nitroalkene **2a** (17.3 mg, 0.150 mmol) using catalyst **VI** (6.3 mg, 0.015 mmol) by following the procedure described above. Chromatography (3.5:1 hexanes/ethyl acetate) gave 56.5 mg (0.141 mmol, 94%) of a white solid. Mp 130.8-131.7 °C. ¹H NMR (400 MHz,

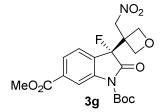
CDCl₃) $\delta = 1.63$ (s, 9H), 4.61 (dd, J = 7.4, 3.0 Hz, 1H), 4.74 (s, 2H), 4.82 (dd, J = 6.7, 3.5 Hz, 1H), 5.24 (dd, J = 6.8, 1.4 Hz, 1H), 5.53 (dd, J = 7.5, 1.8 Hz, 1H), 7.15 (dd, J = 8.1, 2.2 Hz, 1H), 7.21 (d, J = 8.1 Hz, 1H), 8.04 (d, J = 1.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 28.1$, 48.0 (d, $J_{C-F} = 30.0$ Hz), 73.1 (d, $J_{C-F} = 4.6$ Hz), 73.8 (d, $J_{C-F} = 4.3$ Hz), 76.7 (d, $J_{C-F} = 4.3$ Hz), 86.4 (d, $J_{C-F} = 2.1$ Hz), 90.2 (d, $J_{C-F} = 191.1$ Hz), 117.3 (d, $J_{C-F} = 1.6$ Hz), 119.3 (d, $J_{C-F} = 19.3$ Hz), 125.7 (d, $J_{C-F} = 3.0$ Hz), 125.8 (d, $J_{C-F} = 1.3$ Hz), 139.3 (d, $J_{C-F} = 3.9$ Hz), 142.3 (d, $J_{C-F} = 5.4$ Hz), 148.1, 168.3 (d, $J_{C-F} = 22.1$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -149.8$. The ee was determined as 90% using Phenomenex Amylose-1, hexanes/ethanol 90:10, flow rate = 1mL/min condition. t_R(major) = 9.5 min, t_R(minor) = 22.6 min. Anal. Calcd. for C₁₇H₁₈ClFN₂O₆: C, 50.95; H, 4.53; N, 6.99. Found: C, 50.93; H, 4.55; N, 6.86.

N-Boc-(R)-7-chloro-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (3d)

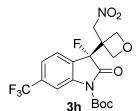

Compound **3d** was obtained from *N*-Boc-3-fluoro-7-chloro-2-oxoindole **1d** (47.4 mg, 0.165 mmol) and nitroalkene **2a** (17.3 mg, 0.150 mmol) using catalyst **VI** (6.3 mg, 0.015 mmol) by following the procedure described above. Chromatography (3.5:1 hexanes/ethyl acetate) gave 53.6 mg (0.134 mmol, 89%) of a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ = 1.63 (s, 9H), 4.60 (dd, *J* = 7.5, 3.0 Hz, 1H), 4.68 (d, *J* = 13.1 Hz, 1H), 4.79 (d, *J* = 13.0 Hz, 1H), 4.87 (dd, *J* = 6.8, 3.5 Hz, 1H), 5.22 (dd, *J* = 6.5, 1.3 Hz, 1H), 5.50 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.15 – 7.21 (m, 2H), 7.49 (dd, *J* = 5.8, 3.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 27.8, 48.0 (d, *J*_{C-F} = 29.4 Hz), 72.9 (d, *J*_{C-F} = 4.8 Hz), 73.7 (d, *J*_{C-F} = 4.4 Hz), 76.3 (d, *J*_{C-F} = 4.4 Hz), 86.9, 91.1 (d, *J*_{C-F} = 194.3 Hz), 120.4 (d, *J*_{C-F} = 1.4 Hz), 123.6 (d, *J*_{C-F} = 1.3 Hz), 124.3 (d, *J*_{C-F} = 19.7 Hz), 126.3 (d, *J*_{C-F} = 2.8 Hz), 134.6 (d, *J*_{C-F} = 3.2 Hz), 138.4 (d, *J*_{C-F} = 5.7 Hz), 146.6, 169.1 (d, *J*_{C-F} = 2.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -153.6. The ee was determined as 94% using Phenomenex Amylose-1, hexanes/ethanol 90:10, flow rate = 1mL/min condition. t_R(major) = 10.9 min, t_R(minor) = 31.8 min. Anal. Calcd. for C₁₇H₁₈CIFN₂O₆: C, 50.95; H, 4.53; N, 6.99. Found: C, 50.87; H, 4.91; N, 6.83.

N-Boc-(*R*)-3,5-difluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (3e)

Compound **3e** was obtained from *N*-Boc-3,5-difluorooxindole **1e** (44.4 mg, 0.165 mmol) and nitroalkene **2a** (17.3 mg, 0.150 mmol) using catalyst **VI** (6.3 mg, 0.015 mmol) by following the procedure described above. Chromatography (3.5:1 hexanes/ethyl acetate) gave 52.4 mg (0.136 mmol, 91%) of a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ = 1.63 (s, 9H), 4.62 (dd, *J* = 7.5, 3.1 Hz, 1H), 4.74 (s, 2H), 4.83 (dd, *J* = 6.7, 3.6 Hz, 1H), 5.24 (dd, *J* = 6.8, 1.4 Hz, 1H), 5.54 (dd, *J* = 7.5, 1.9 Hz, 1H), 6.95 (dd, *J* = 7.1, 2.6, 2.4 Hz, 1H), 7.22 (m, 1H), 7.97 (ddd, *J* = 9.1, 4.5, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.1, 48.0 (d, *J*_{C-F} = 29.7 Hz), 73.0 (d, *J*_{C-F} = 4.6 Hz), 73.7 (d, *J*_{C-F} = 4.4 Hz), 76.6 (d, *J*_{C-F} = 4.5 Hz), 86.1, 90.3 (dd, *J*_{C-F} = 192.0, 1.6 Hz), 112.4 (d, *J*_{C-F} = 25.0 Hz), 118.1 (dd, *J*_{C-F} = 5.5, 2.8 Hz), 148.3, 160.0 (dd, *J*_{C-F} = 247.4, 3.4 Hz), 168.3 (d, *J*_{C-F} = 21.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -151.4 (s, 1F), -115.2 (m, 1F). The ee was determined as 95% using Phenomenex Amylose-1, hexanes/ethanol 90:10, flow rate = 1mL/min condition. t_R(major) = 9.4 min, t_R(minor) = 38.4 min. Anal. Calcd. for C₁₇H₁₈F₂N₂O₆: C, 53.13; H, 4.72; N, 7.29. Found: C, 52.97; H, 5.08; N, 7.20.


N-Boc-(R)-5-bromo-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3f**)

Compound **3f** was obtained from *N*-Boc-3-fluoro-5-bromo-2-oxoindole **1f** (54.5 mg, 0.165 mmol) and nitroalkene **2a** (17.3 mg, 0.150 mmol) using catalyst **VI** (6.3 mg, 0.015 mmol) by following the procedure described above. Chromatography (3.5:1 hexanes/ethyl acetate) gave 61.7 mg (0.139 mmol, 92%) of a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ = 1.62 (s, 9H), 4.64 (dd, *J* = 7.5, 3.0 Hz, 1H), 4.71 (d, *J* = 12.9 Hz, 1H), 4.74 – 4.82 (m, 2H), 5.25 (dd, *J* = 6.7, 1.3 Hz, 1H), 5.54 (dd, *J* = 7.4, 1.9 Hz, 1H), 7.32 (d, *J* = 2.1 Hz, 1H), 7.63 (dd, *J* = 8.8, 2.1 Hz, 1H), 7.87 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.1, 48.0 (d, *J*_{C-F} = 29.8 Hz), 73.1 (d, *J*_{C-F} = 4.8 Hz), 73.6 (d, *J*_{C-F} = 4.2 Hz), 76.7 (d, *J*_{C-F} = 4.4 Hz), 86.2, 90.2 (d, *J*_{C-F} = 191.9 Hz), 118.1 (d, *J*_{C-F} = 1.5 Hz), 118.4 (d, *J*_{C-F} = 3.5 Hz), 122.9 (d, *J*_{C-F} = 19.0 Hz), 127.8, 136.0 (d, *J*_{C-F} = 3.2 Hz), 140.3 (d, *J*_{C-F} = 5.3 Hz), 148.1, 167.9 (d, *J*_{C-F}


= 21.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -151.1. The ee was determined as 95% using Phenomenex Amylose-1, hexanes/ethanol 90:10, flow rate = 1mL/min condition. t_R(major) = 9.8 min, t_R(minor) = 33.7 min. Anal. Calcd. for C₁₇H₁₈BrFN₂O₆: C, 45.86; H, 4.08; N, 6.29. Found: C, 46.03; H, 4.07; N, 6.20.

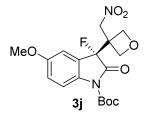
Methyl N-Boc-(R)-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole-6-carboxylate (3g)

Compound **3g** was obtained from methyl *N*-Boc-3-fluorooxindole-6-carboxylate **1g** (51.1 mg, 0.165 mmol) and nitroalkene **2a** (17.3 mg, 0.150 mmol) using catalyst **VI** (6.3 mg, 0.015 mmol) by following the procedure described above. Chromatography (3.5:1 hexanes/ethyl acetate) gave 54.2 mg (0.128 mmol, 92%) of a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ = 1.65 (s, 9H), 3.95 (s, 3H), 4.62 (dd, *J* = 7.5, 3.1 Hz, 1H), 4.74 (s, 2H), 4.84 (dd, *J* = 6.8, 3.6 Hz, 1H), 5.27 (dd, *J* = 6.8, 1.4 Hz, 1H), 5.56 (dd, *J* = 7.5, 1.9 Hz, 1H), 7.31 (dd, *J* = 7.9, 2.2 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 8.59 (d, *J* = 1.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.1, 48.0 (d, *J*_{C-F} = 29.6 Hz), 52.8, 73.1 (d, *J*_{C-F} = 4.6 Hz), 73.8 (d, *J*_{C-F} = 4.4 Hz), 76.6 (d, *J*_{C-F} = 4.4 Hz), 86.4, 90.2 (d, *J*_{C-F} = 1.5 Hz), 117.3 (d, *J*_{C-F} = 1.4 Hz), 124.9 (d, *J*_{C-F} = 1.3 Hz), 125.2 (d, *J*_{C-F} = 18.6 Hz), 126.9 (d, *J*_{C-F} = 2.8 Hz), 134.7 (d, *J*_{C-F} = 3.1 Hz), 141.5 (d, *J*_{C-F} = 5.3 Hz), 148.0, 165.7 (d, *J*_{C-F} = 1.5 Hz), 168.3 (d, *J*_{C-F} = 21.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -152.0. The ee was determined as 94% using Phenomenex Amylose-1, hexanes/ethanol 90:10, flow rate = 1mL/min condition. t_R(major) = 14.7 min, t_R(minor) = 23.6 min. Anal. Calcd. for C₁₉H₂₁FN₂O₈: C, 53.77; H, 4.99; N, 6.60. Found: C, 54.34; H, 5.19; N, 6.42.

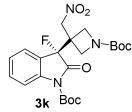
N-Boc-(*R*)-6-trifluoromethyl-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3h**)

Compound **3h** was obtained from *N*-Boc-3-fluoro-6-trifluoromethyl-2-oxoindole **1h** (52.7 mg, 0.165 mmol) and nitroalkene **2a** (17.3 mg, 0.150 mmol) using catalyst **VI** (6.3 mg, 0.015

mmol) by following the procedure described above. Chromatography (3.5:1 hexanes/ethyl acetate) gave 63.4 mg (0.146 mmol, 97%) of a white amorphous solid.

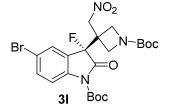

¹H NMR (400 MHz, CDCl₃) δ = 1.64 (s, 9H), 4.64 (dd, *J* = 7.5, 3.0 Hz, 1H), 4.77 (dd, *J* = 16.0, 13.4 Hz, 2H), 4.82 (dd, *J* = 6.9, 3.7 Hz, 1H), 5.23 (dd, *J* = 6.8, 1.8 Hz, 1H), 5.54 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.38 (dd, *J* = 7.8, 2.0 Hz, 1H), 7.51 (d, *J* = 7.8 Hz, 1H), 8.28 (d, *J* = 1.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.1, 48.0 (d, *J*_{C-F} = 29.5 Hz), 73.1 (d, *J*_{C-F} = 4.8 Hz), 73.7 (d, *J*_{C-F} = 4.7 Hz), 76.6 (d, *J*_{C-F} = 4.3 Hz), 86.7, 90.1 (d, *J*_{C-F} = 191.6 Hz), 113.8 (qd, *J*_{C-F} = 3.8, 1.2 Hz), 122.4 (qd, *J*_{C-F} = 3.9, 3.3 Hz), 123.2 (qd, *J*_{C-F} = 255.2, 1.1 Hz) 125.4 (d, *J*_{C-F} = 1.0 Hz), 125.6 (qd, *J*_{C-F} = 178.1, 1.0 Hz), 135.1 (qd, *J*_{C-F} = 33.0, 3.1 Hz), 141.9 (d, *J*_{C-F} = 5.3 Hz), 148.0, 168.0 (d, *J*_{C-F} = 21.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -152.1 (s, 1F), -63.2 (s, 3F). The ee was determined as 96% using Phenomenex Amylose-1, hexanes/ethanol 90:10, flow rate = 1mL/min condition. t_R(major) = 7.2 min, t_R(minor) = 10.1 min. Anal. Calcd. for C₁₈H₁₈F₄N₂O₆: C, 49.78; H, 4.18; N, 6.45. Found: C, 49.83; H, 4.26; N, 6.37.

N-Boc-(*R*)-5-nitro-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3i**)


Compound **3i** was obtained from *N*-Boc-3-fluoro-5-nitro-2-oxoindole **1i** (48.9 mg, 0.165 mmol) and nitroalkene **2a** (17.3 mg, 0.150 mmol) using catalyst **VI** (6.3 mg, 0.015 mmol) by following the procedure described above. Chromatography (3.5:1 hexanes/ethyl acetate) gave 53.1 mg (0.129 mmol, 86%) of a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ = 1.64 (s, 9H), 4.63 (dd, *J* = 7.5, 3.1 Hz, 1H), 4.79 (d, *J* = 13.2 Hz, 1H), 4.83 – 4.89 (m, 2H), 5.26 (dd, *J* = 6.9, 1.4 Hz, 1H), 5.55 (dd, *J* = 7.5, 1.9 Hz, 1H), 8.09 (dd, *J* = 2.3, 2.3 Hz, 1H), 8.18 (dd, *J* = 9.1, 1.2 Hz, 1H), 8.43 (ddd, *J* = 9.1, 2.3, 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.1, 47.9 (d, *J*_{C-F} = 29.6 Hz), 73.1 (d, *J*_{C-F} = 4.8 Hz), 73.7 (d, *J*_{C-F} = 4.6 Hz), 76.7 (d, *J*_{C-F} = 4.3 Hz), 87.2, 89.8 (d, *J*_{C-F} = 192.2 Hz), 116.8 (d, *J*_{C-F} = 1.3 Hz), 120.6, 122.1 (d, *J*_{C-F} = 19.3 Hz), 128.9 (d, *J*_{C-F} = 2.7 Hz), 145.0 (d, *J*_{C-F} = 3.0 Hz), 146.4 (d, *J*_{C-F} = 4.8 Hz), 147.8, 167.8 (d, *J*_{C-F} = 21.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -151.3. The ee was determined as 93% using CHIRALPAK IA, hexanes/isopropanol 90:10, flow rate = 1mL/min condition. t_R(major) = 14.8 min, t_R(minor) = 17.4 min. Anal. Calcd. for C₁₇H₁₈FN₃O₈: C, 49.64; H, 4.41; N, 10.22. Found: C, 49.63; H, 4.48; N, 10.32.

N-Boc-(*R*)-5-methoxy-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3j**)

Compound **3j** was obtained from *N*-Boc-3-fluoro-5-methoxy-2-oxoindole **1j** (46.4 mg, 0.165 mmol) and nitroalkene **2a** (17.3 mg, 0.150 mmol) using catalyst **VI** (6.3 mg, 0.015 mmol) by following the procedure described above. Chromatography (3.5:1 hexanes/ethyl acetate) gave 55.3 mg (0.139 mmol, 93%) of a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ = 1.63 (s, 9H), 3.81 (s, 3H), 4.63 (dd, *J* = 7.4, 3.0 Hz, 1H), 4.67 (d, *J* = 13.2 Hz, 1H), 4.71 (d, *J* = 13.3 Hz, 1H), 4.83 (dd, *J* = 6.7, 3.5 Hz, 1H), 5.31 (dd, *J* = 6.2, 1.1 Hz, 1H), 5.57 (dd, *J* = 7.5, 1.8 Hz, 1H), 6.73 (dd, *J* = 2.2, 1.0 Hz, 1H), 7.01 (dd, *J* = 9.1, 2.3 Hz, 1H), 7.87 (dd, *J* = 9.1, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.2, 48.2 (d, *J*_{C-F} = 29.9 Hz), 56.0, 73.1 (d, *J*_{C-F} = 4.7 Hz), 73.7 (d, *J*_{C-F} = 4.0 Hz), 76.7 (d, *J*_{C-F} = 4.4 Hz), 85.6, 90.6 (d, *J*_{C-F} = 191.7 Hz), 111.2, 117.5, 117.5, 122.0 (d, *J*_{C-F} = 18.7 Hz), 134.3 (d, *J*_{C-F} = 5.4 Hz), 148.4, 157.4 (d, *J*_{C-F} = 3.0 Hz), 168.7 (d, *J*_{C-F} = 21.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -151.3. The ee was determined as 94% using Phenomenex Amylose-1, hexanes/ethanol 90:10, flow rate = 1mL/min condition. t_R(major) = 12.0 min, t_R(minor) = 22.9 min. Anal. Calcd. for C₁₈H₂₁FN₂O₇: C, 54.54; H, 5.34; N, 7.07. Found: C, 54.06; H, 5.62; N, 6.80.

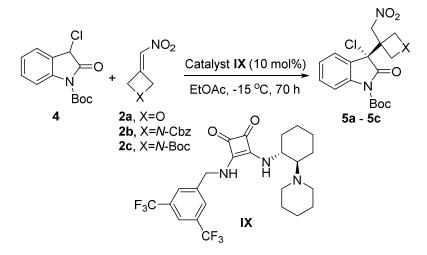

N-Boc-(S)-3-fluoro-3-(N-Boc-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (3k)

Compound **3k** was obtained from *N*-Boc-3-fluorooxindole **1a** (52.8 mg, 0.210 mmol) and nitroalkene **2c** (32.2 mg, 0.150 mmol) using catalyst **V** (6.3 mg, 0.015 mmol) by following the procedure described above. Chromatography (3.5:1 hexanes/ethyl acetate) gave 67.8 mg (0.146 mmol, 97%) of a white solid, Mp 69.2-70.1 °C. ¹H NMR (400 MHz, CDCl₃) δ = 1.46 (s, 9H), 1.63 (s, 9H), 3.99 (d, *J* = 9.7 Hz, 1H), 4.15 (d, *J* = 14.1 Hz, 1H), 4.43 – 4.63 (m, 3H), 4.87 (d, *J* = 9.4 Hz, 1H), 7.23 (ddd, *J* = 7.6, 7.6, 1.7 Hz, 1H), 7.30 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.51 (ddd, *J* = 8.2, 7.3, 1.8 Hz, 1H), 7.96 (dd, *J* = 8.3, 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.1, 28.4, 42.4 (d, *J*_{C-F} = 30.3 Hz), 52.3, 52.7, 77.34 (d, *J*_{C-F} = 5.3 Hz), 80.7, 85.8, 90.5 (d, *J*_{C-F} = 191.2 Hz), 116.4 (d, *J*_{C-F} = 1.5 Hz), 121.0 (d, *J*_{C-F} = 19.0 Hz), 124.8, 125.6 (d, *J*_{C-F} = 2.9 Hz), 133.1 (d, *J*_{C-F} = 3.2 Hz), 141.3 (d, *J*_{C-F} = 5.5 Hz), 148.3, 156.2, 168.6 (d, *J*_{C-F} = 22.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -151.9, -152.8. The ee was determined as 93%

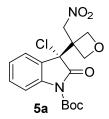

using Phenomenex Amylose-1, hexanes/ethanol 90:10, flow rate = 1mL/min condition. t_R(major) = 6.9 min, t_R(minor) = 8.8 min. Anal. Calcd. for C₂₂H₂₈FN₃O₇: C, 56.77; H, 6.06; N, 9.03. Found: C, 56.44; H, 6.36; N, 9.04.

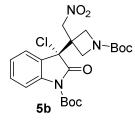
N-Boc-(*S*)-5-bromo-3-fluoro-3-(*N*-Boc-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (**3**I)

Compound **31** was obtained from *N*-Boc-3-fluoro-5-bromo-2-oxoindole **1f** (69.3 mg, 0.210 mmol) and nitroalkene **2c** (32.2 mg, 0.150 mmol) using catalyst **V** (6.3 mg, 0.015 mmol) by following the procedure described above. Chromatography (5:1 hexanes/ethyl acetate) gave 75.8 mg (0.139 mmol, 93%) of a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ = 1.47 (s, 9H), 1.62 (s, 9H), 3.99 (d, *J* = 10.0 Hz, 1H), 4.12 (d, *J* = 9.0 Hz, 1H), 4.47 – 4.58 (m, 2H), 4.63 (d, *J* = 12.9 Hz, 1H), 4.83 (d, *J* = 9.6 Hz, 1H), 7.40 (d, *J* = 2.0 Hz, 1H), 7.64 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.88 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.1, 28.5, 42.3 (d, *J*_{C-F} = 30.1 Hz), 52.5, 52.6, 77.1, 80.9, 86.2, 90.2 (d, *J*_{C-F} = 192.3 Hz), 118.1 (d, *J*_{C-F} = 1.4 Hz), 118.4 (d, *J*_{C-F} = 3.4 Hz), 123.0 (d, *J*_{C-F} = 21.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -152.5, 152.6. The ee was determined as 92% using Phenomenex Amylose-1, hexanes/isopropanol 95:5, flow rate = 1mL/min condition. t_R(major) = 12.4 min, t_R(minor) = 14.8 min. Anal. Calcd. for C₂₂H₂₇BrFN₃O₇: C, 48.54; H, 5.00; N, 7.72. Found: C, 48.37; H, 5.18; N, 7.47.


Methyl *N*-Boc-(*S*)-3-fluoro-3-(*N*-Cbz-3-(nitromethyl)azetidin-3-yl)-2-oxoindole-6-carboxylate (**3m**)

Compound **3m** was obtained from methyl *N*-Boc-3-fluorooxindole-6-carboxylate **1g** (65.0 mg, 0.210 mmol) and nitroalkene **2b** (37.3 mg, 0.150 mmol) using catalyst **V** (6.3 mg, 0.015 mmol) by following the procedure described above. Chromatography (3.5:1 hexanes/ethyl acetate) gave 75.6 mg (0.136 mmol, 90%) of a white solid. Mp 71.2-72.5 °C. ¹H NMR (400

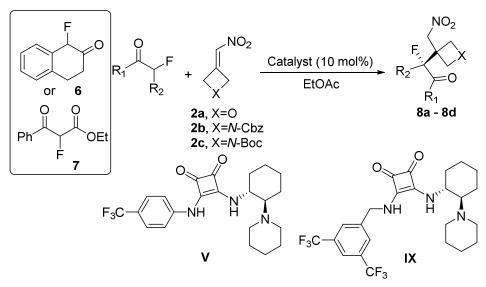

MHz, CDCl₃) δ = 1.65 (s, 9H), 3.95 (s, 3H), 4.07 (d, *J* = 8.4 Hz, 1H), 4.28 (d, *J* = 6.8 Hz, 1H), 4.48 – 4.66 (m, 3H), 4.96 (d, *J* = 9.3 Hz, 1H), 5.12 (s, 2H), 7.29 – 7.43 (m, 6H), 7.91 (d, *J* = 8.1 Hz, 1H), 8.59 (d, *J* = 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.1, 42.7 (d, *J*_{C-F} = 29.8 Hz), 52.6, 52.9, 52.9, 67.5, 76.8, 86.4, 90.2 (d, *J*_{C-F} = 192.2 Hz), 117.4, 124.8, 125.0 (d, *J*_{C-F} = 18.7 Hz), 126.9 (d, *J*_{C-F} = 2.7 Hz), 128.3, 128.5, 128.7, 134.8 (d, *J*_{C-F} = 3.0 Hz), 136.1, 141.5 (d, *J*_{C-F} = 5.4 Hz), 147.9, 156.3, 165.7 (d, *J*_{C-F} = 1.7 Hz), 168.1 (d, *J*_{C-F} = 21.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -153.9, -153.3. The ee was determined as 92% using CHIRALPAK IA, hexanes/isopropanol 90:10, flow rate = 1mL/min condition. t_R(major) = 21.0 min, t_R(minor) = 27.0 min. Anal. Calcd. for C₂₇H₂₈FN₃O₉: C, 58.17; H, 5.06; N, 7.54. Found: C, 58.24; H, 5.33; N, 7.39.


First, *N*-Boc-3-chlorooxindole **4** (48.2 mg, 0.180 mmol), nitroalkene **2** (0.150 mmol) and catalyst **IX** (7.3 mg, 0.015 mmol) were placed into an oven-dried vial. Then, ethyl acetate (0.45 mL) was added to the vial. The vial was then capped, and the solution was cooled to -15 °C and stirred for 70 hours. Upon completion, the solvent was evaporated by a gentle flow of nitrogen and the residue was purified by column chromatography as described below. Racemic reaction products for HPLC analysis were obtained by applying racemic mixture of catalyst **I** in the above procedure at room temperature.

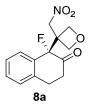
N-Boc-(*R*)-3-chloro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (5a)


Compound **5a** was obtained from *N*-Boc-3-chlorooxindole **4** (48.2 mg, 0.180 mmol) and nitroalkene **2a** (17.3 mg, 0.150 mmol) by following the procedure described above. Chromatography (6:1:1 hexanes/dichloromethane/ethyl acetate) gave 46.5 mg (0.121 mmol, 81%) of a pink amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ =1.64 (s, 9H), 4.64 – 4.70 (m, 2H), 4.72 (d, *J* = 12.5 Hz, 1H), 4.93 (d, *J* = 7.0 Hz, 1H), 5.34 (d, *J* = 7.0 Hz, 1H), 5.56 (d, *J* = 7.7 Hz, 1H), 7.17 – 7.25 (m, 2H), 7.45 (ddd, *J* = 8.6, 6.0, 3.0 Hz, 1H), 7.91 (dd, *J* = 8.3, 1.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.1, 48.8, 66.0, 74.1, 75.6, 76.9, 86.0, 116.2, 124.3, 124.8, 125.7, 132.0, 139.3, 148.3, 169.9. The ee was determined as 90% using Phenomenex Amylose-1, hexanes/isopropanol 95:5, flow rate = 1mL/min condition. t_R(major) = 12.5 min, t_R(minor) = 11.0 min. Anal. Calcd. for C₁₇H₁₉ClN₂O₆: C, 53.34; H, 5.00; N, 7.32. Found: C, 53.14; H, 5.16; N, 7.69.

N-Boc-(*S*)-3-chloro-3-(*N*-Boc-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (**5b**)


Compound **5b** was obtained from *N*-Boc-3-chlorooxindole **4** (48.2 mg, 0.180 mmol) and nitroalkene **2c** (32.1 mg, 0.150 mmol) by following the procedure described above. Chromatography (6:1:1 hexanes/dichloromethane/ethyl acetate) gave 64.9 mg (0.135 mmol, 90%) of a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ = 1.45 (s, 9H), 1.64 (s, 9H), 4.04 (d, *J* = 10.4 Hz, 1H), 4.27 (d, *J* = 9.1 Hz, 1H), 4.47 – 4.68 (m, 3H), 4.85 (d, *J* = 8.9 Hz, 1H), 7.22 (ddd, *J* = 7.6, 7.6, 1.0 Hz, 1H), 7.28 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.45 (ddd, *J* = 8.2, 7.4, 1.5 Hz, 1H), 7.92 (dd, *J* = 8.3, 1.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.1, 28.4, 43.5, 53.5, 54.6, 66.0, 77.3, 80.7, 86.0, 116.2, 124.2, 124.8, 125.8, 132.0, 139.3, 148.4, 155.9, 169.7. The ee was determined as 97% using Phenomenex Amylose-1, hexanes/isopropanol 95:5, flow rate = 1mL/min condition. t_R(major) = 13.6 min, t_R(minor) = 19.1 min. Anal. Calcd. for C₂₂H₂₈ClN₃O₇: C, 54.83; H, 5.86; N, 8.72. Found: C, 54.72; H, 6.13; N, 8.49.

N-Boc-(*S*)-3-chloro-3-(*N*-Cbz-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (**5**c)

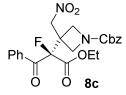

Compound **5c** was obtained from *N*-Boc-3-chlorooxindole **4** (48.2 mg, 0.180 mmol) and nitroalkene **2b** (37.2 mg, 0.150 mmol) by the procedure described above. Chromatography (6:1:1 hexanes/dichloromethane/ethyl acetate) gave 66.6 mg (0.129 mmol, 86%) of a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.64$ (s, 9H), 4.14 (d, J = 10.1 Hz, 1H), 4.38 (d, J = 9.6 Hz, 1H), 4.56 (s, 2H), 4.69 (d, J = 14.7 Hz, 1H), 4.94 (d, J = 12.1 Hz, 1H), 5.12 (d, J = 1.8 Hz, 2H), 7.19 (ddd, J = 7.6, 7.6, 1.0 Hz, 1H), 7.26 (dd, J = 7.7, 1.5 Hz, 1H), 7.30 – 7.40 (m, 5H), 7.45 (ddd, J = 8.5, 7.5, 1.5 Hz, 1H), 7.92 (dd, J = 8.4, 1.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 28.1$, 43.9, 53.7, 54.7, 65.9, 67.3, 77.1, 86.1, 116.2, 124.2, 124.6, 125.8, 128.2, 128.4, 128.7, 132.1, 136.3, 139.3, 148.3, 156.1, 169.7. The ee was determined as 96% using CHIRALCEL OD, hexanes/ethanol 90:10, flow rate = 1mL/min condition. t_R(major) = 13.9 min, t_R(minor) = 21.6 min. Anal. Calcd. for C₂₅H₂₆ClN₃O₇: C, 58.20; H, 5.08; N, 8.14. Found: C, 58.11; H, 5.29; N, 8.01.

3.7. General procedure for the organocatalysis with 1-fluoro-2-tetralone and ethyl 2-fluoro-3-oxo-3-phenylpropanoate

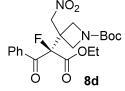
The organofluorine compound **6** or **7**, nitroalkene **2** (0.15 mmol) and organocatalyst (0.015 mmol, cat. **V** for 1-fluoro-2-tetralone, cat. **IX** for ethyl 2-fluoro-3-oxo-3-phenylpropanoate) were placed into an oven-dried vial and dissolved in ethyl acetate (0.45 mL). The vial was then capped, cooled to a specified temperature and stirred until completion. The solvent was then evaporated by a gentle flow of nitrogen and the residue was purified by column chromatography as described below. Racemic reaction products for HPLC analysis were obtained by applying racemic catalyst **I** in the above procedure at room temperature.

(R)-1-Fluoro-1-(3-(nitromethyl)oxetan-3-yl)-3,4-dihydronaphthalen-2(1H)-one (8a)

Compound 8a was obtained from 1-fluoro-2-tetralone 7 (31.9 mg, 0.195 mmol) and nitroalkene 2a (17.3 mg, 0.150 mmol) using catalyst V (6.3 mg, 0.015 mmol) by following the procedure described above. The reaction was running at 0 °C for 110 hours. Chromatography (3.5:1 hexanes/ethyl acetate) gave 35.3 mg (0.126 mmol, 84%) of a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ = 2.70 (d, J = 5.9 Hz, 1H), 2.72 (d, J = 5.9 Hz, 1H), 3.08 - 3.19 (m, 2H), 4.48 (dd, J = 7.4, 1.4 Hz, 1H), 4.54 (dd, J = 6.8, 3.1 Hz, 1H), 4.84 (d, J = 13.9 Hz, 1H), 4.94 (d, J = 6.8 Hz, 1H), 5.02 (d, J = 13.9 Hz, 1H), 5.16 (dd, J = 13.9 Hz 7.3, 1.2 Hz, 1H), 7.29 (dd, J = 7.8, 1.4 Hz, 1H), 7.34 (dd, J = 7.7, 1.5 Hz, 1H), 7.39 (ddd, J = 7.8, 1.4 Hz, 1H), 7.34 (dd, J = 7.7, 1.5 Hz, 1H), 7.39 (ddd, J = 7.8, 1.4 Hz, 1H), 7.34 (dd, J = 7.7, 1.5 Hz, 1H), 7.39 (ddd, J = 7.8, 1.4 Hz, 1H), 7.34 (dd, J = 7.7, 1.5 Hz, 1H), 7.39 (ddd, J = 7.8, 1.4 Hz, 1H), 7.34 (dd, J = 7.7, 1.5 Hz, 1H), 7.39 (ddd, J = 7.8, 1.4 Hz, 1H), 7.34 (dd, J = 7.8, 1.4 Hz, 1H), 7.34 (dd, J = 7.7, 1.5 Hz, 1H), 7.39 (ddd, J = 7.8, 1.4 Hz, 1H), 7.34 (dd, J = 7.7, 1.5 Hz, 1H), 7.39 (ddd, J = 7.8, 1.4 Hz, 1H), 7.34 (dd, J = 7.8, 1.4 Hz, 1H), 7.34 (dd, J = 7.8, 1.4 Hz, 1H), 7.34 (dd, J = 7.8, 1.4 Hz, 1H), 7.39 (ddd, J = 7.8, 1.4 Hz, 1H), 7.34 (dd, J = 7.8, 1.4 Hz, 1H), 7.39 (ddd, J = 7.8, 1.4 Hz, 1H), 7.34 (dd, J = 7.8, 1.4 Hz, 1H), 7.39 (ddd, J = 7.8, 1.4 Hz, 1H), 7.34 (dd, J = 7.8, 1.4 Hz, 1H), 7.39 (ddd, J = 7.8, 1.4 Hz, 1H), 7.34 (dd, J = 7.8, 1H), 7.39 (ddd, J = 7.8, 1H), 7.34 (dd, J = 7.8, 1H), 7.34 (dd, J = 7.8, 1H), 7.39 (ddd, J = 7.8, 1H), 7.34 (dd, J = 7 7.6, 7.6, 1.5 Hz, 1H), 7.45 (ddd, J = 7.4, 7.4, 1.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta =$ 27.8, 35.8, 49.2 (d, $J_{C-F} = 28.8 \text{ Hz}$), 73.9 (d, $J_{C-F} = 8.3 \text{ Hz}$), 74.0 (d, $J_{C-F} = 8.5 \text{ Hz}$), 76.7 (d, $J_{C-F} = 2.7$ Hz), 92.9 (d, $J_{C-F} = 184.0$ Hz), 127.2 (d, $J_{C-F} = 6.6$ Hz), 127.9 , 129.2 , 130.5 (d, $J_{C-F} = 2.6$ Hz), 131.8 (d, $J_{C-F} = 20.6$ Hz), 138.2 (d, $J_{C-F} = 5.2$ Hz), 204.3 (d, $J_{C-F} = 17.6$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -145.7. The ee was determined as 89% using Phenomenex Amylose-1, hexanes/ethanol 90:10, flow rate = 1 mL/min condition. $t_R(\text{major}) = 29.8 \text{ min}$, t_R(minor) = 23.3 min. Anal. Calcd. for C₁₄H₁₄FNO₄: C, 60.21; H, 5.05; N, 5.02. Found: C, 60.39; H, 4.79; N, 5.17.


Ethyl (*R*)-2-fluoro-2-(3-(nitromethyl)oxetan-3-yl)-3-oxo-3-phenylpropanoate (**8b**)

Compound **8b** was obtained from ethyl 2-fluoro-3-oxo-3-phenylpropanoate **7** (34.7 mg, 0.165 mmol) and nitroalkene **2a** (17.3 mg, 0.150 mmol) using catalyst **IX** (7.6 mg, 0.015 mmol) by following the procedure described above. The reaction was running at -5 °C for 70 hours. Chromatography (5:1 hexanes/ethyl acetate) gave 47.8 mg (0.147mmol, 98%) of a colorless oil. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.16$ (t, J = 7.1 Hz, 3H), 4.17 (dq, J = 10.8, 7.1 Hz, 1H), 4.28 (dq, J = 10.8, 7.2 Hz, 1H), 4.73 (dd, J = 7.6, 2.0 Hz, 1H), 4.76 – 4.81 (m, 2H), 5.09 – 5.17 (m, 2H), 5.20 (d, J = 15.0 Hz, 1H), 7.49 (dd, J = 8.3, 7.5 Hz, 2H), 7.64 (dddd, J = 7.4, 7.4, 1.5, 1.5 Hz, 1H), 7.99 (dd, J = 8.6, 1.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 13.7$, 47.2 (d, $J_{C-F} = 24.1$ Hz), 63.7, 73.8 (d, $J_{C-F} = 8.0$ Hz), 75.8 (d, $J_{C-F} = 2.7$ Hz), 77.2, 96.6 (d,


 $J_{C-F} = 202.5$ Hz), 129.1, 129.7 (d, $J_{C-F} = 5.2$ Hz), 133.1 (d, $J_{C-F} = 3.8$ Hz), 134.9, 165.4 (d, $J_{C-F} = 25.5$ Hz), 190.0 (d, $J_{C-F} = 24.5$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -161.6$. The ee was determined as 78% using Phenomenex Amylose-1, hexanes/isopropanol 90:10, flow rate = 1mL/min condition. $t_R(major) = 13.0$ min, $t_R(minor) = 15.1$ min. Anal. Calcd. for C₁₅H₁₆FNO₆: C, 55.39; H, 4.96; N, 4.31. Found: C, 55.33; H, 5.34; N, 4.46.

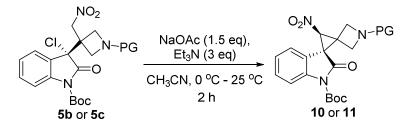
Ethyl (*R*)-2-fluoro-2-(*N*-Cbz-3-(nitromethyl)azetidin-3-yl)-3-oxo-3-phenylpropanoate (8c)

Compound **8c** was obtained from ethyl 2-fluoro-3-oxo-3-phenylpropanoate **7** (34.7 mg, 0.165 mmol) and nitroalkene **2b** (37.2 mg, 0.150 mmol) using catalyst **IX** (7.6 mg, 0.015 mmol) by following the procedure described above. The reaction was running at -5 °C for 70 hours. Chromatography (5:1 hexanes/ethyl acetate) gave 63.9 mg (0.139mmol, 93%) of a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 1.13 (t, *J* = 7.1 Hz, 3H), 4.08 – 4.29 (m, 5H), 4.59 (d, *J* = 10.2 Hz, 1H), 4.96 (dd, *J* = 14.8, 1.7 Hz, 1H), 5.10 (s, 2H), 5.15 (d, *J* = 15.0 Hz, 1H), 7.28 – 7.39 (m, 5H), 7.48 (dd, *J* = 8.4, 7.3 Hz, 2H), 7.64 (dddd, *J* = 7.5, 7.5, 1.4, 1.4 Hz, 1H), 7.96 (dd, *J* = 8.7, 1.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 13.7, 41.9 (d, *J*_{C-F} = 24.1 Hz), 53.2, 55.1, 63.8, 67.2, 76.6, 96.7 (d, *J*_{C-F} = 202.9 Hz), 128.2, 128.3, 128.7, 129.1, 129.7 (d, *J*_{C-F} = 5.3 Hz), 133.1 (d, *J*_{C-F} = 3.7 Hz), 135.0, 136.3, 156.0, 165.1 (d, *J*_{C-F} = 25.4 Hz), 189.9 (d, *J*_{C-F} = 24.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -161.9, -161.7. The ee was determined as 77% using Phenomenex Amylose-1, hexanes/ethanol 90:10, flow rate = 1mL/min condition. t_R(major) = 22.8 min, t_R(minor) = 28.0 min. Anal. Calcd. for C₂₃H₂₃FN₂O₇: C, 60.26; H, 5.06; N, 6.11. Found: C, 59.96; H, 4.89; N, 5.72.

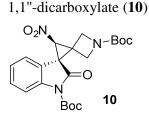
Ethyl (*R*)-2-fluoro-2-(*N*-Boc-3-(nitromethyl)azetidin-3-yl)-3-oxo-3-phenylpropanoate (8d)

Compound **8d** was obtained from ethyl 2-fluoro-3-oxo-3-phenylpropanoate **7** (34.7 mg, 0.165 mmol) and nitroalkene **2c** (32.1 mg, 0.150 mmol) using catalyst **IX** (7.6 mg, 0.015 mmol) by following the procedure described above. The reaction was running at -5 °C for 70 hours. Chromatography (5:1 hexanes/ethyl acetate) gave 58.6 mg (0.138mmol, 92%) of a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 1.16 (t, *J* = 7.1 Hz, 3H), 1.43 (s, 9H), 4.05 (d, *J* = 10.0 Hz, 1H), 4.10 (ddd, *J* = 10.1, 5.1, 2.8 Hz, 2H), 4.18 (dq, *J* = 10.9, 7.2 Hz, 1H), 4.27 (dq, *J* =

10.8, 7.2 Hz, 1H), 4.50 (d, J = 10.2 Hz, 1H), 4.95 (dd, J = 14.7, 1.7 Hz, 1H), 5.14 (d, J = 14.8 Hz, 1H), 7.48 (dd, J = 8.4, 7.3 Hz, 2H), 7.63 (dddd, J = 8.3, 8.3, 1.3, 1.3 Hz, 1H), 7.97 (dd, J = 7.4, 1.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 13.7$, 28.4, 41.5 (d, $J_{C-F} = 24.1$ Hz), 53.1, 54.9, 63.7, 77.3 (d, $J_{C-F} = 5.0$ Hz), 80.5, 96.9 (d, $J_{C-F} = 202.5$ Hz), 129.0, 129.7 (d, $J_{C-F} = 5.4$ Hz), 133.3 (d, $J_{C-F} = 3.8$ Hz), 134.9, 155.8, 165.2 (d, $J_{C-F} = 25.4$ Hz), 190.1 (d, $J_{C-F} = 24.8$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -161.7$. The ee was determined as 80% using Phenomenex Amylose-1, hexanes/ethanol 90:10, flow rate = 1mL/min condition. t_R(major) = 8.2 min, t_R(minor) = 12.1 min. Anal. Calcd. for C₂₀H₂₅FN₂O₇: C, 56.60; H, 5.94; N, 6.60. Found: C, 56.53; H, 6.00; N, 6.75.

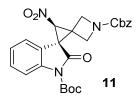

3.8. Selective Transformations

3.8.1. Oxindole ring methanolysis

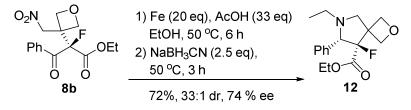

To a solution of compound **3a** (44.0 mg, 0.120 mmol) in anhydrous methanol (1.5 mL) was added sodium methoxide (3.9 mg, 0.072 mmol) at 0 °C. The reaction was allowed to warm to room temperature and stirred for 10 hours. Upon completion, the reaction was quenched with aqueous NH₄Cl (0.5 mL) and extracted with Et₂O (4 mL, 3 times). The ether layers were combined, dried over MgSO₄, filtrated, and concentrated under reduced pressure. The residue was purified by column chromatography (3:1:1 hexanes/dichloromethane/diethyl ether) to give compound 9 (38.1 mg, 0.096 mmol) in 80% yield as a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ = 1.52 (s, 9H), 3.86 (s, 3H), 4.74 – 4.86 (m, 4H), 4.98 (d, J = 7.6 Hz, 1H), 5.08 (d, J = 7.5 Hz, 1H), 6.95 (dd, J = 8.2, 1.5 Hz, 1H), 7.00 (d, J = 7.0 Hz, 1H), 7.17 (ddd, J = 7.7, 7.7, 1.7 Hz 1H), 7.45 (ddd, J = 8.5, 7.1, 1.5 Hz, 1H), 7.82 (dd, J = 7.7, 1.7 Hz)1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.2, 48.1 (d, J_{C-F} = 24.3 Hz), 53.7, 73.9 (d, J_{C-F} = 6.9 Hz), 74.1 (d, $J_{C-F} = 7.4$ Hz), 77.1 (d, $J_{C-F} = 3.8$ Hz), 81.1, 97.9 (d, $J_{C-F} = 190.3$ Hz), 124.5, 124.9 (d, $J_{C-F} = 19.9$ Hz), 125.9 (d, $J_{C-F} = 9.1$ Hz), 126.2, 130.9 (d, $J_{C-F} = 1.7$ Hz), 136.9 (d, $J_{C-F} = 1.8$ Hz), 152.8, 168.6 (d, $J_{C-F} = 25.8$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -154.0$. The ee was determined as 94% using Phenomenex Amylose-1, hexanes/ethanol 90:10, flow rate = 1mL/min condition. $t_R(major) = 10.4 min$, $t_R(minor) = 11.5 min$. Anal. Calcd. for C₁₈H₂₃FN₂O₇: C, 54.27; H, 5.82; N, 7.03. Found: C, 53.95; H, 5.98; N, 7.06.

3.8.2. Stereoselective cyclopropanation

To a mixture of compound **5b** or **5c** (0.070 mmol) and sodium acetate (0.105 mmol, 1.5 eq) in anhydrous acetonitrile (0.7 mL) was added triethylamine (0.21 mmol, 3 eq) at 0 °C. The reaction was allowed to warm to room temperature and stirred for 2 hours. Upon completion, the solvent was evaporated by a gentle flow of nitrogen and the residue was purified by column chromatography as described below.

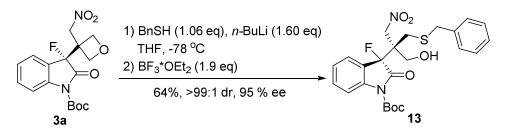

di-tert-Butyl (2'S,3'S)-3'-nitro-2"-oxodispiro[azetidine-3,1'-cyclopropane-2',3"-indoline]-

Compound **10** was obtained from **5b** (33.7 mg, 0.070 mmol) using sodium acetate (8.6 mg, 0.105 mmol) and triethylamine (29.3 μ L, 0.21 mmol) by following the procedure described above. Chromatography (1:7 ethyl acetate/hexanes) gave 29.3 mg (0.066 mmol, 94%) of a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ = 1.43 (s, 9H), 1.65 (s, 9H), 4.17 (d, *J* = 10.2 Hz, 1H), 4.32 (d, *J* = 10.2 Hz, 1H), 4.36 (d, *J* = 10.2 Hz, 1H), 4.69 (d, *J* = 10.1 Hz, 1H), 4.92 (s, 1H), 7.16 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.21 (ddd, *J* = 7.6, 7.4, 1.1 Hz, 1H), 7.43 (ddd, *J* = 8.3, 7.5, 1.5 Hz, 1H), 8.01 (dd, *J* = 8.3, 1.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.2, 28.5, 35.2, 40.9, 50.7, 53.8, 70.9, 80.7, 85.7, 115.9, 119.4, 123.9, 125.0, 129.9, 141.3, 148.5, 155.7, 169.2. The ee was determined as 95% using CHIRALPAK IA, hexanes/isopropanol 95:5, flow rate = 1mL/min condition. t_R(major) = 6.2 min, t_R(minor) = 7.1 min. Anal. Calcd. for C₂₂H₂₇N₃O₇: C, 59.32; H, 6.11; N, 9.43. Found: C, 59.05; H, 6.35; N, 9.41.


S24

1-Benzyl 1"-(*tert*-butyl) (2'*S*,3'*S*)-3'-nitro-2"-oxodispiro[azetidine-3,1'-cyclopropane-2',3"indoline]-1,1"-dicarboxylate (**11**)

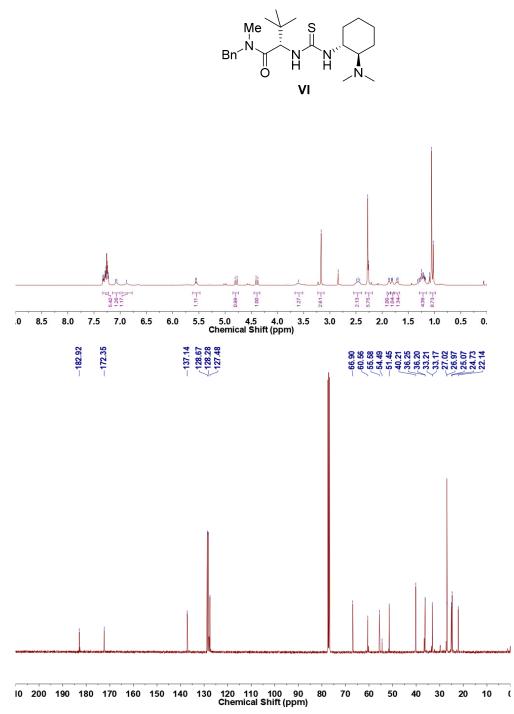
Compound **11** was obtained from **5c** (34.6 mg, 0.067 mmol) using sodium acetate (8.2 mg, 0.100 mmol) and triethylamine (28.1 µL, 0.201 mmol) by following the procedure described above. Chromatography (1:5 ethyl acetate/hexanes) gave 29.0 mg (0.061 mmol, 90%) of a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ = 1.65 (s, 9H), 4.25 (d, *J* = 10.2 Hz, 1H), 4.41 (d, *J* = 10.3 Hz, 1H), 4.45 (d, *J* = 10.3 Hz, 1H), 4.79 (d, *J* = 10.2 Hz, 1H), 4.92 (s, 1H), 5.07 (d, *J* = 12.3 Hz, 1H), 5.11 (d, *J* = 12.2 Hz, 1H), 7.13 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.20 (ddd, *J* = 7.7, 7.7, 1.1 Hz, 1H), 7.29 – 7.38 (m, 5H), 7.43 (ddd, *J* = 8.3, 7.5, 1.4 Hz, 1H), 8.01 (dd, *J* = 8.3, 1.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 28.2, 35.2, 40.8, 50.9, 54.0, 67.4, 70.7, 85.7, 115.9, 119.2, 123.8, 125.0, 128.3, 128.4, 128.7, 130.0, 136.2, 141.3, 148.5, 156.1, 169.1. The ee was determined as 95% using CHIRALPAK IA, hexanes/isopropanol 90:10, flow rate = 1mL/min condition. t_R(major) = 11.7 min, t_R(minor) = 18.1 min. Anal. Calcd. for C₂₅H₂₅N₃O₇: C, 62.62; H, 5.26; N, 8.76. Found: C, 62.54; H, 5.58; N, 8.73.


3.8.3. Reductive spiro pyrrolidine synthesis¹¹

To a mixture of compound **8b** (31.8 mg, 0.098 mmol) and iron powder (110.0 mg, 1.97 mmol) in ethanol (2 mL) was added acetic acid (187 μ L, 3.26 mmol). The reaction was heated to 50 °C and stirred for 6 hours. Upon complete consumption of **8b**, sodium cyanoborohydride (15.5 mg, 0.247 mmol) was added and the mixture was stirred at 50 °C for another 3 hours. Upon completion, the reaction was quenched with aqueous NH₄Cl (0.5 mL), extracted with Et₂O (4 mL, 3 times). The ether layers were combined, dried over Na₂SO₄, filtrated, and concentrated under reduced pressure. The residue was purified by chromatography (6:1 hexanes/ethyl acetate) to give compound **12** (21.8 mg, 0.071 mmol) in 72% yield as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 0.94 (t, *J* = 7.2 Hz, 3H), 1.07 (t, *J* = 7.2 Hz, 3H), 2.25 (dq, *J* = 12.2, 6.9 Hz, 1H), 2.71 (dq, *J* = 12.2, 7.4 Hz, 1H), 3.00 (d, *J* = 9.2 Hz, 1H), 3.73 – 3.89 (m, 3H), 3.91 (d, *J* = 9.6 Hz, 1H), 4.47 (dd, *J* = 6.6, 2.5 Hz, 1H), 4.54 (dd, *J* = 6.8,

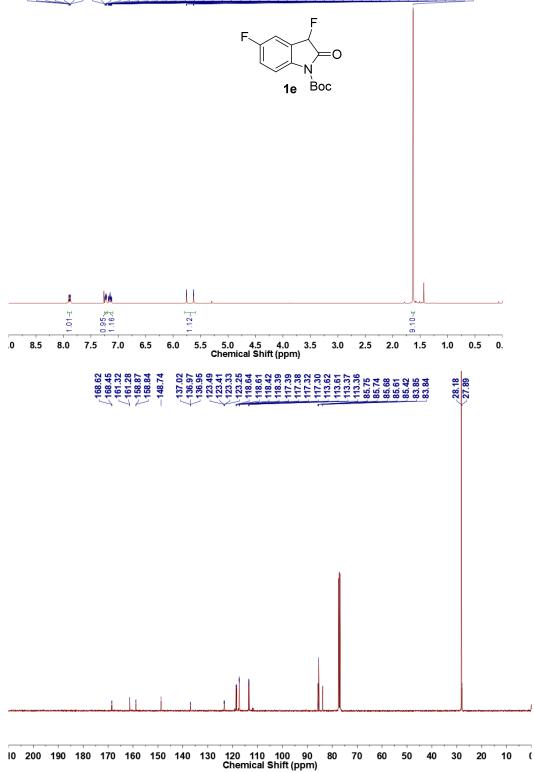
1.4 Hz, 1H), 4.91 (d, J = 6.7 Hz, 1H), 4.95 (d, J = 6.5 Hz, 1H), 7.26 – 7.31 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 12.9$, 13.6, 47.6, 49.9 (d, $J_{C-F} = 20.9$ Hz), 61.4, 62.5 (d, $J_{C-F} = 1.4$ Hz), 75.7 (d, $J_{C-F} = 14.1$ Hz), 77.2 (d, $J_{C-F} = 26.8$ Hz), 79.4 (d, $J_{C-F} = 6.6$ Hz), 102.4 (d, $J_{C-F} = 197.3$ Hz), 128.0, 128.1, 128.1, 136.6 (d, $J_{C-F} = 4.5$ Hz), 166.7 (d, $J_{C-F} = 28.8$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -157.2$ (d, J = 29.6 Hz). The ee was determined as 74% using CHIRALCEL OD, hexanes/isopropanol 95:5, flow rate = 1mL/min condition. t_R(major) = 5.9 min, t_R(minor) = 6.5 min. Anal. Calcd. for C₁₇H₂₂FNO₃: C, 66.43; H, 7.21; N, 4.56. Found: C, 66.30; H, 7.30; N, 4.87.

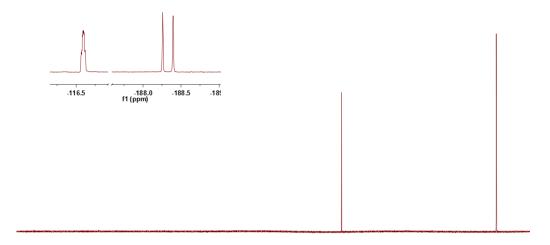
3.8.4. Diastereoselective oxetane ring opening

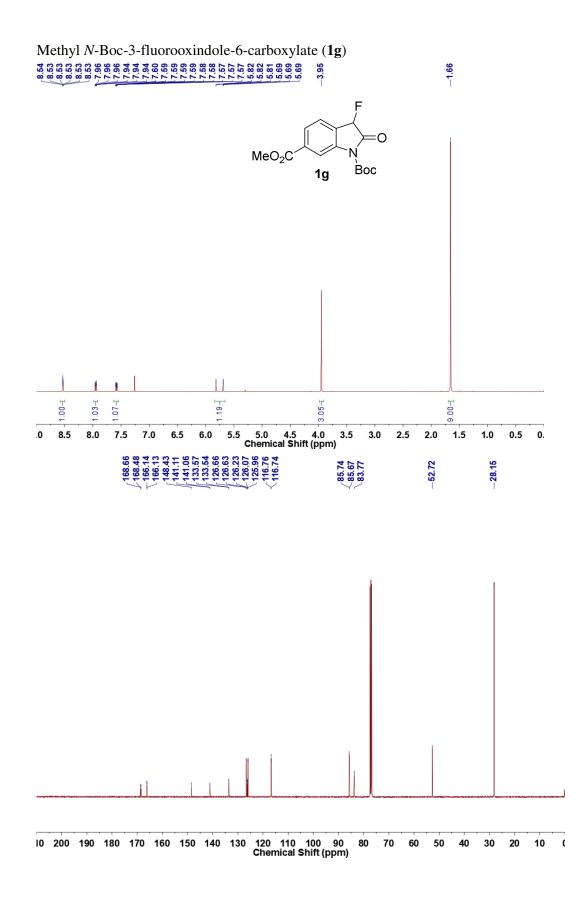

An oven-dried 25 mL 2-necked flask with rubber septum was charged with benzyl mercaptan $(24.8 \ \mu L, 0.212 \ mmol)$ and anhydrous THF $(0.8 \ mL)$ under nitrogen atmosphere. The solution was cooled to -78 °C and a 2.5 M solution of n-BuLi (128 μ L, 0.352 mmol) was added. The mixture was stirred for 3 minutes before addition of BF₃·OEt₂ (53.9 mg, 0.38 mmol). After another 10 minutes, a solution of compound **3a** (73.2 mg, 0.2 mmol) in anhydrous THF (0.4 mL) was added dropwise and the reaction was stirred at -78 °C for 90 minutes. The reaction was quenched by dropwise addition of 15% aqueous NH₄Cl (0.8 mL) at -78 °C. The cooling bath was removed to allow the flask to warm to room temperature. The reaction mixture was then extracted with Et_2O (4 mL, 3 times). The ether layers were combined, dried over Na₂SO₄, filtrated, and concentrated under reduced pressure. The residue was purified by chromatography (5:1 hexanes/ethyl acetate) to give compound 13 (62.4 mg, 0.127 mmol) in 64% yield as a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) $\delta = 1.58$ (s, 9H), 2.06 (dd, J = 6.5, 5.0 Hz, 1H), 3.62 (d, J = 12.4 Hz, 1H), 3.80 (d, J = 12.4 Hz, 1H), 3.86 (ddd, J = 12.0, 6.6, 2.6 Hz, 1H), 4.00 (d, J = 12.5 Hz, 1H), 4.06 (d, J = 10.4 Hz, 1H),4.12 (d, J = 10.4 Hz, 1H), 4.32 (dd, J = 12.0, 4.9 Hz, 1H), 4.63 (d, J = 12.4 Hz, 1H), 7.09 – 7.16 (m, 3H), 7.16 – 7.25 (m, 3H), 7.41 (ddd, J = 8.8, 7.5, 1.5 Hz, 1H), 7.46 (dd, J = 7.8, 1.6 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 28.4$, 34.8 (d, $J_{C-F} = 5.4$ Hz), 55.0 (d, $J_{C-F} = 26.6$ Hz), 60.5 (d, $J_{C-F} = 12.2$ Hz), 71.8, 75.3, 83.2, 108.9 (d, $J_{C-F} = 210.4$ Hz), 115.7, 121.7 (d, $J_{C-F} = 24.0$ Hz), 123.7 (d, $J_{C-F} = 2.6$ Hz), 125.8, 127.3, 128.6, 129.1, 132.6 (d, $J_{C-F} = 2.7$ Hz), 136.8, 143.1 (d, $J_{C-F} = 5.5$ Hz), 150.6, 178.7 (d, $J_{C-F} = 21.8$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ = -151.2. The ee was determined as 95% using CHIRALPAK IB,

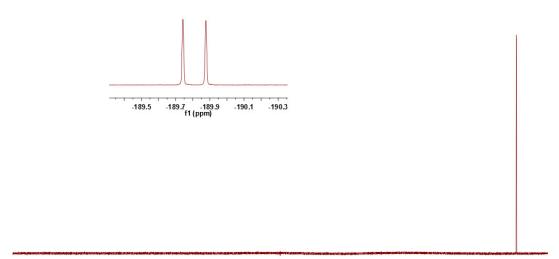
hexanes/isopropanol 95:5, flow rate = 1mL/min condition. $t_R(major) = 19.6$ min, $t_R(minor) = 17.7$ min. Anal. Calcd. for C₂₄H₂₇FN₂O₆S: C, 58.76; H, 5.55; N, 5.71. Found: C, 58.99; H, 5.78; N, 5.88.

4. ¹H, ¹³C, ¹⁹F NMR Spectra

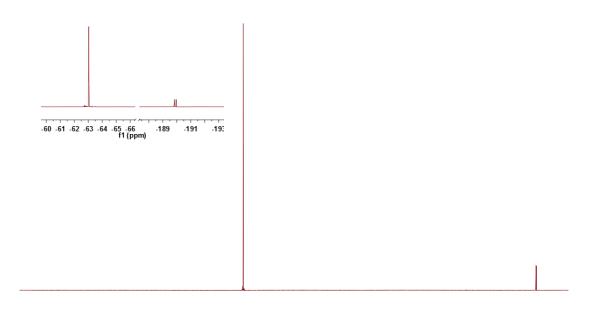

Catalyst VI

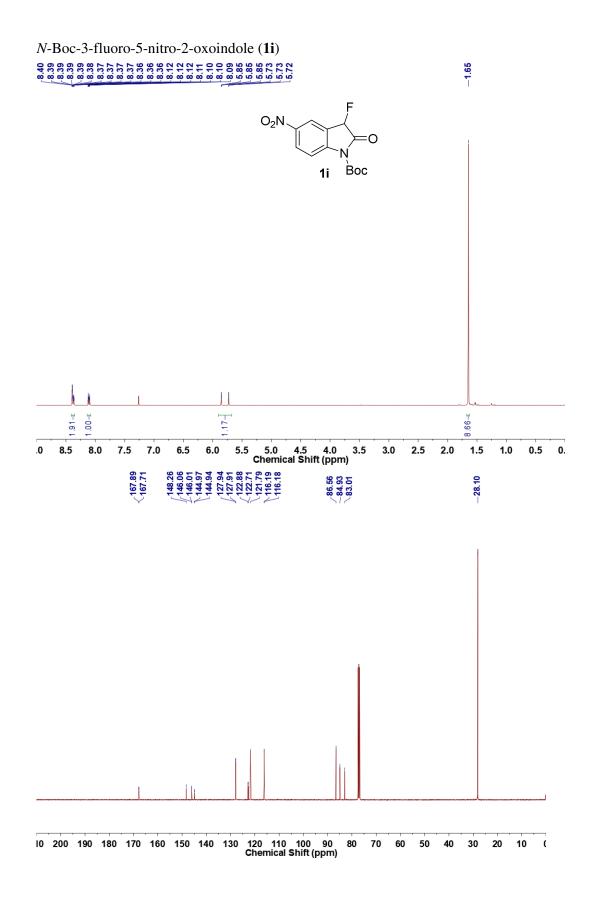


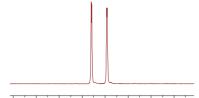

N-Boc-3,5-difluorooxindole (1e)



30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 Chemical Shift (ppm)

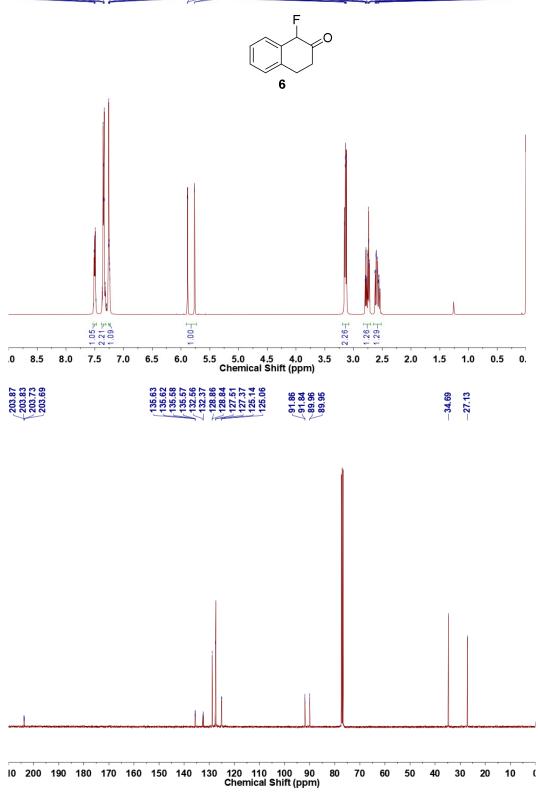


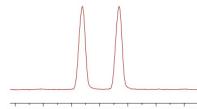

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 Chemical Shift (ppm)



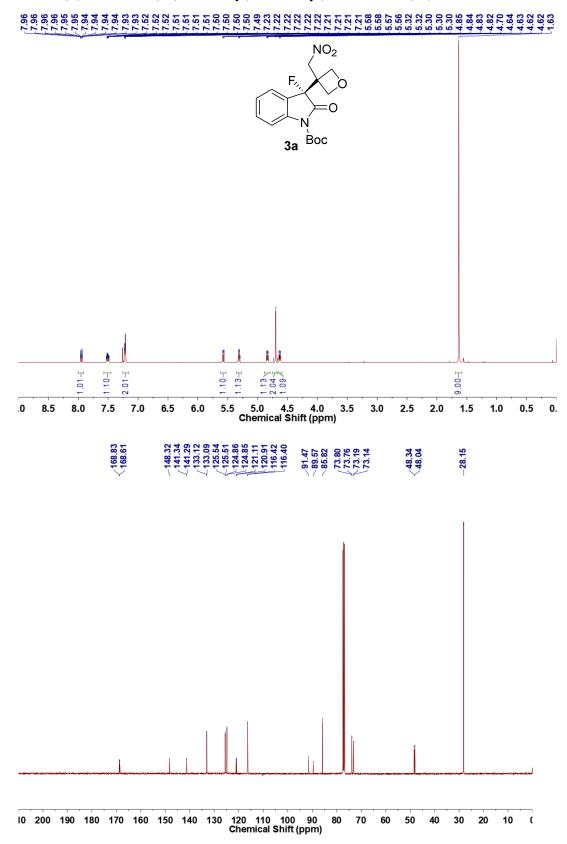
S33

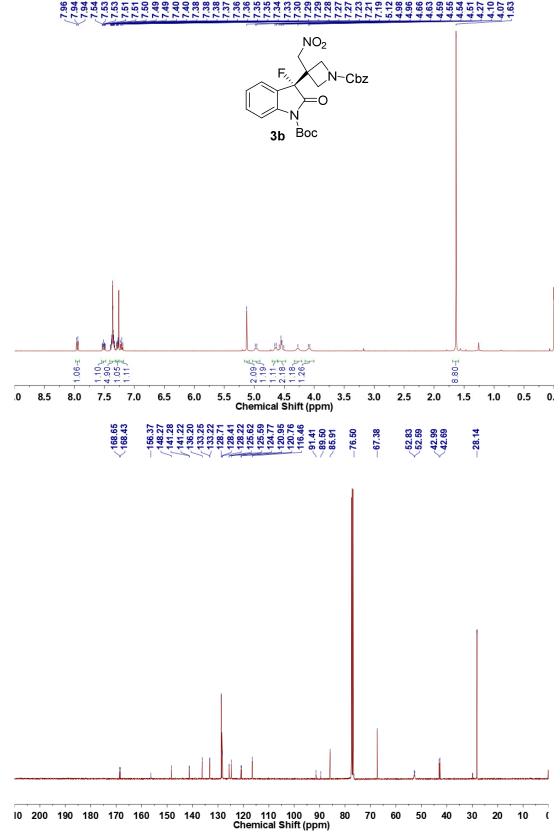
30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 Chemical Shift (ppm)

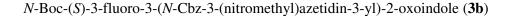


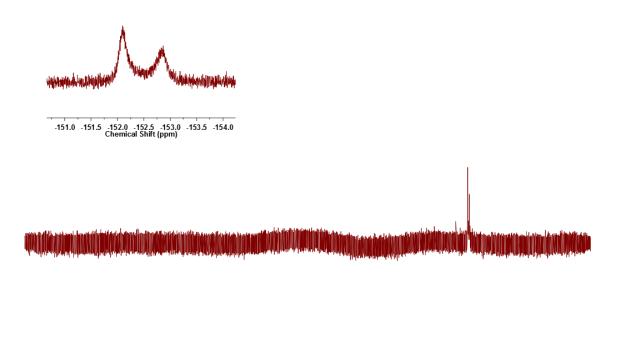


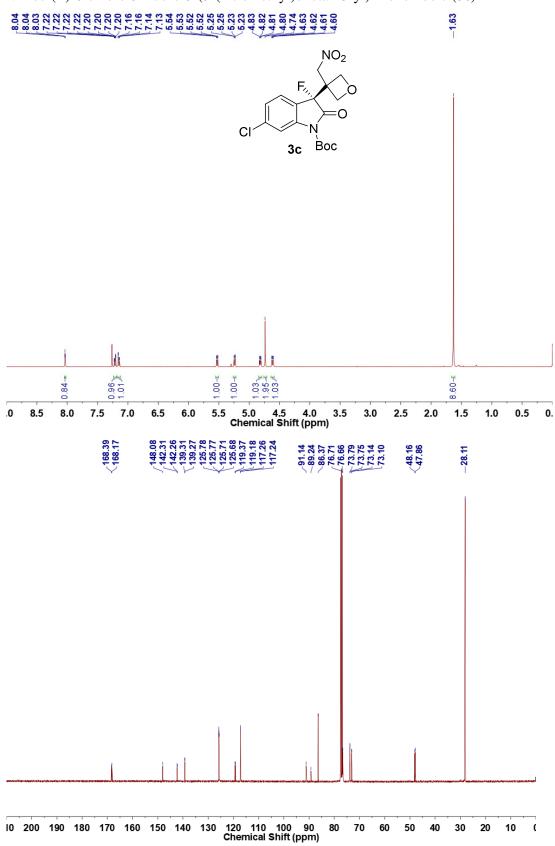
88.6 -188.8 -189.0 -189.2 -189.4 -189.6 -189.8 -190.0 f1 (ppm)


30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 Chemical Shift (ppm) 1-Fluoro-2-tetralone (6)

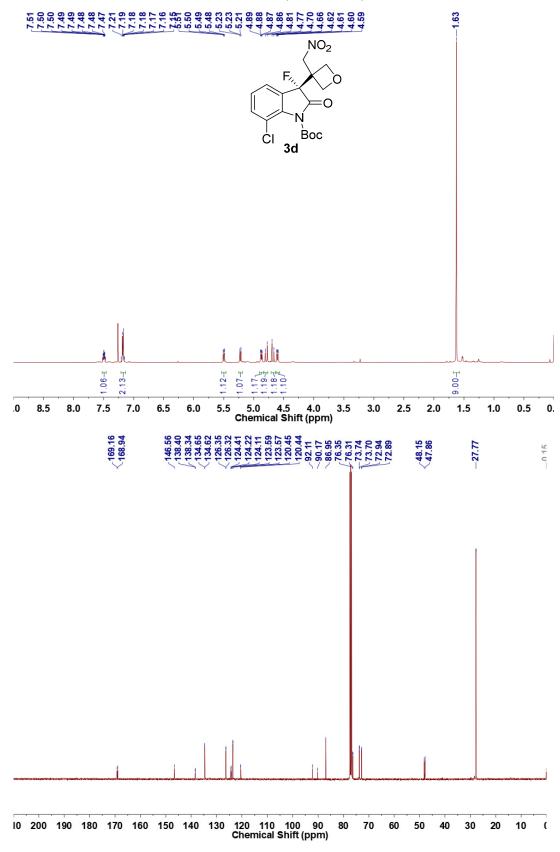


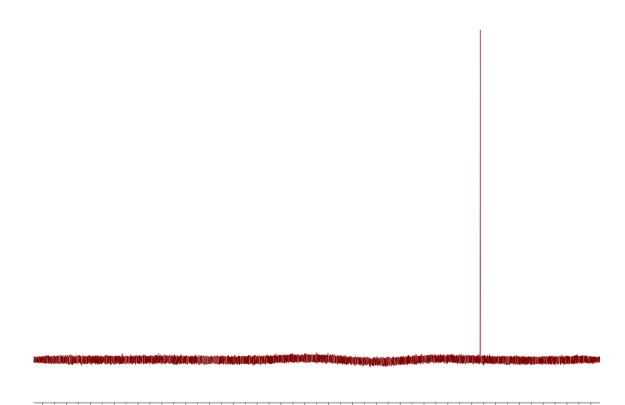


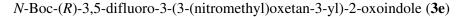

97.1 -197.2 -197.3 -197.4 -197.5 -197.6 -197.7 Chemical Shift (ppm)

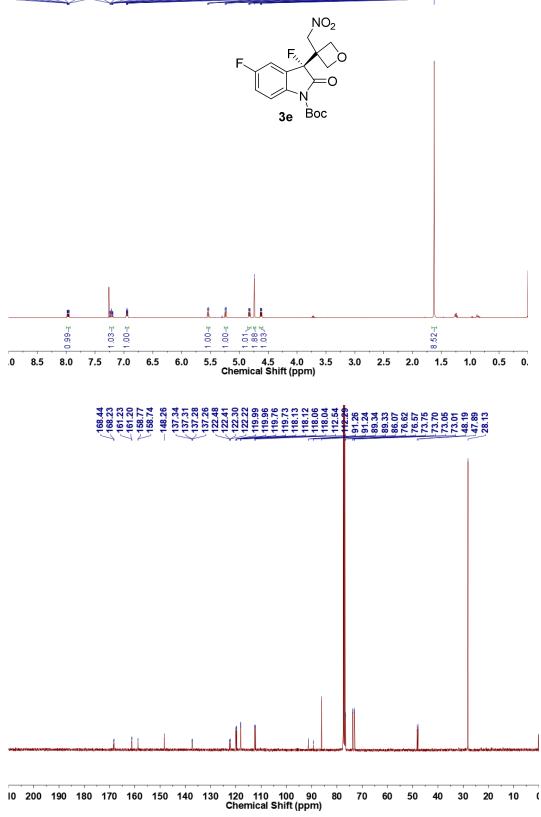


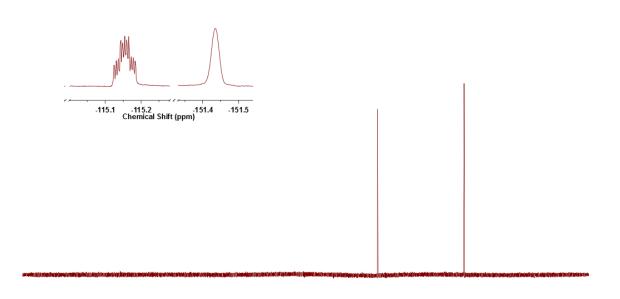
N-Boc-(*R*)-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3a**)

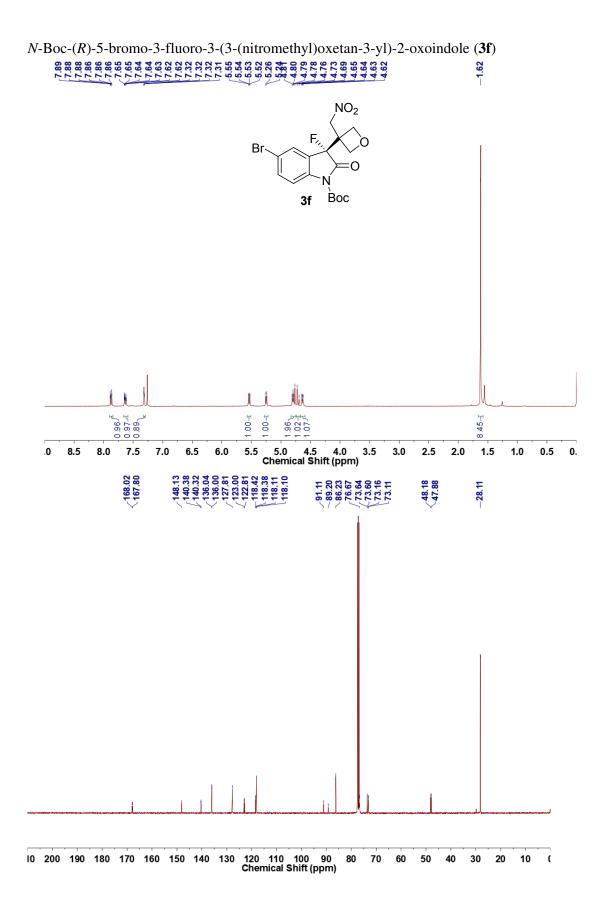


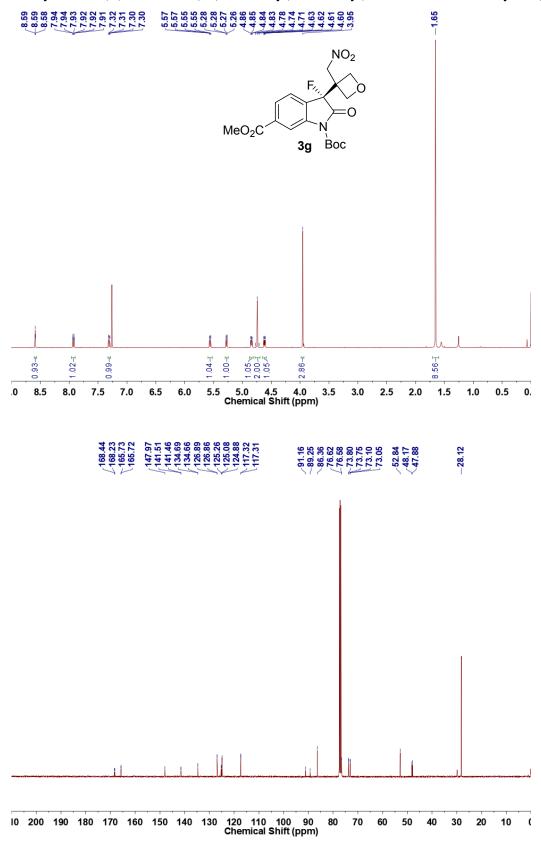


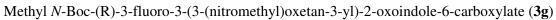

N-Boc-(*R*)-6-chloro-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3c**)

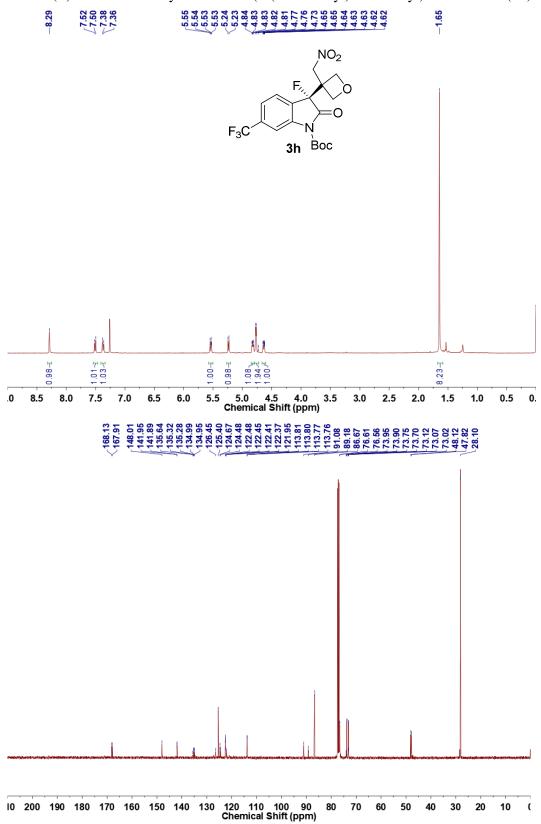

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -1 Chemical Shift (ppm)	50 -160 -170 -180 -190 -200

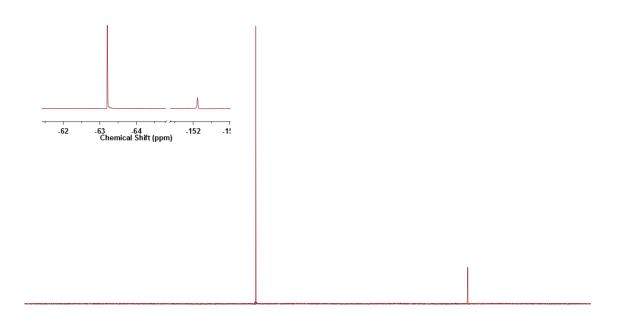


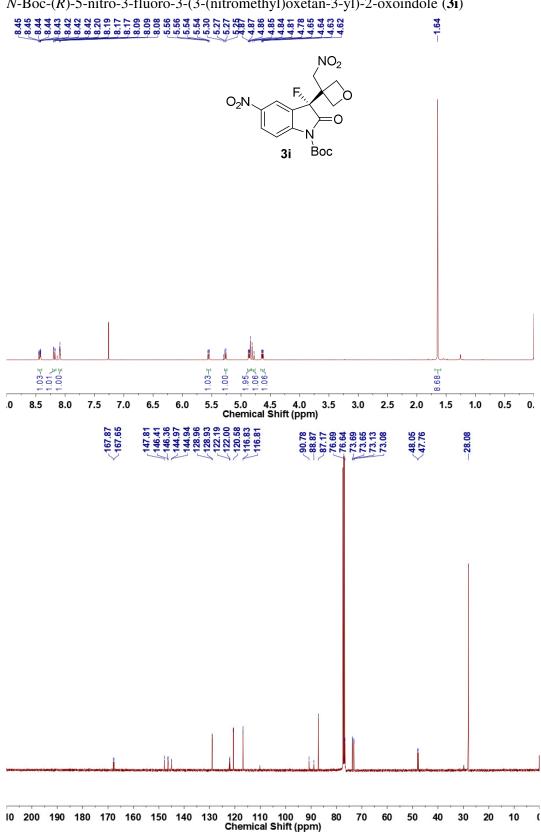

N-Boc-(*R*)-7-chloro-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3d**)



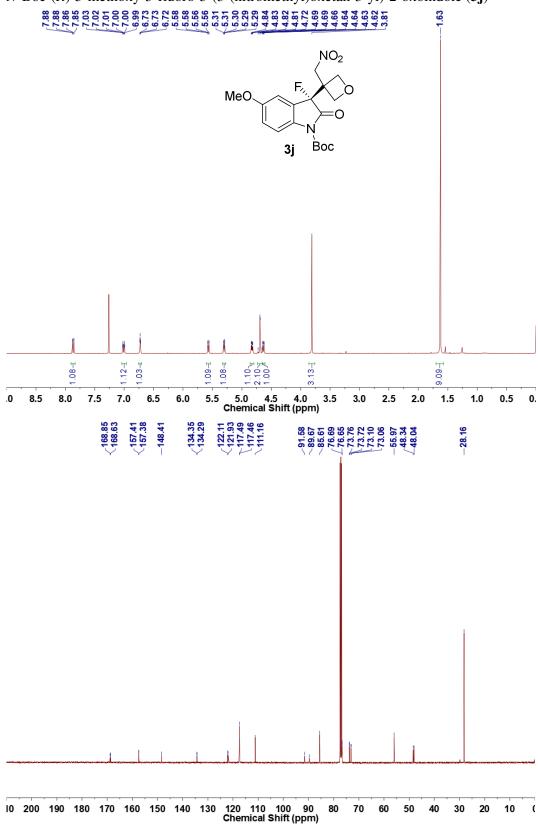




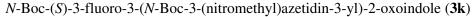


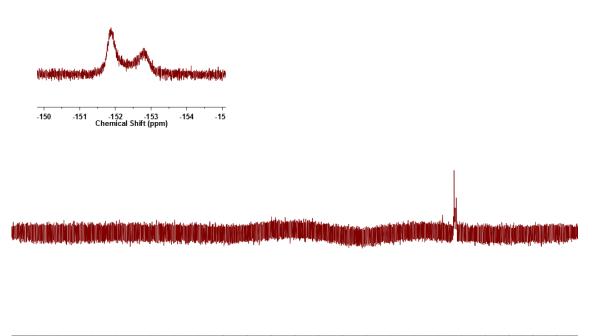

in fan ser oer fer fan de feren in de feren feren in de fer

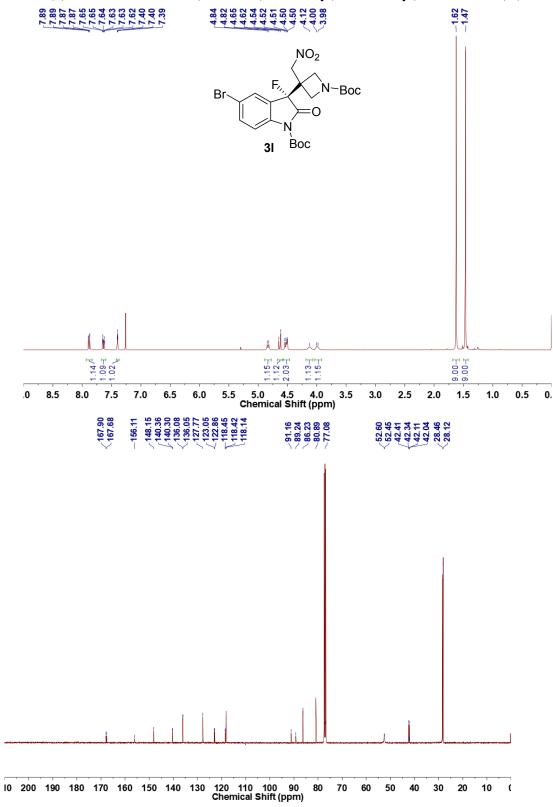
AND'N MITAIN AND AND A



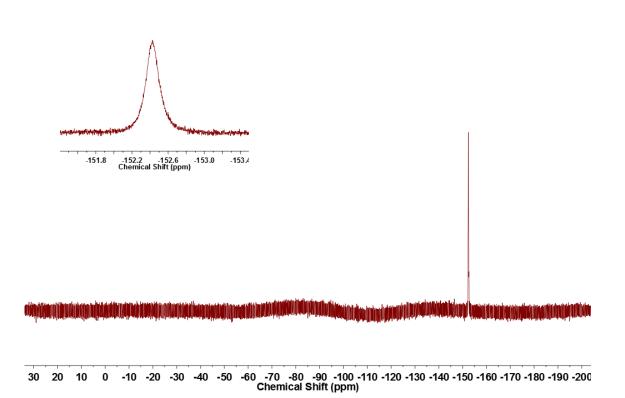
N-Boc-(*R*)-6-trifluoromethyl-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3h**)

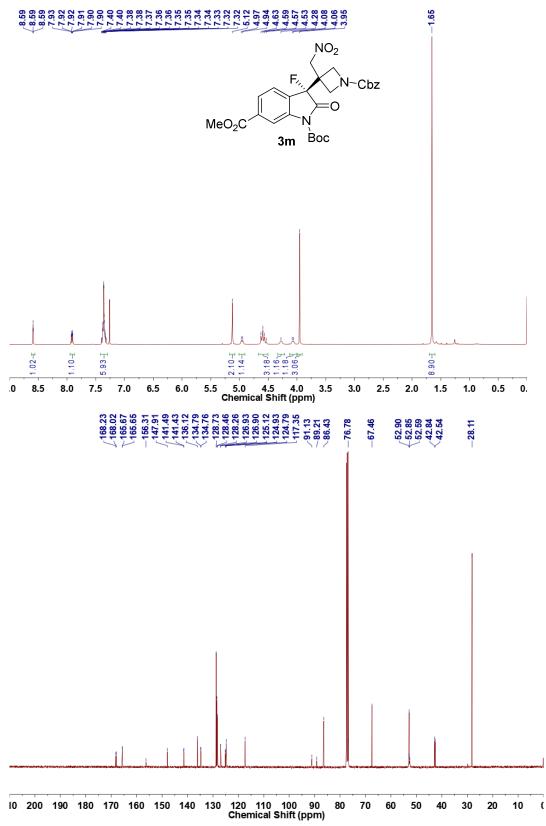


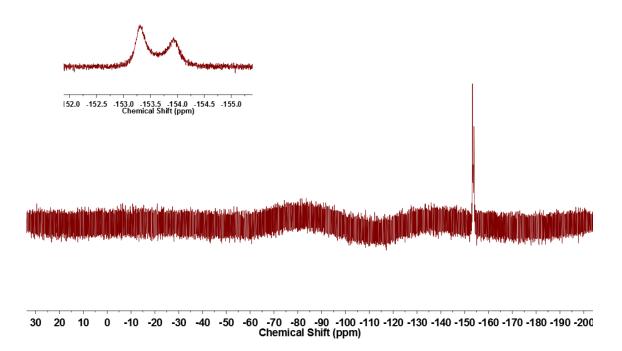

N-Boc-(*R*)-5-nitro-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (3i)

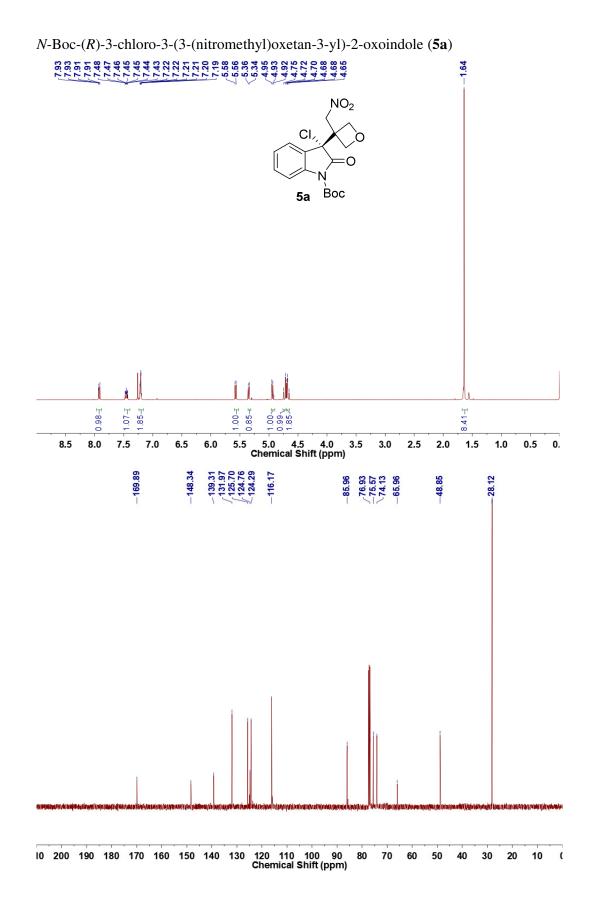


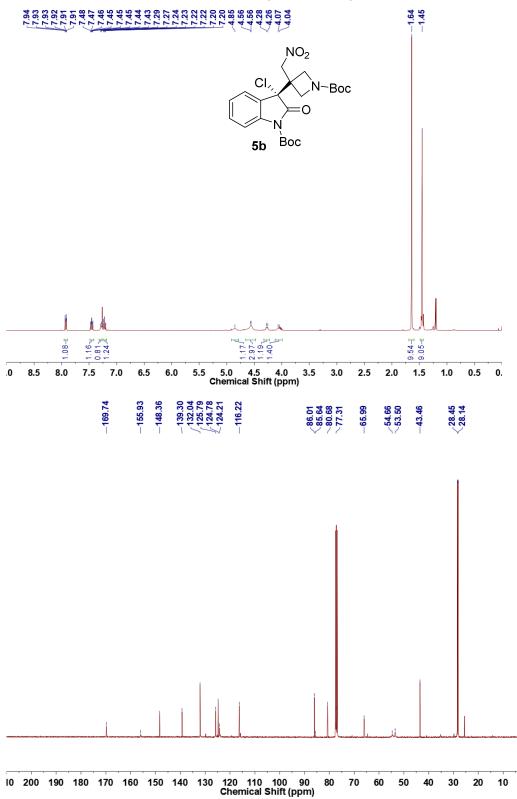
N-Boc-(R)-5-methoxy-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3j**)

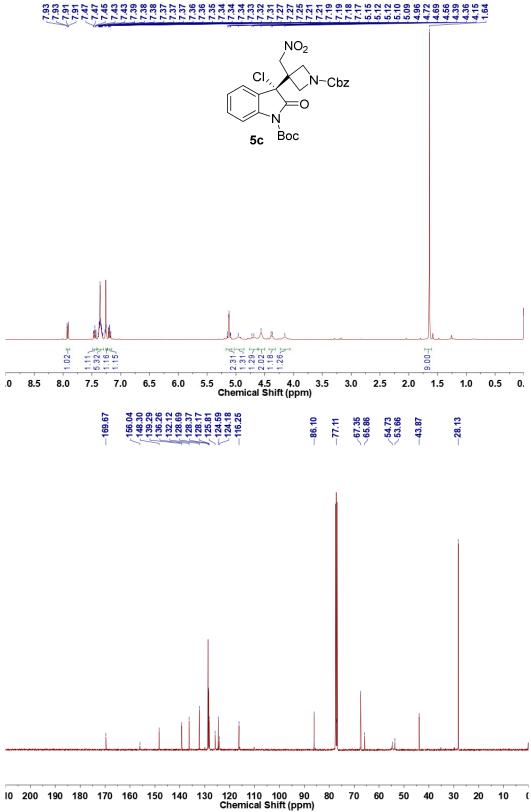


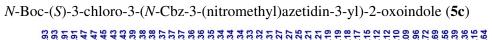


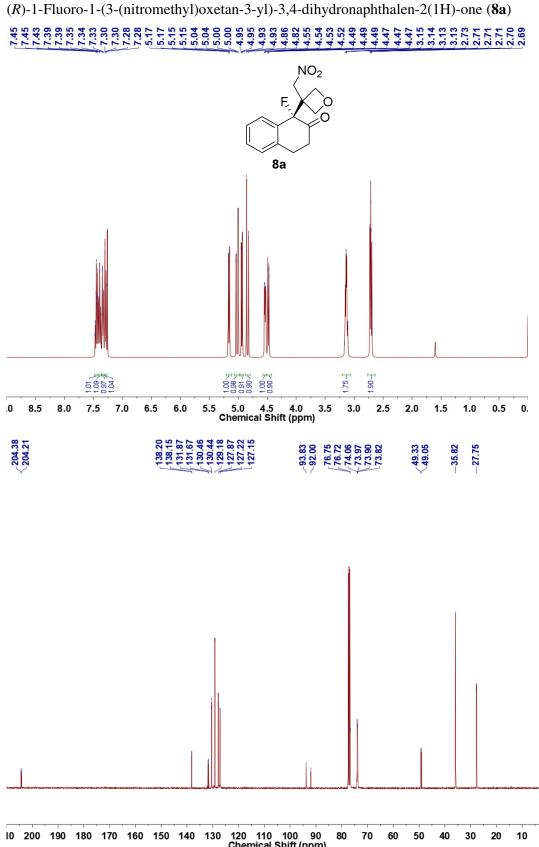

N-Boc-(*S*)-5-bromo-3-fluoro-3-(*N*-Boc-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (**3**I)

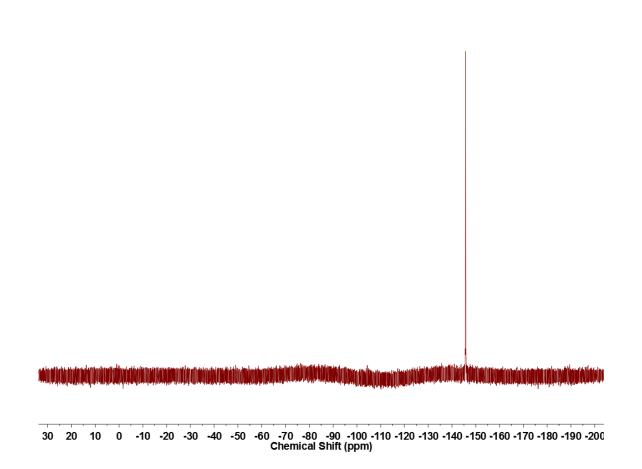


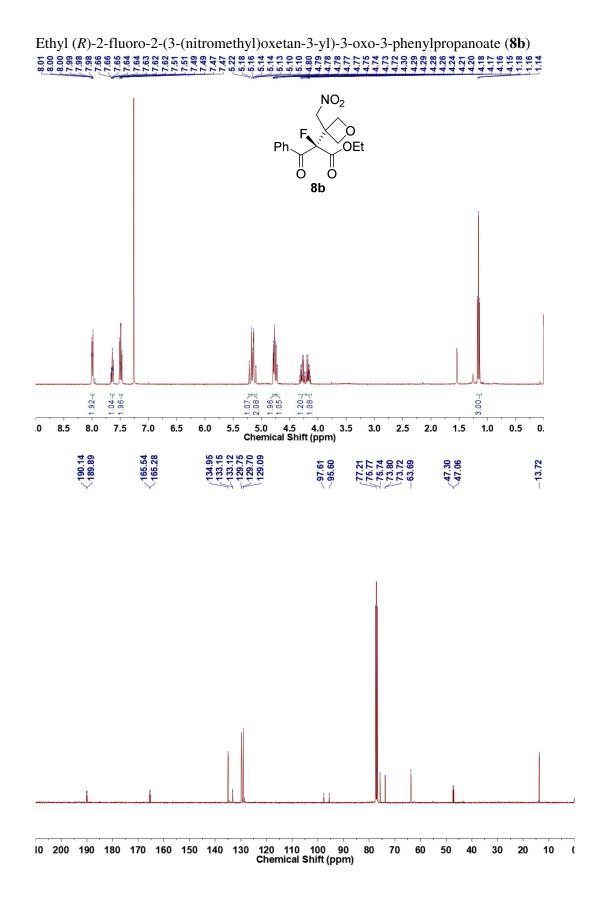

S62


Methyl *N*-Boc-(*S*)-3-fluoro-3-(*N*-Cbz-3-(nitromethyl)azetidin-3-yl)-2-oxoindole-6-carboxylate (**3m**)

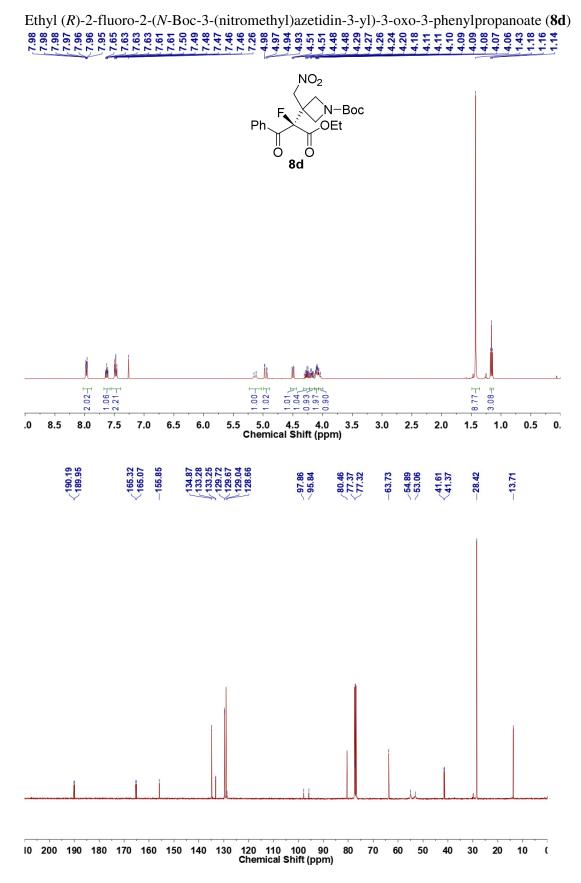


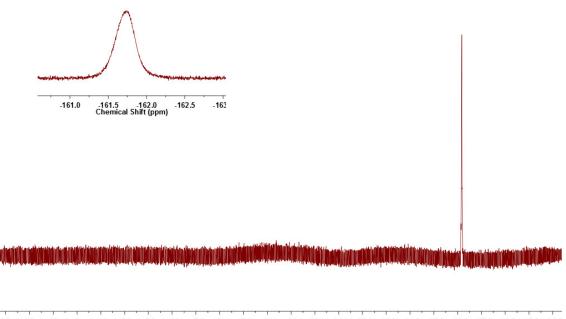



N-Boc-(*S*)-3-chloro-3-(*N*-Boc-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (**5b**)

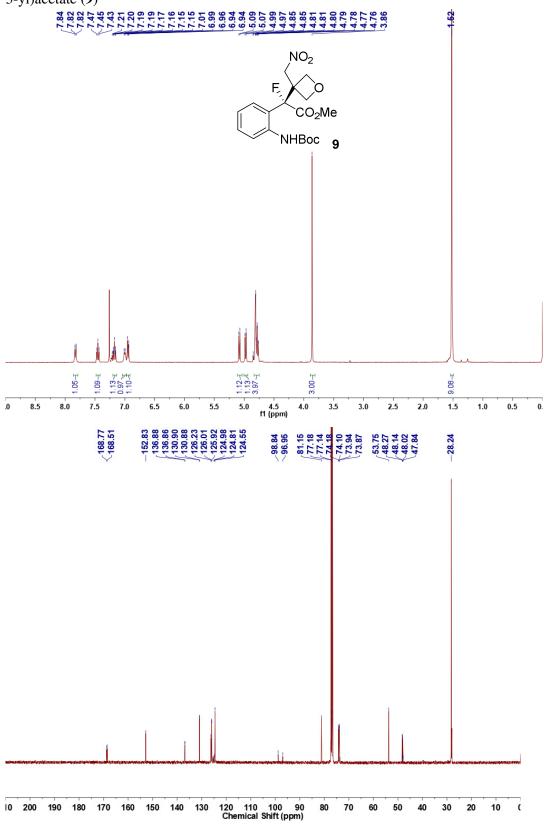


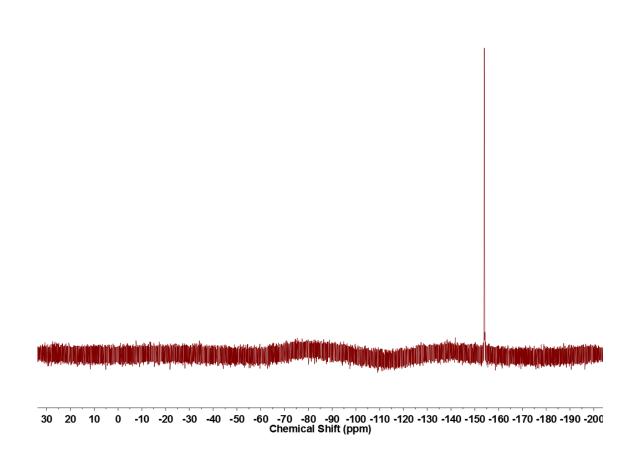
I0 200 190 180 170 160 150 140 130 120 110 100 90 Chemical Shift (ppm) (

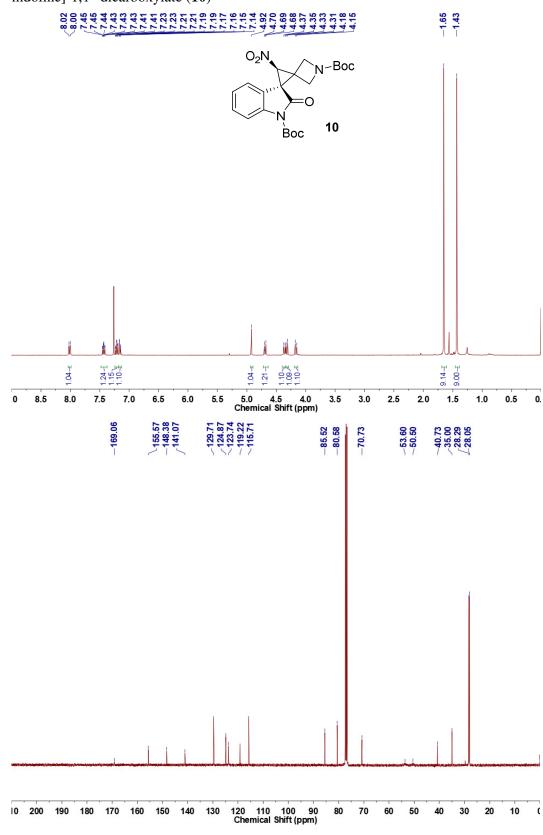




S70

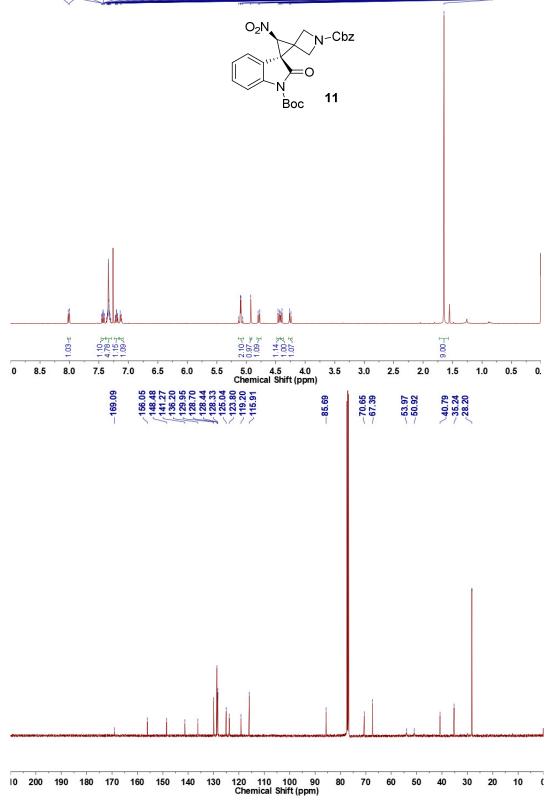


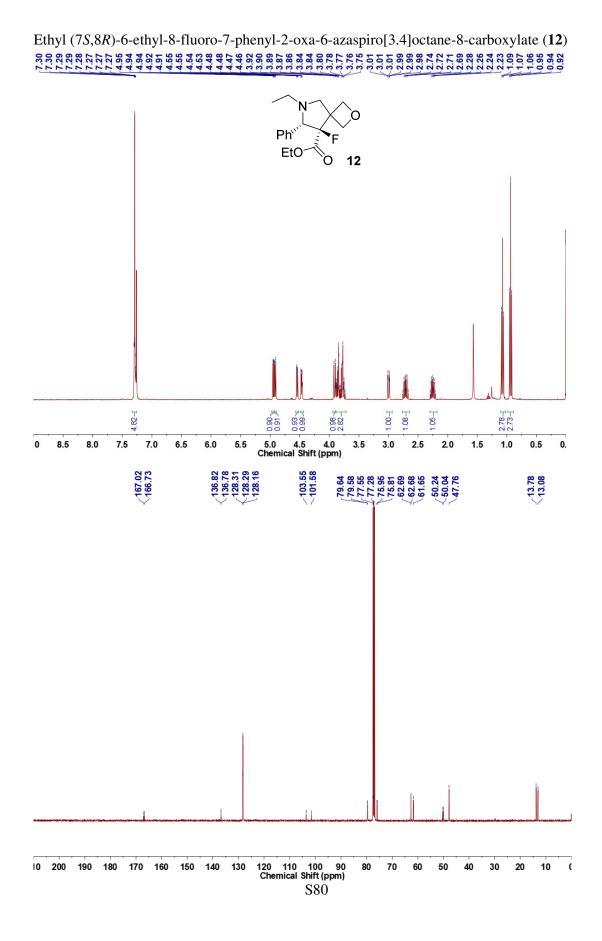


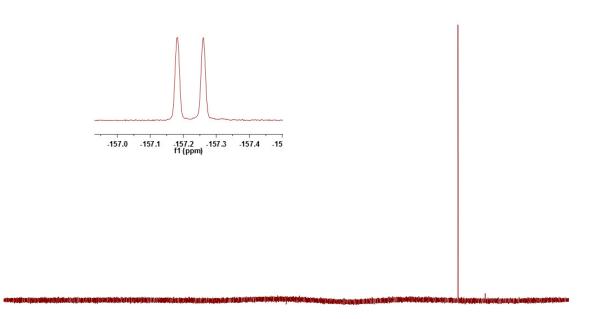


30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 Chemical Shift (ppm)

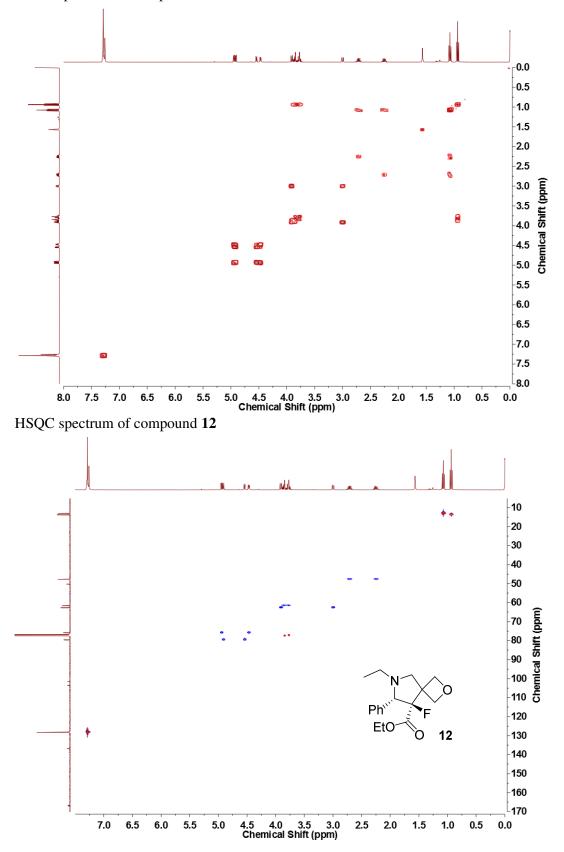
Methyl (R)-2-(2-((*tert*-butoxycarbonyl)amino)phenyl)-2-fluoro-2-(3 (nitromethyl)oxetan-3-yl)acetate (**9**)

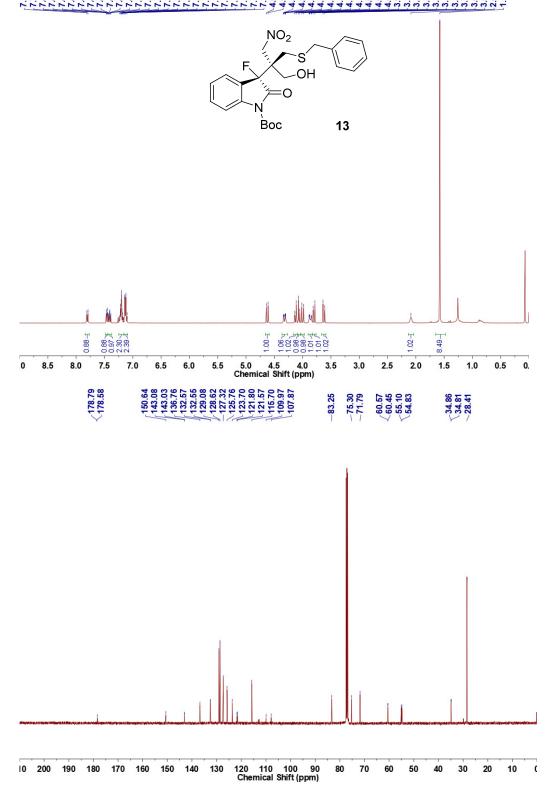


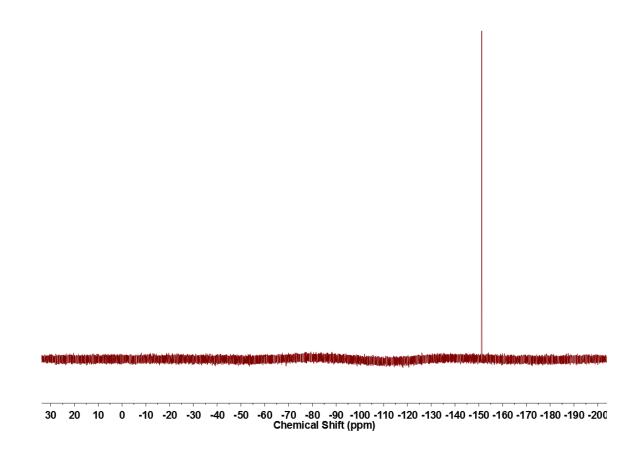



Di-*tert*-butyl (2'*S*,3'*S*)-3'-nitro-2"-oxodispiro[azetidine-3,1'-cyclopropane-2',3"-indoline]-1,1"-dicarboxylate (**10**)

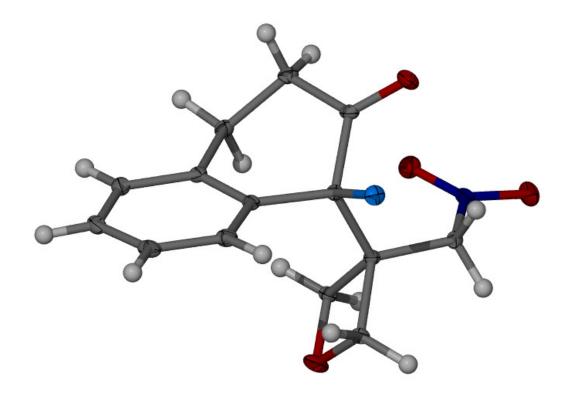
1-Benzyl 1"-(*tert*-butyl) (2'*S*,3'*S*)-3'-nitro-2"-oxodispiro[azetidine-3,1'-cyclopropane-2',3"-indoline]-1,1"-dicarboxylate (**11**)






30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 Chemical Shift (ppm)

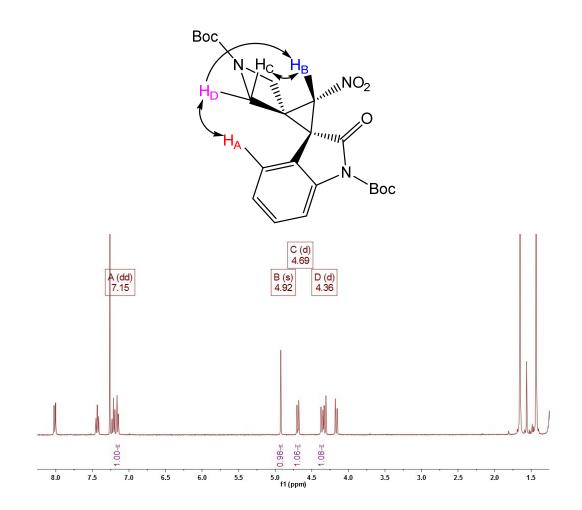
COSY spectrum of compound 12

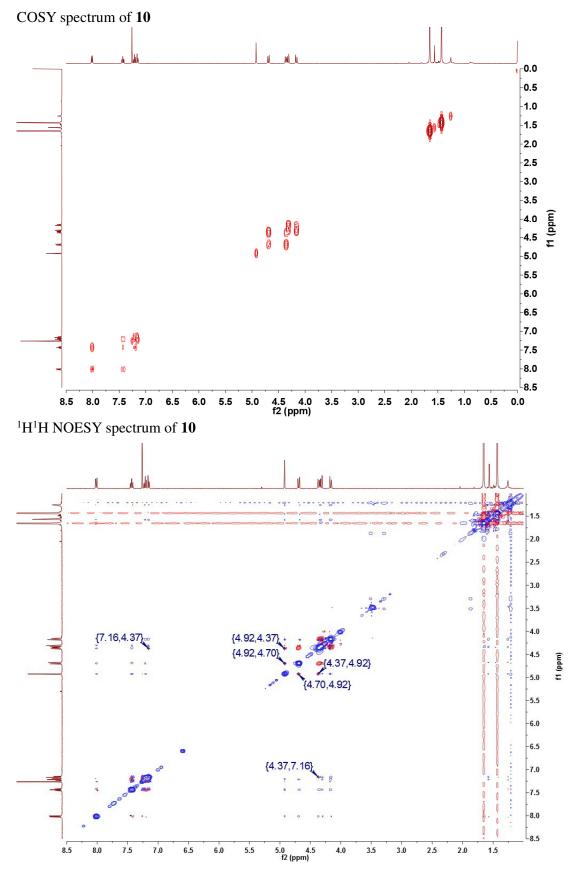

tert-Butyl (R)-3-((S)-1-(benzylthio)-3-hydroxy-2-(nitromethyl)propan-2-yl)-3fluoro-2-oxoindole-1-carboxylate (**13**)

5. Crystallographic Data

(R)-1-Fluoro-1-(3-(nitromethyl)oxetan-3-yl)-3,4-dihydronaphthalen-2(1H)-one (8a)

A single crystal was obtained by slow evaporation of a solution of **8a** in CH₂Cl₂. Single crystal X-ray analysis was performed at 100 K using a Siemens platform diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Data were integrated and corrected using the Apex 3 program. The structures were solved by direct methods and refined with full-matrix least-square analysis using SHELX-97-2 software. Non-hydrogen atoms were refined with anisotropic displacement parameter. Crystal data: C₁₄H₁₄FNO₄, M = 279.26, colorless block, 0.43 x 0.77 x 0.92 mm³, monoclinic, space group $P2_1$, a = 8.4753(5), b = 7.4483(4), c = 9.7720(6) Å, V = 601.09(6) Å³, Z = 2. Absolute structure parameter = 0.087(680) (Flack, H. D. Acta Cryst. **1983**, A39, 876-881).

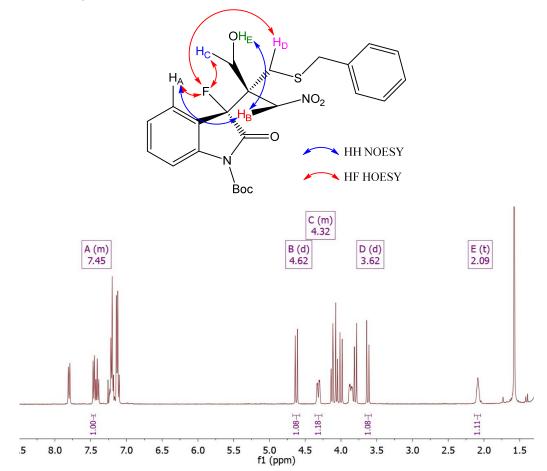

N-Boc-(*R*)-7-chloro-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3d**)

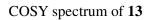

A single crystal was obtained by recrystallization of **3d** from ethanol. Single crystal X-ray analysis was performed at 273 K using a Siemens platform diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Data were integrated and corrected using the Apex 3 program. The structures were solved by direct methods and refined with full-matrix least-square analysis using SHELX-97-2 software. Non-hydrogen atoms were refined with anisotropic displacement parameter. Crystal data: C₁₇H₁₈ClFN₂O₆, *M* = 400.78, colorless block, 0.55 x 0.72 x 0.94 mm³, orthorhombic, space group *P*2₁2₁, *a* = 7.7160(15), b = 10.0892(19), c = 23.357(5) Å, *V* = 1818.3(6) Å³, *Z* = 4. Absolute structure parameter = 0.116(73) (Flack, H. D. Acta Cryst. **1983**, A39, 876-881).

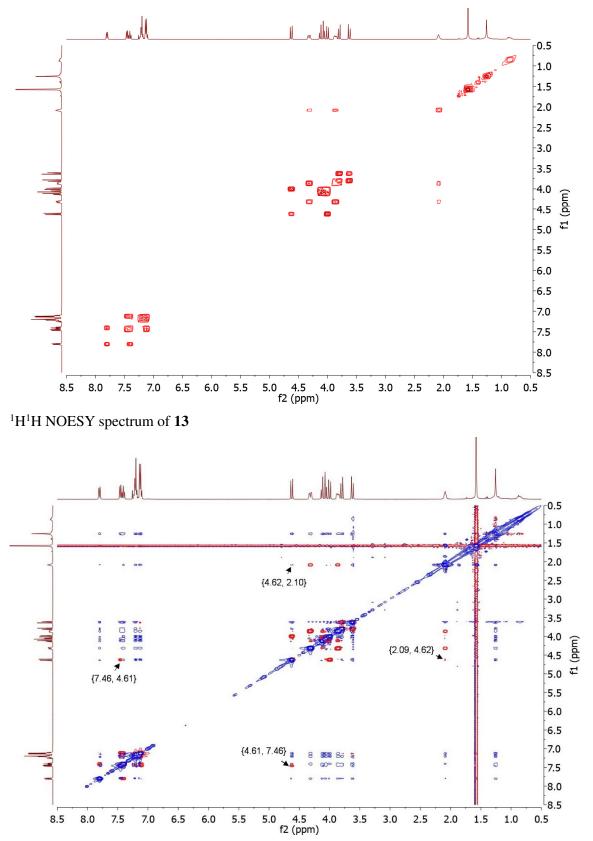
6. Determination of the Relative Configuration of Compounds 10 and 13

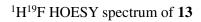
A) Di-*tert*-butyl (2'S,3'S)-3'-nitro-2"-oxodispiro[azetidine-3,1'-cyclopropane-2',3"-indoline]-1,1"-dicarboxylate (**10**)

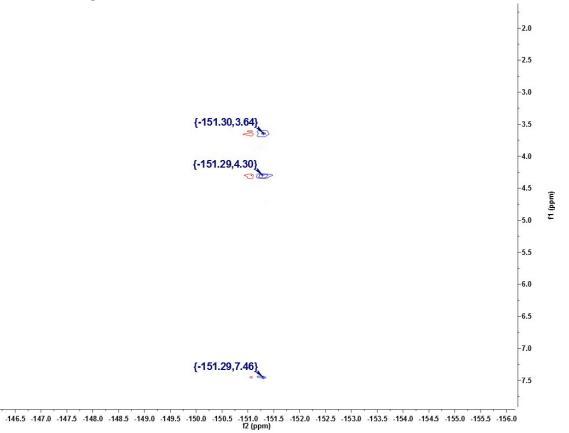
The ¹H NMR signals of H_A , H_B , H_C and H_D in compound **10** were first assigned based on chemical shift and COSY analysis. The ¹H¹H NOESY experiment showed that the tertiary proton H_B located at the cyclopropane ring has NOE's with the methylene protons H_C and H_D on one side of azetidine ring. The methylene proton H_D showed NOE with H_A at C4 in the oxindole ring. In agreement with these results, the *syn* relative configuration of the cyclopropane ring is shown below.

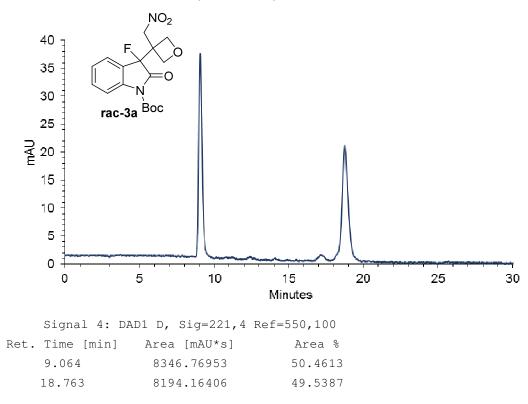


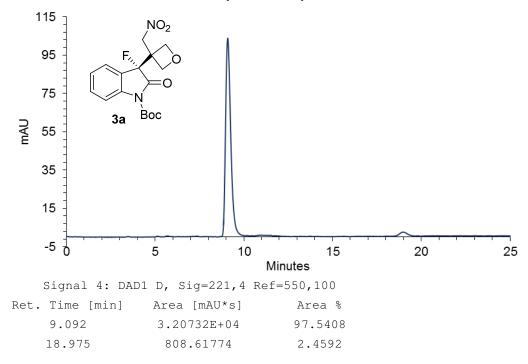




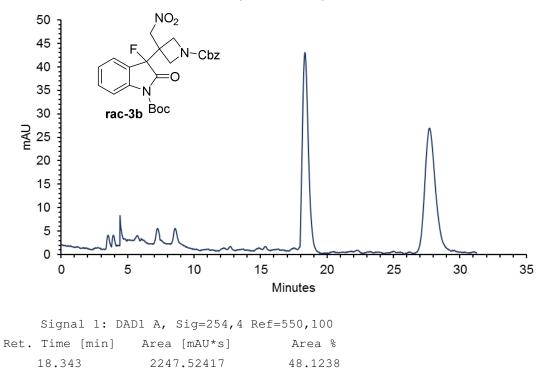

B) *tert*-Butyl (R)-3-((S)-1-(benzylthio)-3-hydroxy-2-(nitromethyl)propan-2-yl)-3-fluoro-2-oxoindole-1-carboxylate (**13**)


The ¹H NMR signals of H_A, H_B, H_C, H_D and H_E in compound **13** were first assigned based on COSY analysis. ¹H¹H NOESY and ¹H¹⁹F HOESY experiments were used to determine the nuclei with close contact. The methylene proton H_B on the CH₂NO₂ group showed NOE's with the aromatic proton H_A at C4 in the oxindole ring and the hydroxyl proton H_E in the CH₂OH group. The fluorine nuclei (F) showed heteronuclear NOE's with the aromatic proton H_A at C4 in the oxindole ring, the methylene proton H_C in the CH₂OH group and the methylene proton H_D in the thioether group. In agreement with these results, the relative stereochemistry is shown below.

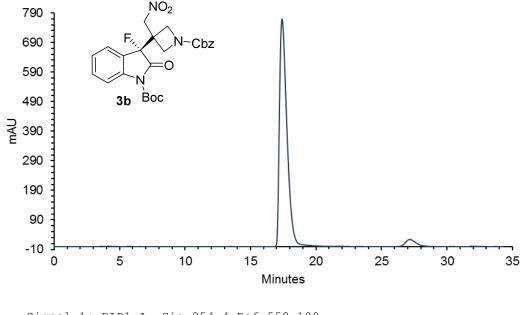




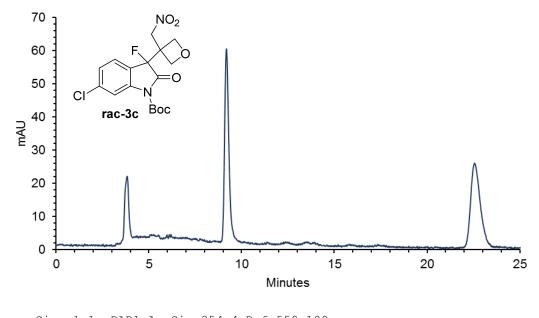
7. HPLC Chromatograms


N-Boc-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (rac-3a)

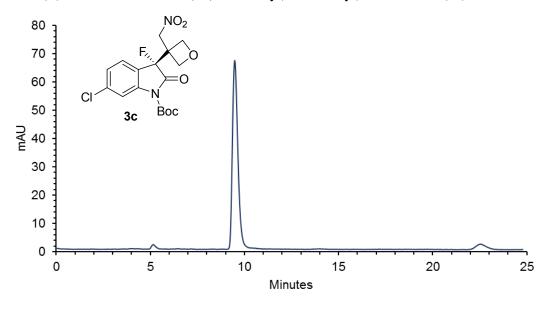
N-Boc-(*R*)-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3a**)



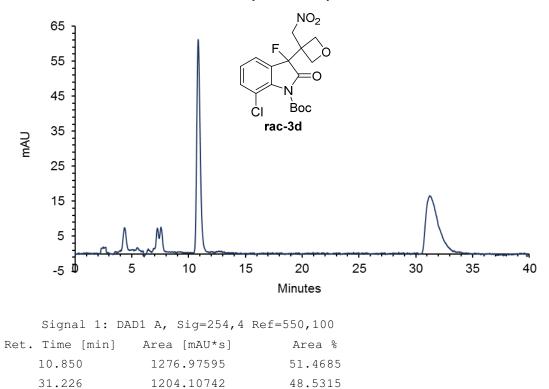
N-Boc-3-fluoro-3-(*N*-Cbz-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (**rac-3b**)


27.721	2422.77332	51.8762	

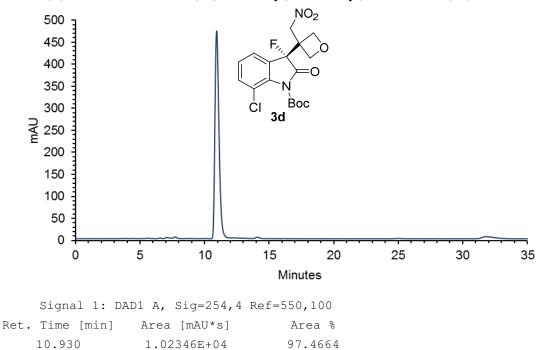
N-Boc-(*S*)-3-fluoro-3-(*N*-Cbz-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (**3b**)


	Signa	1 1:	DAD1	Α,	Sig=254,4	Ref=550,10	0
Ret.	Time	[min]	A	rea	[mAU*s]	Area	olo
	17.393	3		488	4.85010	95.91	92
	27.120	C		207	7.82164	4.08	8 0

N-Boc-6-chloro-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**rac-3c**)

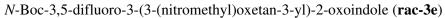

	Signal 1: DAD	01 A, Sig=254,4	Ref=550,100
Ret.	Time [min]	Area [mAU*s]	Area %
	9.194	946.37256	50.2104
	22.564	938.44312	49.7896

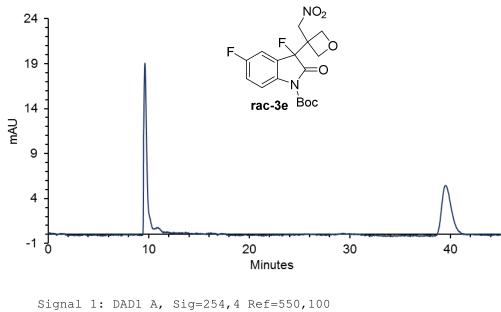
N-Boc-(R)-6-chloro-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3c**)



	Signa	1 1:	DAD1	Α,	Sig=254,4	Ref=550,100)
Ret.	Time	[min]] A:	rea	[mAU*s]	Area	00
	9.49			132	5.73474	95.913	86
	22.57	2		56	.48281	4.086	4

N-Boc-7-chloro-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (rac-3d)

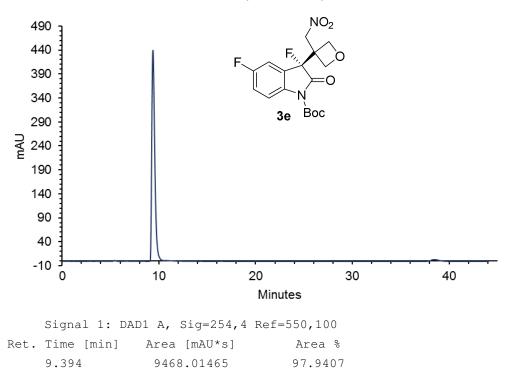

N-Boc-(*R*)-7-chloro-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3d**)



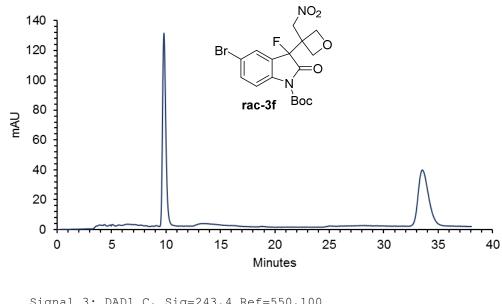
S95

2.5336

266.04330



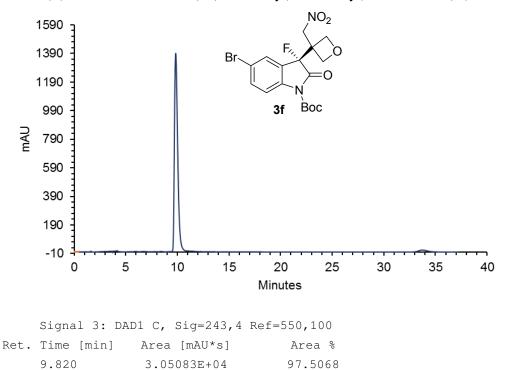
	-)	, - , - , -	
Ret.	Time [min]	Area [mAU*s]	Area %
	9.615	376.40601	52.9430
	39.525	334.55905	47.0570


38.383

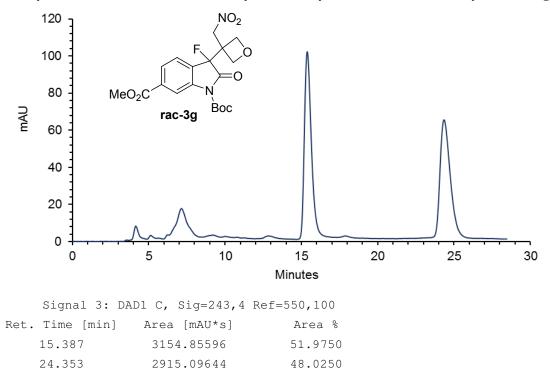
N-Boc-(*R*)-3,5-difluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3e**)

199.07681

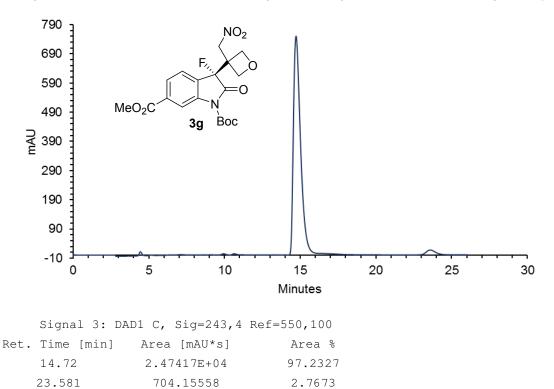
N-Boc-5-bromo-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (rac-3f)

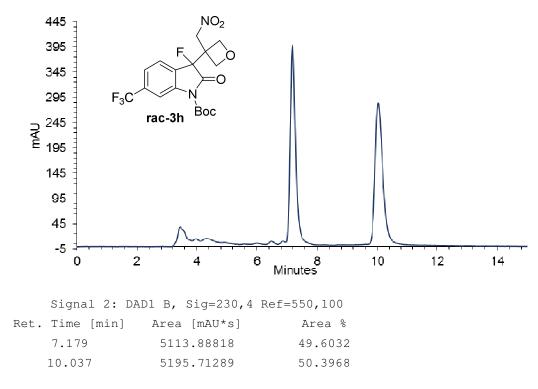


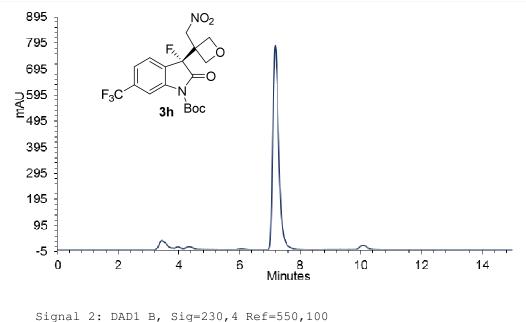
	Signal	1 3:1	JADI C,	SIY=243,4	Re1=330,100
Ret.	Time	[min]	Area	[mAU*s]	Area %
	9.801		268	0.43262	52.3143
	33.535		244	3.27734	47.6857


780.09155

33.724

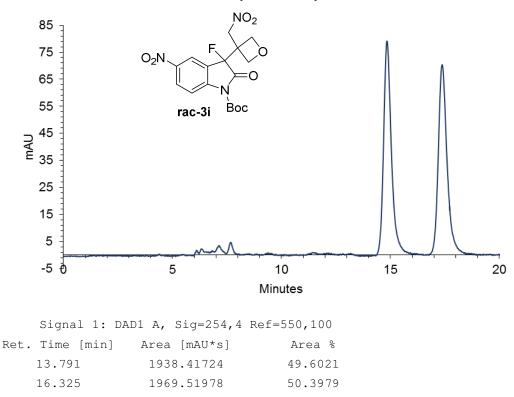

N-Boc-(R)-5-bromo-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (3f)


Methyl N-Boc-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole-6-carboxylate (rac-3g)

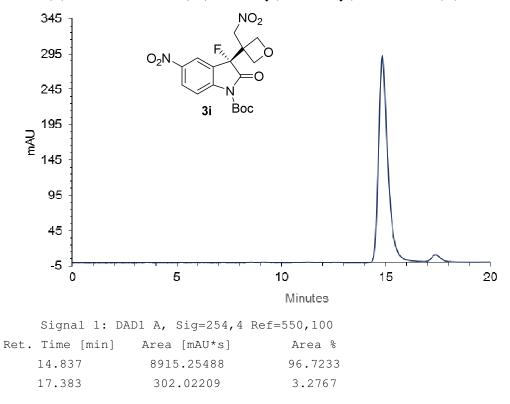

Methyl *N*-Boc-(R)-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole-6-carboxylate (**3g**)

N-Boc-6-trifluoromethyl-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**rac-3h**)

N-Boc-(*R*)-6-trifluoromethyl-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3h**)

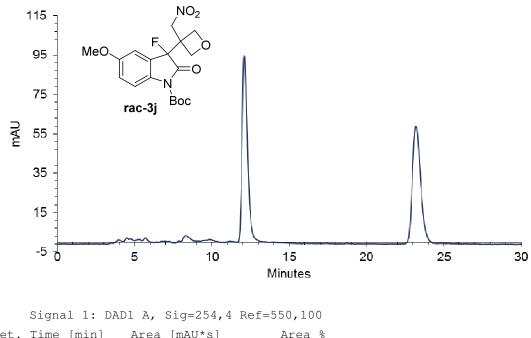

 Signal 2: DADI B, Sig=230,4 Ref=550,100

 Ret. Time [min] Area [mAU*s] Area %

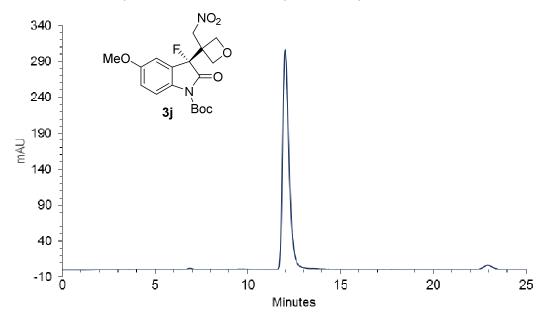

 7.178
 1.06681E+04
 97.9678

 10.088
 221.29810
 2.0322

N-Boc-5-nitro-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (rac-3i)

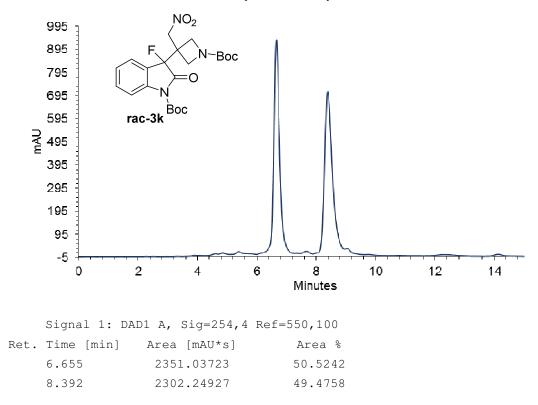


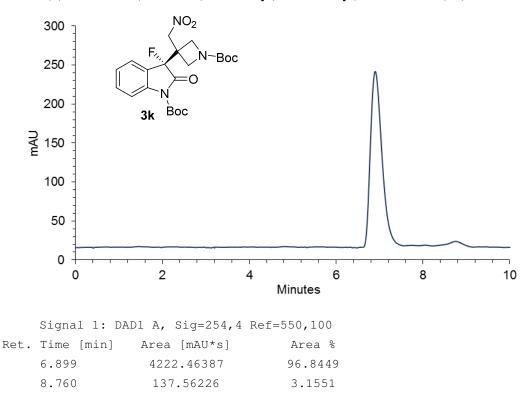
N-Boc-(*R*)-5-nitro-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (3i)

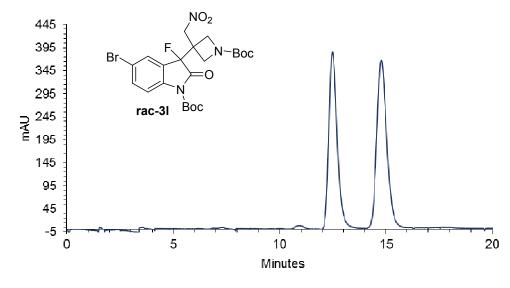

S100

N-Boc-5-methoxy-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (rac-3j)

Ret. Time [min]	Area [mAU*s]	Area 🗞
12.096	2285.90900	50.7470
23.191	2218.61300	49.2530

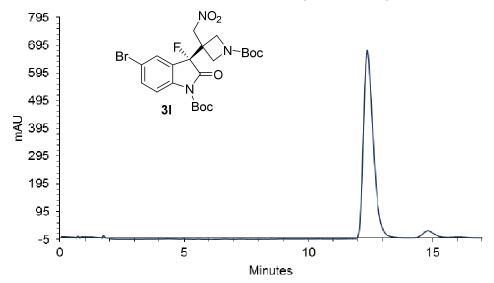

N-Boc-(*R*)-5-methoxy-3-fluoro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**3j**)


	Signa	1 1:	DAD1 .	Α,	Sig=254,4	Ref=550,10	00
Ret.	Time	[min]	Ar	rea	[mAU*s]	Area	00
	12.020	C	7	7362	2.36500	97.25	591
	22.916	5		207	.48350	2.74	09

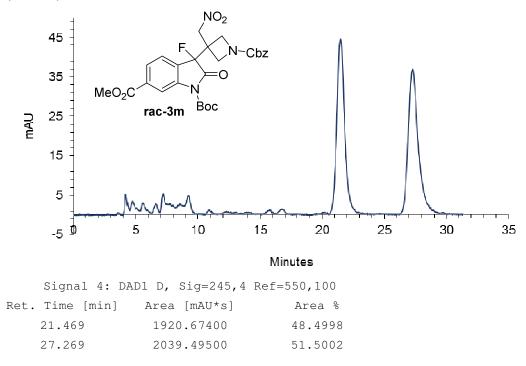

S101

N-Boc-3-fluoro-3-(N-Boc-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (rac-3k)

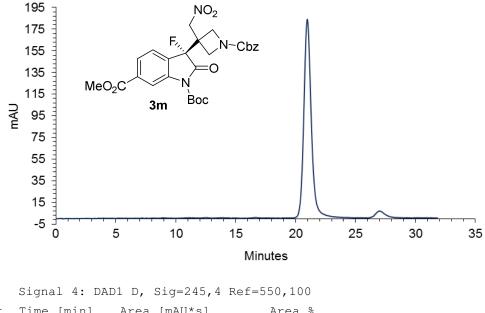
N-Boc-(*S*)-3-fluoro-3-(*N*-Boc-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (**3**k)



N-Boc-5-bromo-3-fluoro-3-(*N*-Boc-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (rac-3l)


=550,100
Area %
45.8368
54.1632

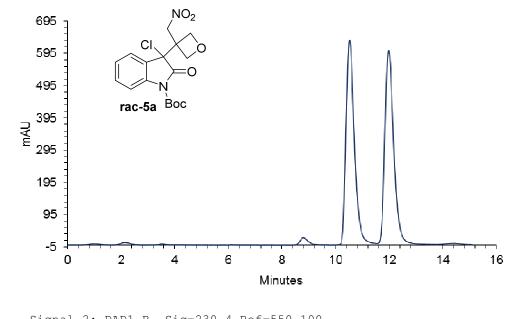
N-Boc-(*S*)-5-bromo-3-fluoro-3-(*N*-Boc-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (**3**I)



	Signa	1 1:	DAD1	A,	Sig=254,4	Ref=550,100	
Ret.	Time	[min] 7	Area	[mAU*s]	Area %	
	12.38	3		679	.41742	96.0164	
	14.826			25	.16455	3.9836	

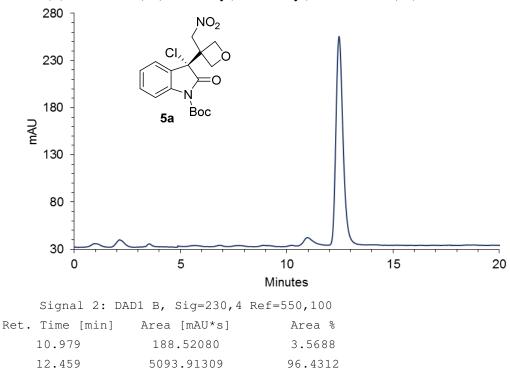
Methyl *N*-Boc-3-fluoro-3-(*N*-Cbz-3-(nitromethyl)azetidin-3-yl)-2-oxoindole-6-carboxylate (**rac-3m**)

Methyl *N*-Boc-(*S*)-3-fluoro-3-(*N*-Cbz-3-(nitromethyl)azetidin-3-yl)-2-oxoindole-6-carboxylate (**3m**)

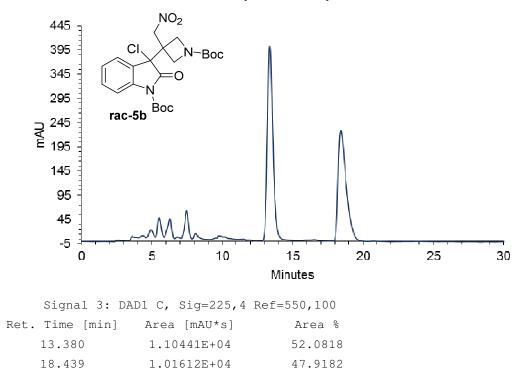


 Ret. Time [min]
 Area [mAU*s]
 Area %

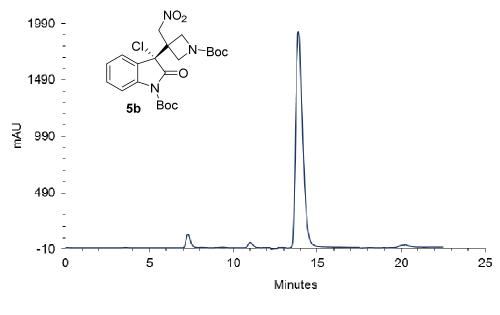
 20.973
 7737.50200
 96.2193


 27.011
 304.03010
 3.7807

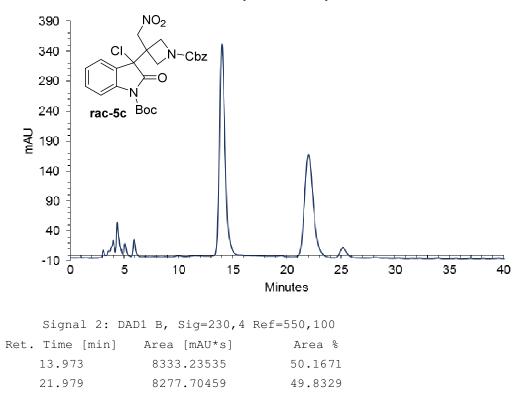
N-Boc-3-chloro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**rac-5a**)



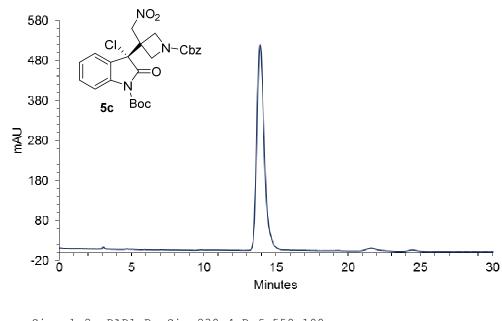
	Signa	al 2: DAL) В,	Sig=230,4	Rei=550,100
Ret.	Time	[min]	Area	[mAU*s]	Area %
	10.52	0	1.38	3931E+04	49.8218
	11.97	9	1.39	9925E+04	50.1782


N-Boc-(*R*)-3-chloro-3-(3-(nitromethyl)oxetan-3-yl)-2-oxoindole (**5a**)

N-Boc-3-chloro-3-(*N*-Boc-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (**rac-5b**)



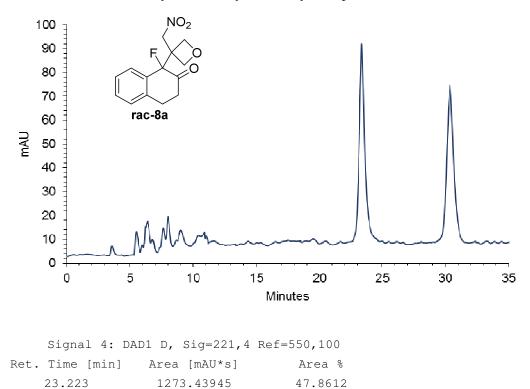
N-Boc-(*S*)-3-chloro-3-(*N*-Boc-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (**5b**)



	Signal	3:	DAD1 C	,	Sig=225,4	Ref=5	50,10	0
Ret.	Time [min]	Are	ea	[mAU*s]		Area	olo
	13.875		5.0	61	593E+04		98.71	31
	20.223		7.	32	.11316		1.286	59

N-Boc-3-chloro-3-(*N*-Cbz-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (rac-5c)

N-Boc-(*S*)-3-chloro-3-(*N*-Cbz-3-(nitromethyl)azetidin-3-yl)-2-oxoindole (**5c**)


 Signal 2: DAD1 B, Sig=230,4 Ref=550,100

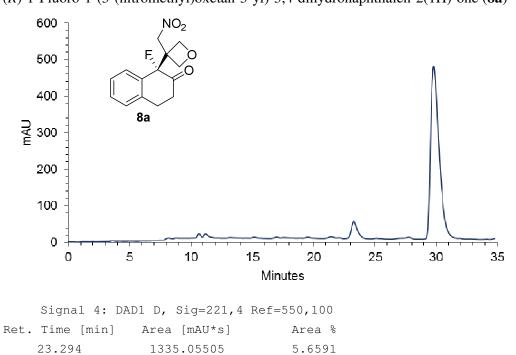
 Ret. Time [min]
 Area [mAU*s]
 Area %

 13.893
 1.10842E+04
 98.4420

 21.595
 175.42534
 1.5580

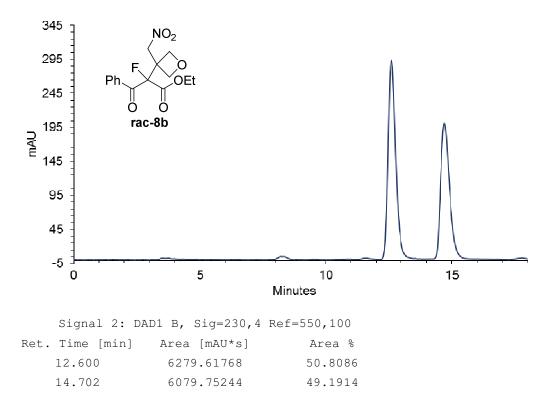
1-Fluoro-1-(3-(nitromethyl)oxetan-3-yl)-3,4-dihydronaphthalen-2(1H)-one (rac-8a)

(*R*)-1-Fluoro-1-(3-(nitromethyl)oxetan-3-yl)-3,4-dihydronaphthalen-2(1H)-one (8a)

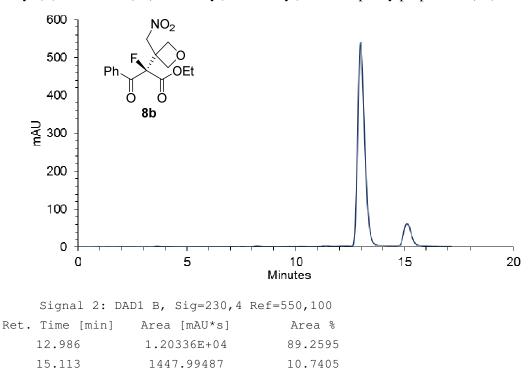

52.1388

1387.25184

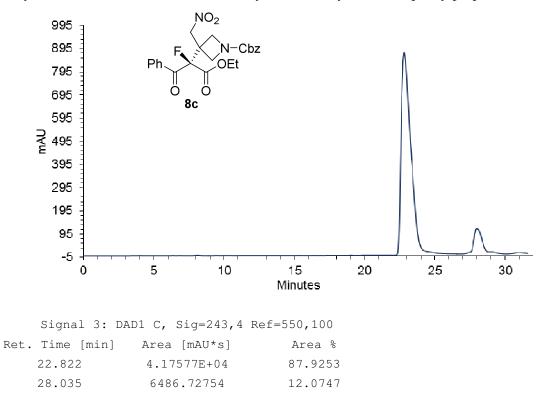
2.22563E+04

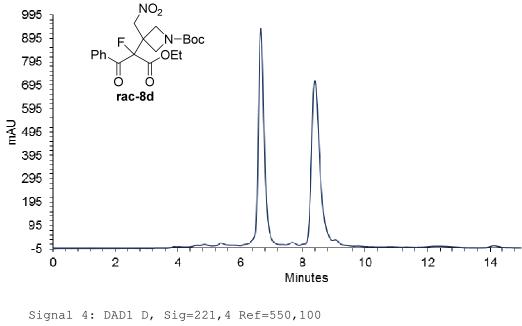

30.346

29.798



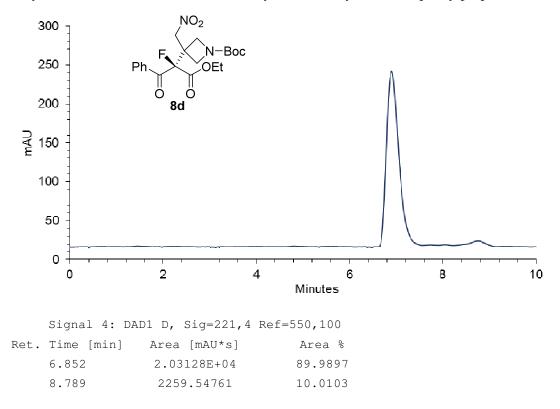
S108


Ethyl 2-fluoro-2-(3-(nitromethyl)oxetan-3-yl)-3-oxo-3-phenylpropanoate (rac-8b)

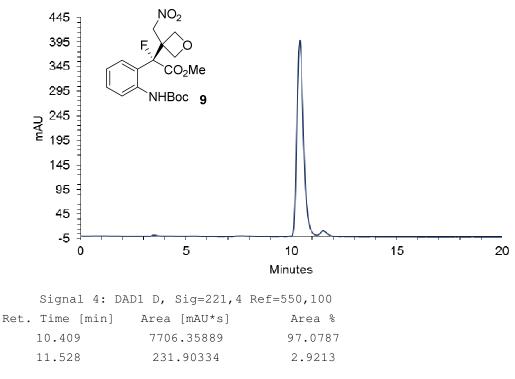

Ethyl (*R*)-2-fluoro-2-(3-(nitromethyl)oxetan-3-yl)-3-oxo-3-phenylpropanoate (8b)

Ethyl (*R*)-2-fluoro-2-(*N*-Cbz-3-(nitromethyl)azetidin-3-yl)-3-oxo-3-phenylpropanoate (8c)

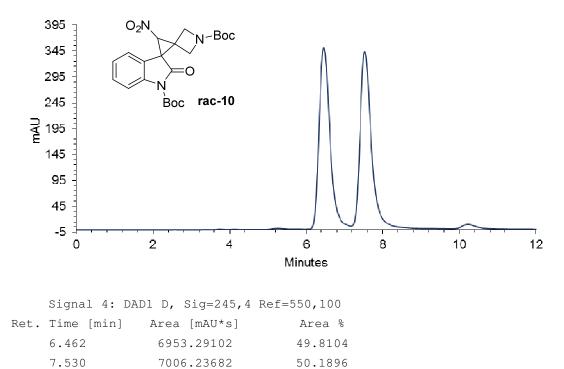
Ethyl 2-fluoro-2-(N-Boc-3-(nitromethyl)azetidin-3-yl)-3-oxo-3-phenylpropanoate (rac-8d)

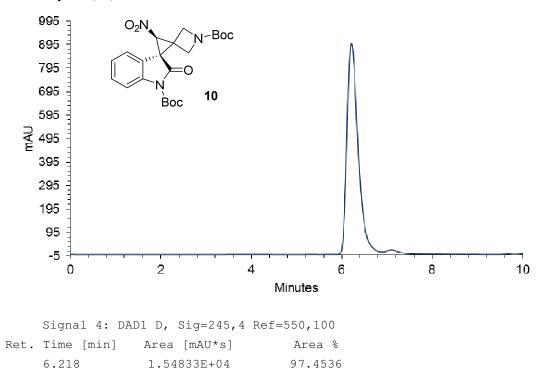


 Ret. Time [min]
 Area [mAU*s]
 Area %

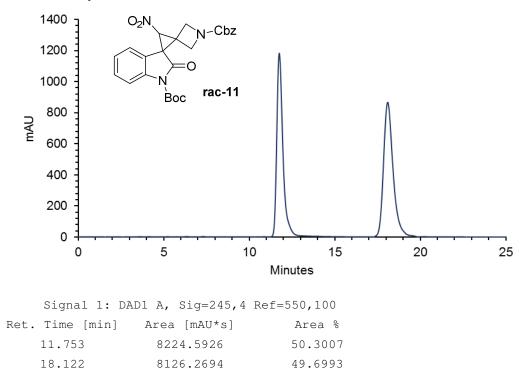

 6.746
 1.10441E+04
 54.6594

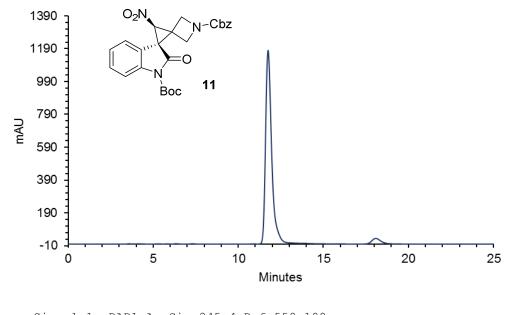
 8.425
 9161.16602
 45.3406


Ethyl (*R*)-2-fluoro-2-(*N*-Boc-3-(nitromethyl)azetidin-3-yl)-3-oxo-3-phenylpropanoate (8d)


Methyl (R)-2-(2-((*tert*-butoxycarbonyl)amino)phenyl)-2-fluoro-2-(3 (nitromethyl)oxetan-3-yl)acetate (**9**)

Di-*tert*-butyl 3'-nitro-2"-oxodispiro[azetidine-3,1'-cyclopropane-2',3"-indoline]-1,1"dicarboxylate (**rac-10**)

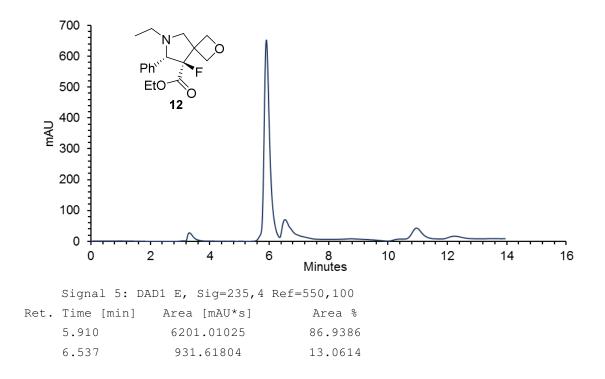

Di-*tert*-butyl (2'*S*,3'*S*)-3'-nitro-2"-oxodispiro[azetidine-3,1'-cyclopropane-2',3"-indoline]-1,1"-dicarboxylate (**10**)


2.5464

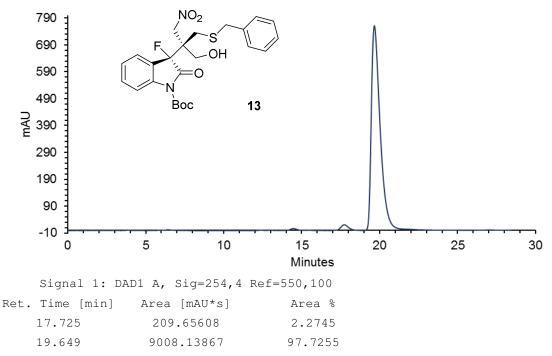
404.56036

1-Benzyl 1"-(*tert*-butyl)-3'-nitro-2"-oxodispiro[azetidine-3,1'-cyclopropane-2',3"-indoline]-1,1"-dicarboxylate (**rac-11**)

1-Benzyl 1"-(*tert*-butyl)-(2'*S*,3'*S*)-3'-nitro-2"-oxodispiro[azetidine-3,1'-cyclopropane-2',3"-indoline]-1,1"-dicarboxylate (**11**)



 Signal 1: DAD1 A, Sig=245,4 Ref=550,100


 Ret. Time [min]
 Area [mAU*s]
 Area %

 11.744
 1.20180e4
 97.3481

 18.081
 327.38605
 2.6519

tert-Butyl (R)-3-((S)-1-(benzylthio)-3-hydroxy-2-(nitromethyl)propan-2-yl)-3-fluoro-2-oxoindole-1-carboxylate (**13**)

8. References

1 Ošeka, M.; Noole, A.; Žari, S.; Öeren, M.; Järving, I.; Lopp, M.; Kanger. T. *Eur. J. Org. Chem.* **2014**, *17*, 3599–3606.

2 Xiao, J.-C.; Shreeve, J. M. J. Fluorine Chem. 2005, 126, 475-478.

3 Beadle, J. D.; Powell, N. H.; Raubo, P.; Clarkson, G. J.; Shipman, M. *Synlett*, **2016**, *27*, 169–172.

4 Potter, T. J.; Kamber, D. N.; Mercado, B. Q.; Ellman, J. A. ACS Catal., **2017**, 7 (1), 150–153.

5 Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119–125.

6 Bae, H. Y.; Some, S.; Lee, Jae H.; Kim, J.-Y.; Song, M. J.; Lee, S.; Zhang, Y. J.; Song, C. E. *Adv. Synth. Catal.* **2011**, *353*, 3196–3202

7 Qian, Y.; Ma, G.; Lv, A.; Zhu, H.-L.; Zhao, J.; Rawal, V. H. *Chem. Commun.* **2010**, *46*, 3004–3006.

8 Baran, R.; Veverková, E.; Škvorcova, A.; Šebesta, R. Org. Biomol. Chem. 2013, 11, 7705–7711.

9 Synthesized following the procedure: Puglisi, A.; Benaglia, M.; Annunziata, R.; Rossi, D. *Tetrahedron: Asymmetry* **2008**, *19*, 2258–2264.

10 Dou, X.; Lu, Y. Org. Biomol. Chem. 2013, 11, 5217-5221.

11 Adapted from: Han, X.; Luo, J.; Liu, C.; Lu, Y. Chem. Commun. 2009, 2044–2046.