1,6-Addition of Tertiary Carbon Radicals Generated From Alcohols or Carboxylic Acids by Visible-Light Photoredox Catalysis

Samir Y. Abbas, Peng Zhao, and Larry E. Overman* Department of Chemistry, University of California, Irvine, California 92697-2025

Supporting Information – Table of Contents

Materials and Methods	
Experimental Procedures	
NMR Spectra	
References	

Materials and Methods.

Unless stated otherwise, reactions were conducted in oven-dried glassware under an atmosphere of nitrogen or argon using anhydrous solvents (either freshly distilled or passed through activated alumina columns). For all photoredox reactions, solvents were sparged with argon for five minutes prior to use. All commercially obtained reagents were used as received. $[Ir(dF(CF_3)ppy)_2(dtbpy)]PF_6$.¹ Hemioxalate salts,¹ and ethyl (E)penta-2,4-dienoate,² methyl (E)-penta-2,4-dienoate,² (E)-hexa-3,5-dien-2-one,³ methyl (E)-2-methylpenta-2,4-dienoate,⁴ (E)-5-methylhexa-3,5-dien-2-one,⁵ methyl (E)-2,4dimethylpenta-2,4-dienoate,⁶ dimethyl (E)-2-(but-2-en-1-vlidene)malonate,⁷ 3vinylcyclopent-2-en-1-one,⁸ and 3-vinylcyclohex-2-en-1-one⁹ were prepared according to literature procedures. Reaction temperatures were controlled using an IKAmag temperature modulator. Thin-layer chromatography (TLC) was conducted with E. Merck silica gel 50 F254 pre-coated plates, (0.25 mm), and visualized by exposure to UV light (254 nm) and potassium permanganate staining. EMD silica gel 60 (particle size 0.040–0.063 mm) was used for flash column chromatography. ¹H NMR spectra were recorded on Bruker spectrometers (at 500 or 600 MHz) and are reported relative to deuterated solvent signals. Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. High-resolution mass spectra were obtained from UC Irvine Mass Spectrometry Facility with a Micromass LCT spectrometer. Kessil KSH150B 34 W LED Grow Light 150, Blue LEDs were purchased from http://www.amazon.com.

Safety Note: Blue light from high-intensity LEDs can be damaging to eyesight. It is important that the reaction setup be surrounded by an appropriate shield to protect researchers from exposure to the light from the LED lamps. Researchers should wear blue-light blocking safety glasses, such as Uvex Skyper Blue Computer Blocking Glasses (model #: S1933X), when the lamps are in operation.

General procedure for the coupling of an oxalate salt with a 1,3-diene:

An 8 mL-scintillation vial equipped with a Teflon septum and a magnetic stir bar was charged with the oxalate salt (0.1 mmol, 1.0 equiv) and $[Ir(dF(CF_3)ppy)_2(dtbpy)]PF_6$ (1.1 mg, 0.001 mmol, 0.01 equiv). A 3:1 mixture of DME/THF (4 mL, 0.025 M) was added, followed by water (18 µL, 1.0 mmol, 10 equiv), and the 1,3-diene (0.11 mmol, 1.1 equiv). The reaction mixture was degassed by sparging with argon for 10 min, and the vial was sealed and irradiated (2 x 34 W blue LED lamps) for 18 h with the reaction temperature rising to 60 °C because of heat given off from the LEDs. The reaction mixture was diluted with water (10 mL) and the aqueous phase was extracted with Et₂O (3 x 10 mL). The combined ethereal extracts were washed with brine (10 mL), dried over Na₂SO₄ and concentrated. The crude material was purified by flash column chromatography on silica gel to yield corresponding addition products. In some cases, the product contained trace amounts of the *Z* stereoisomer, which had not been removed by chromatographic purification.¹⁰ Results of these experiments are summarized in Schemes 2 and 3 of the publication.

Ethyl (*E*)-5-(1-methylcyclohexyl)pent-3-enoate (12): According to the general procedure, cesium oxalate 10 (35 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and ethyl (*E*)-penta-2,4-dienoate (11) (14 mg, 0.11 mmol, 1.1 equiv) was used

the acceptor. The crude residue was purified by flash chromatography (50:1 hexanes/EtOAc) to yield ethyl ester **12** (17 mg, 74%) as a pale yellow oil.¹⁰ R_f 0.2 (50:1 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (600 MHz, CDCl₃) δ 5.59 – 5.54 (m, 1H), 5.52 – 5.47 (m,1H), 4.12 (q, *J* = 7.2 Hz, 2H), 3.02 (dd, *J* = 7.2, 1.2 Hz, 2H), 1.94 (d, *J* = 7.2 Hz, 2H), 1.43 – 1.39 (m, 5H), 1.26 – 1.20 (m, 8H), 0.83 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.3, 131.3, 124.0, 60.6, 45.0, 38.5, 37.8, 33.4, 26.6, 25.2, 22.2, 14.4; IR (thin film) 2925, 2860, 1744, 1450, 1249 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₄H₂₄O₂ [M + Na]⁺ 247.1674, observed 247.1680.

Methyl (*E*)-5-(1-methylcyclohexyl)pent-3-enoate (13): According to the general procedure, cesium oxalate 10 (35 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and methyl (*E*)-penta-2,4-dienoate (12 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (50:1 hexanes/EtOAc) to yield methyl ester 13 (16 mg, 77%) as a pale yellow oil.¹⁰ R_f 0.2 (50:1 hexanes/EtOAc); visualized with KMnO4. ¹H NMR (600 MHz, CDCl₃) δ 5.61 – 5.56 (m, 1H), 5.54 – 5.49 (m,1H), 3.69 (s, 3H), 3.06 (d, *J* = 6.8 Hz, 2H), 1.96 (d, *J* = 7.2 Hz, 2H), 1.47 – 1.40 (m, 5H), 1.32 – 1.20 (m, 5H), 0.85 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.9, 131.6, 123.8, 51.9, 45.0, 38.2, 37.8, 33.5, 26.6, 25.3, 22.2; IR (thin film) 2924, 2847, 1747, 1436, 1251 cm⁻¹; HRMS (ESI/TOF) *m*/*z* calculated for C₁₃H₂₂O₂ [M + H]⁺ 211.1698, observed 211.1698.

Ethyl (*E*)-5-(1-isopropylcyclohexyl)pent-3-enoate (14): According to the general procedure, the cesium oxalate (35 mg, 0.1 mmol, 1.1 equiv) was used as the radical precursor and ethyl (*E*)-penta-2,4-dienoate (11) (14 mg, 0.11 mmol, 1.1 equiv) was used

the acceptor. The crude residue was purified by flash chromatography (50:1 hexanes/EtOAc) to yield ethyl ester **14** (15 mg, 60% yield) as a pale yellow oil. R_f 0.2 (40:1 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (600 MHz, CDCl₃) δ 5.59 – 5.50 (m, 2H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.04 (d, *J* = 6.0 Hz, 2H), 2.09 (d, *J* = 7.2 Hz, 2H), 1.70 (sept, *J* = 6.6 Hz, 1H), 1.47 – 1.41 (m, 5H), 1.35 – 1.24 (m, 8H), 0.83 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 172.4, 131.9, 123.6, 60.7, 38.6, 37.8, 36.0, 32.2, 31.7, 26.6, 21.7, 16.9, 14.4; IR (thin film) 2928, 2863, 1741, 1455, 1369 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₆H₂₈O₂ [M + NH₄]⁺ 270.2433, observed 270.2428.

Ethyl (*E*)-5-(1-methylcyclopentyl)pent-3-enoate (15): According to the general procedure, the cesium oxalate (30 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and ethyl (*E*)-penta-2,4-dienoate (11) (14 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (50:1 hexanes/EtOAc) to yield ethyl ester 15 (14 mg, 64% yield) as a pale yellow oil. R_f 0.2 (40:1 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (600 MHz, CDCl₃) δ 5.61 – 5.56 (m, 1H), 5.54 – 5.50 (m, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.04 (d, *J* = 6.6 Hz, 2H), 2.02 (d, *J* = 7.2 Hz, 2H), 1.63 – 1.59 (m, 4H), 1.43 – 1.40 (m, 2H), 1.30 – 1.25 (m, 5H), 0.92 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.4, 132.6, 123.7, 60.7, 45.1, 42.4, 39.1, 38.5, 26.6, 24.7, 14.4; IR (thin film) 2954, 2928, 2867, 1741, 1458 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₃H₂₂O₂ [M + NH₄]⁺ 228.1964, observed 228.1956.

Ethyl (*E*)-8-((*tert*-butyldimethylsilyl)oxy)-6,6-dimethyloct-3-enoate (16): According to the general procedure, the cesium oxalate (42 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and ethyl (*E*)-penta-2,4-dienoate (11) (14 mg, 0.11 mmol, 1.1 equiv)

was used the acceptor. The crude residue was purified by flash chromatography (100:1 hexanes/EtOAc) to yield ethyl ester **16** (24 mg, 73% yield) as a pale yellow oil.¹¹ R_f 0.5 (50:1 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (500 MHz, CDCl₃) δ 5.60 – 5.50 (m, 2H), 4.14 (q, *J* = 7.0 Hz, 2H), 3.67 (t, *J* = 7.5 Hz, 2H), 3.04 (d, *J* = 6.0 Hz, 2H), 1.94 (d, *J* = 6.5 Hz, 2H), 1.46 (t, *J* = 7.5 Hz, 2H), 0.89 (s, 9H), 0.88 (s, 6H), 0.05 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 131.5, 124.3, 60.7, 60.2, 45.7, 44.3, 38.5, 32.9, 27.5, 26.2, 18.5, 14.4, -5.1; IR (thin film) 2956, 2929, 2857, 1734, 1471 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₈H₃₆O₃Si [M + Na]⁺ 351.2332, observed 351.2326.

Preparation of Ethyl (*E***)-6,6-dimethyl-8-phenyloct-3-enoate (17) on 1 Mmol Scale:** According to the general procedure, the cesium oxalate (368 mg, 1 mmol, 1.0 equiv) was used as the radical precursor and ethyl (*E*)-penta-2,4-dienoate (11) (139 mg, 1.1 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (100:1 hexanes/EtOAc) to yield ethyl ester 17 (203 mg, 74% yield) as a pale yellow oil.¹⁰ R_f 0.2 (100:1 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (600 MHz, CDCl₃) δ 7.30 – 7.28 (m, 2H), 7.19 – 7.17 (m, 3H), 5.65 – 5.55 (m, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.07 (d, *J* = 6.6 Hz, 2H), 2.58 – 2.55 (m, 2H), 2.03 (d, *J* = 6.6 Hz, 2H), 1.51 – 1.49 (m, 2H), 1.26 (t, *J* = 7.2 Hz, 3H), 0.95 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 143.6, 131.4, 128.5, 125.7, 124.3, 60.7, 45.0, 44.3, 38.5, 33.7, 30.9, 27.2, 27.1, 14.1; IR (thin film) 3026, 2957, 1744, 1469, 1366 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₈H₂₆O₂ [M + Na]⁺ 297.1830, observed 297.1826.

(*E*)-6-(1-methylcyclohexyl)hex-4-en-2-one (18): According to the general procedure, cesium oxalate 10 (35 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and (*E*)-hexa-3,5-dien-2-one (11 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (50:1 hexanes/EtOAc) to yield ketone 18 (15 mg, 0.077 mmol, 77% yield) as a pale yellow oil.¹⁰ R_f 0.6 (85:15 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (600 MHz, CDCl₃) δ 5.61 – 5.56 (m, 1H), 5.53 – 5.48 (m,1H), 3.13 (d, *J* = 7.2 Hz, 2H), 2.16 (s, 3H), 1.98 (d, *J* = 7.2 Hz, 2H), 1.47 – 1.40 (m, 5H), 1.33 – 1.21 (m, 5H), 0.85 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 207.8, 132.1, 124.1, 48.1, 45.1, 37.8, 33.5, 29.5, 26.6, 25.4, 22.2; IR (thin film) 2935, 2859, 1718, 1450, 1356 cm⁻¹; HRMS (ESI/TOF) *m*/*z* calculated for C₁₃H₂₂O [M + Na]⁺ 217.1568, observed 217.1560.

Ethyl (*E*)-5-((1*S*,3*aR*,6*aR*)-1-methyloctahydropentalen-1-yl)pent-3-enoate (19): According to the general procedure, the cesium oxalate (52 mg, 0.15 mmol, 1.0 equiv) was used as the radical precursor and ethyl (*E*)-penta-2,4-dienoate (21 mg, 0.165 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (50:1 hexanes/EtOAc) to yield ethyl ester **19** (24 mg, 64% yield) as a pale yellow oil. R_f 0.5 (90:10 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (600 MHz, CDCl₃) δ 5.61 – 5.56 (m, 1H), 5.53 – 5.48 (m,1H), 4.14 (q, *J* = 7.1 Hz, 2 H), 3.04 (d, *J* = 6.5 Hz, 2H), 2.49 – 2.43 (m, 1H), 1.99 – 1.91 (m, 3H), 1.90 – 1.84 (m, 1H), 1.82 – 1.77 (m, 1H), 1.64 – 1.60 (m, 1H), 1.53 – 1.50 (m, 1H), 1.39 – 1.30 (m, 3H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.24 – 1.18 (m, 2H), 1.15 – 1.10 (m, 1H), 0.90 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.3, 132.1, 123.6, 60.5, 53.5, 44.5, 44.4, 42.6, 38.4, 37.2, 35.3, 31.5, 29.2, 27.9, 21.6, 14.3; IR (thin film) 2941, 2862, 1736, 1159, 968 cm⁻¹; HRMS (ESI/TOF) *m*/*z* calculated for C₁₆H₂₆O₂ [M + Na]⁺ 273.1830, observed 273.1817.

(E)-5-((1S,2S,4aS,8aS)-2,5,5,8a-tetramethyl-1-(2-

(**pivaloyloxy**)ethyl)decahydronaphthalen-2-yl)pent-3-enoate (20): According to the general procedure, the cesium oxalate (81 mg, 0.15 mmol, 1.0 equiv) was used as the radical precursor and ethyl (*E*)-penta-2,4-dienoate (21 mg, 0.165 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (20:1 hexanes/EtOAc) to yield ethyl ester **20** (36 mg, 54% yield) as a pale yellow oil.¹⁰ R_f 0.6 (80:20 hexanes/EtOAc); visualized with KMnO4. ¹H NMR (600 MHz, CDCl₃) δ 5.58 – 5.50 (m, 2H), 4.14 (q, *J* = 7.2 Hz, 2H), 4.03 – 3.99 (m, 1H), 3.95 – 3.91 (m, 1H), 3.04 (d, *J* = 5.7 Hz, 2H), 2.10 – 2.07 (m, 1H), 1.82 – 1.79 (m, 1H), 1.68 (app d, J = 12 Hz, 1 H), 1.60 – 1.47 (m, 5H), 1.43 – 1.30 (m, 3H), 1.27 (app t, J = 7.2 Hz, 4H), 1.20 (s, 9H), 1.16 – 1.09 (m, 1H), 0.86 – 0.84 (m, 7H) 0.82 (s, 3H), 0.80 – 0.78 (m, 4H), 0.71 (t, *J* = 3.7 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 178.7, 172.1, 130.8, 124.7, 66.40, 60.6, 56.4, 55.8, 47.2, 42.1, 40.1, 39.6, 39.2, 38.7, 38.4, 38.1, 33.3, 27.3, 25.3, 21.6, 19.8, 18.6, 18.3, 16.1, 14.3; IR (thin film) 2931, 1726, 1282, 1152 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₂₈H₄₈O₄ [M + Na]⁺ 471.3450, observed 471.3450.

Ethyl (*E*)-5-((3*R*,3a*S*,6*R*,7*S*,8a*S*)-3,6,8,8-tetramethyloctahydro-1*H*-3a,7methanoazulen-6-yl)pent-3-enoate (21): According to the general procedure, the lithium oxalate (45 mg, 0.15 mmol, 1.0 equiv) was used as the radical precursor and ethyl (*E*)-penta-2,4-dienoate (21 mg, 0.165 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (50:1 hexanes/EtOAc) to yield ethyl ester 21 (26 mg, 52% yield) as a pale yellow oil. R_f 0.5 (90:10 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (600 MHz, CDCl₃) δ 5.56 – 5.48 (m, 2H), 4.14 (q, J = 7.2 Hz, 2H), 3.04 (d, *J* = 5.4 Hz, 2H), 2.47 – 2.44 (m, 1H), 1.87 (sextet, *J* = 6.0 Hz, 1H), 1.76 – 1.70 (m, 2H), 1.65 – 1.56 (m, 3H), 1.53 – 1.45 (m, 3H), 1.39 – 1.32 (m, 4H), 1.28 – 1.24 (m, 2H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.21 (s, 3H), 1.03 (s, 3H), 0.98 (s, 3H), 0.84 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.3, 131.6, 123.7, 60.5, 57.6, 57.1, 53.6, 45.2, 44.3, 42.0, 39.9, 38.5, 38.1, 37.0, 33.6, 30.4, 29.8, 29.4, 27.0, 25.5, 15.5, 14.3; IR (thin film) 2935, 1738, 1462, 1157 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₂₂H₃₆O₂ [M + Na]⁺ 355.2613, observed 355.2618.

Ethyl (*E***)-6,6-dimethyl-8-(pyridin-3-yl)oct-3-enoate (22):** According to the general procedure, the cesium oxalate (55 mg, 0.15 mmol, 1.0 equiv) was used as the radical precursor and ethyl (*E*)-penta-2,4-dienoate (21 mg, 0.165 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (5:1 hexanes/EtOAc) to yield ethyl ester **22** (24mg, 58% yield) as a pale yellow oil. R_f 0.2 (80:20 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (600 MHz, CDCl₃) δ 8.44 (d, J = 1.8 Hz, 1H), 8.42 (dd, J = 4.8, 1.4 Hz, 1H), 7.48 (td, J = 7.6, 1.8 Hz, 1H), 7.19 (dd, J = 7.6, 4.8 Hz, 1H), 5.62 – 5.54 (m, 2H), 4.13 (q, J = 7.1 Hz, 2H), 3.06 (d, J = 5.4 Hz, 2H), 2.57 – 2.54 (m, 2H), 2.02 (d, J = 6.0 Hz, 2H), 1.49 – 1.46 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.95 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 172.1, 149.9, 147.2, 135.8, 131.0, 124.4, 123.3, 60.6, 44.8, 43.8, 38.3, 33.6, 27.9, 20.1, 14.3; IR (thin film) 2954, 2906, 1732, 1172cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C17H25NO₂ [M + Na]⁺ 298.1783, observed 298.1789.

Methyl (*E*)-2-methyl-5-(1-methylcyclohexyl)pent-3-enoate (23): According to the general procedure, cesium oxalate 10 (35 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and methyl (*E*)-2-methylpenta-2,4-dienoate (14 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (50:1 hexanes/EtOAc) to yield methyl ester 23 (17 mg, 74% yield) as a pale yellow oil.

 R_f 0.2 (40:1 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (500 MHz, CDCl₃) δ 5.59 – 5.54 (m, 1H), 5.50 – 5.46 (m,1H), 3.68 (s, 3H), 3.13 (p, J = 7.0 Hz, 1H), 1.93 (d, J = 7.5 Hz, 2H), 1.43 – 1.22 (m, 13H), 0.83 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.8, 131.2, 129.0, 52.0, 44.9, 43.1, 37.832, 37.826, 33.5, 26.6, 25.3, 22.2, 17.8; IR (thin film) 2925, 2860, 1755, 1452, 1375 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₄H₂₄O₂ [M + Na]⁺ 247.1674, observed 247.1677.

Methyl (*E*)-8-((*tert*-butyldimethylsilyl)oxy)-2,6,6-trimethyloct-3-enoate (24): According to the general procedure, the cesium oxalate (42 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and methyl (*E*)-2-methylpenta-2,4-dienoate (14 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (95:5 hexanes/EtOAc) to yield methyl ester **24** (23 mg, 69% yield) as a pale yellow oil. R_f 0.7 (85:15 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (500 MHz, CDCl₃) δ 5.60 – 5.54 (m, 1H), 5.48 (dd, J = 15.3, 7.5 Hz, 1H), 3.68 – 3.65 (m, 5H), 3.13 (p, *J* = 7.5 Hz, 1H), 1.92 (d, *J* = 7.0 Hz, 2H), 1.46 (t, *J* = 7.5 Hz, 2H), 1.25 (d, *J* = 7.5 Hz, 3H), 0.89 (s, 9H), 0.86 (s, 6H), 0.05 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 175.5, 131.5, 129.0, 60.2, 52.0, 45.6, 44.3, 43.1, 32.9, 27.4, 26.2, 18.5, 17.7, -5.1; IR (thin film) 2955, 2930, 2857, 1730, 1463 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₈H₃₆O₃Si [M + Na]⁺ 351.2332, observed 351.2342.

Methyl (*E*)-2,6,6-trimethyl-8-phenyloct-3-enoate (25): According to the general procedure, the cesium oxalate (110 mg, 0.3 mmol, 1.0 equiv) was used as the radical precursor and methyl (*E*)-2-methylpenta-2,4-dienoate (42 mg, 0.33 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (95:5

hexanes/EtOAc) to yield methyl ester **25** (52 mg, 62% yield) as a pale yellow oil. $R_f 0.7$ (85:15 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (600 MHz, CDCl₃) δ 7.29 – 7.27 (m, 2H), 7.18 – 7.17 (m, 3H), 5.62 – 5.52 (m, 2H), 3.67 (s, 3H), 3.16 (quintet, J = 7.2 Hz, 1H), 2.57 – 2.54 (m, 2H), 2.00 (d, J = 6.9 Hz, 2H), 1.50 – 1.47 (m, 2H), 1.27 (d, J = 7.2 Hz, 3H), 0.93 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 175.5, 143.5, 131.4, 128.9, 128.4, 128.3, 125.6, 51.8, 44.7, 44.2, 43.0, 33.6, 30.7, 27.09, 27.06, 17.6; IR (thin film) 2953, 2933, 1738, 1454, 1161 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₈H₂₆O₂ [M + Na]⁺297.1830, observed 297.1840.

Methyl (E)-4-methyl-5-(1-methylcyclohexyl)pent-3-enoate (26): According to the general procedure, the cesium oxalate **10** (35 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and methyl (*E*)-4-methylpenta-2,4-dienoate (14 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (40:1 hexanes/EtOAc) to yield methyl ester **26** (15 mg, 67% yield) as a pale yellow oil. R_f 0.2 (50:1 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (500 MHz, CDCl₃) δ 5.29 (t, J = 7.0 Hz, 1H), 3.69 (s, 3H), 3.07 (d, J = 7.0 Hz, 2H), 1.99 (s, 2H), 1.69 (s, 3H), 1.50 – 1.41 (m, 5H), 1.29 – 1.26 (m, 5H), 0.87 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.1, 137.2, 119.6, 52.3, 51.9, 38.5, 34.4, 34.0, 26.7, 25.3, 22.4, 19.7; IR (thin film) 2925, 2849, 1758, 1435, 1260 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₄H₂₄O₂ [M + NH₄]⁺ 242.2120, observed 242.2110.

(*E*)-5-methyl-6-(1-methylcyclohexyl)hex-4-en-2-one (27): According to the general procedure, cesium oxalate 10 (35 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and (*E*)-5-methylhexa-3,5-dien-2-one (12 mg, 0.11 mmol, 1.1 equiv) was used

the acceptor. The crude residue was purified by flash chromatography (50:1 hexanes/EtOAc) to yield ketone **27** (14 mg, 68% yield) as a pale yellow oil. R_f 0.2 (50:1 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (600 MHz, CDCl₃) δ 5.29 (tt, J = 7.2, 0.6 Hz, 1H), 3.13 (d, J = 7.2 Hz, 2H), 2.15 (s, 3H), 2.00 (s, 2H), 1.69 (d, J = 0.6 Hz, 3H), 1.49 – 1.41 (m, 5H), 1.30 – 1.25 (m, 5H), 0.87 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 207.6, 137.6, 119.7, 52.4, 44.0, 38.5, 34.4, 29.6, 26.7, 25.4, 22.4, 19.8; IR (thin film) 2928, 2860, 1716, 1450, 1355 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₄H₂₄O [M + NH₄]⁺ 226.171, observed 226.2164.

Methyl (*E*)-8-((*tert*-butyldimethylsilyl)oxy)-4,6,6-trimethyloct-3-enoate (28): According to the general procedure, the cesium oxalate (42 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and methyl (*E*)-4-methylpenta-2,4-dienoate (14 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (95:5 hexanes/EtOAc) to yield methyl ester **28** (18 mg, 56% yield) as a pale yellow oil.¹⁰ R_f 0.7 (85:15 hexanes/EtOAc); visualized with KMnO4. ¹H NMR (500 MHz, CDCl₃) δ 5.30 (t, *J* = 7.0 Hz, 1H), 3.70 – 3.68 (m, 5H), 3.07 (d, *J* = 7.0 Hz, 1H), 1.98 (s, 2H), 1.69 (s, 3H), 1.49 (t, *J* = 7.5 Hz, 2H), 0.90 (s, 6H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 173.0, 137.0, 120.0, 60.3, 52.4, 51.9, 45.3, 34.0, 33.8, 27.8, 26.2, 19.5, 18.5, -5.0; IR (thin film) 2954, 2857, 1744, 1471, 1255 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₈H₃₆O₃Si [M + Na]⁺ 351.2332, observed 351.2332.

Methyl (*E*)-2,4-dimethyl-5-(1-methylcyclohexyl)pent-3-enoate (29): According to the general procedure, cesium oxalate 10 (35 mg, 0.1 mmol, 1.1 equiv) was used as the radical precursor and methyl (*E*)-2,4-dimethylpenta-2,4-dienoate (15 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (95:5 hexanes/EtOAc) to yield methyl ester 29 (15 mg, 64% yield) as a pale yellow oil. R_f 0.7 (85:15 hexanes/EtOAc); visualized with KMnO4. ¹H NMR (600 MHz, CDCl₃) δ 5.13 (d, *J* = 8.0 Hz, 1H), 3.67 (s, 3H), 3.37 – 3.32 (m, 1H), 1.95 (s, 2H), 1.71 (d, *J* = 1.4 Hz, 3H), 1.49 – 1.40 (m, 5H), 1.26 – 1.21 (m, 8H), 0.85 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 176.2, 135.5, 127.8, 52.2, 51.9, 39.2, 38.53, 38.48, 34.4, 26.7, 25.3, 22.4, 19.7, 18.1; IR (thin film) 2925, 2860, 1740, 1452, 1376 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₅H₂₆O₂ [M + NH₄]⁺ 256.2277, observed 256.2270.

Dimethyl (*E***)-2-(3-(1-methylcyclohexyl)but-1-en-1-yl)malonate (31):** According to the general procedure, cesium oxalate **10** (35 mg, 0.1 mmol, 1.1 equiv) was used as the radical precursor and dimethyl (*E*)-2-(but-2-en-1-ylidene)malonate (20 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (25:1 hexanes/EtOAc) to yield malonate **31** (20 mg, 71% yield) as a pale yellow oil. R_f 0.4 (20:1 hexanes/EtOAc); visualized with KMnO4. ¹H NMR (600 MHz, CDCl₃) δ 5.67 – 5.60 (m, 2H), 4.03 (d, *J* = 7.8 Hz, 1H), 3.75 (s, 3H), 3.74 (s, 3H), 2.13 (p, *J* = 7.2 Hz, 1H), 1.51 – 1.37 (m, 5H), 1.29 – 1.22 (m, 5H), 0.92 (d, *J* = 7.2 Hz, 3H), 0.78 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 169.15, 169.13, 140.2, 121.0, 55.6, 52.9, 52.8, 45.6, 36.5, 36.1, 35.4, 26.6, 22.1, 22.0, 20.2, 14.2; IR (thin film) 2925, 2860, 1740, 1452, 1376 cm⁻¹; HRMS (ESI/TOF) *m*/*z* calculated for C₁₆H₂₆O₄ [M + Na]⁺ 305.1729, observed 305.1719.

3-(2-(1-Methylcyclohexyl)ethyl)cyclopent-2-en-1-one (32): According to the general procedure, cesium oxalate **10** (35 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and 3-vinylcyclopent-2-en-1-one (12 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (5:1 hexanes/EtOAc) to yield ketone **32** (13 mg, 64% yield) as a pale yellow oil. R_f 0.2 (5:1 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (600 MHz, CDCl₃) δ 5.94 (p, *J* = 1.8 Hz, 1H), 2.60 – 2.58 (m, 2H), 2.41 – 2.39 (m, 2H), 2.36 – 2.33 (m, 2H), 1.49 – 1.43 (m, 7H), 1.33 – 1.26 (m, 5H), 0.90 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 210.3, 184.4, 129.3, 39.5, 37.8, 35.5, 32.7, 31.9, 27.9, 26.6, 24.8, 22.2; IR (thin film) 2923, 2854, 1733, 1615, 1438 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₂H₂₂O [M + Na]⁺ 229.1568, observed 229.1578.

3-(2-(1-Methylcyclohexyl)ethyl)cyclohex-2-en-1-one (33): According to the general procedure, cesium oxalate **10** (35 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and 3-vinylcyclohex-2-en-1-one (14 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (5:1 hexanes/EtOAc) to yield ketone **33** (9 mg, 40% yield) as a pale yellow oil. R_f 0.2 (5:1 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (600 MHz, CDCl₃) δ 5.89 (t, *J* = 1.2 Hz, 1H), 2.37 – 2.35 (m, 2H), 2.31 (t, *J* = 5.6 Hz, 2H), 2.15 – 2.12 (m, 2H), 1.99 (p, J = 6.6 Hz, 2H), 1.45 – 1.37 (m, 7H), 1.34 – 1.26 (m, 5H), 0.88 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 200.2, 168.1, 125.6, 39.5, 37.9, 37.5, 32.8, 32.5, 30.2, 26.6, 25.0, 23.0, 22.2; IR (thin film) 2924, 2859, 1690, 1624, 1453 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₅H₂₄O [M + Na]⁺ 243.1725, observed 243.1725.

3-(3,3-dimethylbutyl)cyclohex-2-en-1-one (34): According to the general procedure, the cesium oxalate (28 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and 3-vinylcyclohex-2-en-1-one (14 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (5:1 hexanes/EtOAc) to yield ketone **34** (6 mg, 30% yield) as a pale yellow oil. R_f 0.2 (5:1 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (600 MHz, CDCl₃) δ 5.88 (t, *J* = 1.2 Hz, 1H), 2.36 – 2.34 (m, 2H), 2.30 (t, *J* = 6.0 Hz, 2H), 2.18 – 2.15 (m, 2H), 1.99 (p, J = 6.0 Hz, 2H), 1.38 – 1.35 (m, 2H), 0.92 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 200.1, 167.8, 125.6, 41.5, 37.5, 33.7, 30.5, 30.1, 29.4, 23.0; IR (thin film) 2953, 2867, 2080, 1673, 1625 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₂H₂₀O [M + Na]⁺ 203.1412, observed 203.1413.

General procedure for the coupling of carboxylic acids with 1,3-dienes:

A 8 mL-scintillation vial equipped with a Teflon septum and magnetic stir bar was charged with the carboxylic acid (0.1 mmol, 1.0 equiv) and $[Ir(dF(CF_3)ppy)_2(dtbpy)]PF_6$ (1.1 mg, 0.001 mmol, 0.01 equiv). A 3:1 mixture of DME/THF (4 mL, 0.025 M) was added, followed by water (18 µL, 1.0 mmol, 10 equiv), K₂HPO₄ (23 mg, 0.13 equiv, 1.3 equiv) and the pentadienoate **11** (14 mg, 0.11 mmol, 1.1 equiv). The reaction mixture was degassed by sparging with argon for 10 min and the vial was sealed and irradiated (2 x 34 W blue LED lamps) for 18 h with the reaction temperature rising to 60 °C because of heat given off from the LEDs. The reaction mixture was diluted with water (10 mL) and the aqueous phase was extracted with Et₂O (3 x 10 mL). The combined ethereal extracts were washed with brine (10 mL), dried over Na₂SO₄ and concentrated. The crude material was purified by flash column chromatography on silica gel to yield corresponding addition products. Results of these experiments are summarized in Scheme 4 of the publication.

Ethyl (*E*)-5-(1-methylcyclohexyl)pent-3-enoate (12): According to the general procedure, carboxylic acid (14 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and pentadienoate 11 (14 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (5:1 hexanes/EtOAc) to yield ethyl ester 12 (16 mg, 72% yield) as a pale yellow oil. R_f 0.2 (50:1 hexanes/EtOAc); visualized with KMnO₄. Spectral data match those above reported.

Ethyl (*E*)-5-(1-methylcyclopentyl)pent-3-enoate (15): According to the general procedure, carboxylic acid (13 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and pentadienoate 11 (14 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (5:1 hexanes/EtOAc) to yield ethyl ester 15 (13 mg, 62% yield) as a pale yellow oil. R_f 0.2 (50:1 hexanes/EtOAc); visualized with KMnO₄. Spectral data match those above reported.

Ethyl (*E*)-8-((*tert*-butyldimethylsilyl)oxy)-6,6-dimethyloct-3-enoate (16): According to the general procedure, carboxylic acid (25 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and pentadienoate 11 (14 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (5:1 hexanes/EtOAc) to yield ethyl ester 16 (21 mg, 64% yield) as a pale yellow oil. R_f 0.2 (50:1 hexanes/EtOAc); visualized with KMnO₄. Spectral data match those above reported.

Ethyl (*E*)-6,6-dimethyl-8-phenyloct-3-enoate (17): According to the general procedure, carboxylic acid (19 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and pentadienoate 11 (14 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (5:1 hexanes/EtOAc) to yield ethyl ester 17 (20 mg, 73% yield) as a pale yellow oil. R_f 0.2 (50:1 hexanes/EtOAc); visualized with KMnO₄. Spectral data match those above reported.

3-(2-(1-Methylcyclohexyl)ethyl)cyclopent-2-en-1-one (32): According to the general procedure, carboxylic acid (14 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and 3-vinylcyclopent-2-en-1-one (12 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (5:1 hexanes/EtOAc) to yield ketone **32** (11 mg, 54% yield) as a pale yellow oil. $R_f 0.2$ (50:1 hexanes/EtOAc); visualized with KMnO₄. Spectral data match those above reported.

Ethyl (*E***)-6-(((benzyloxy)carbonyl)amino)-7-phenylhept-3-enoate (35):** According to the general procedure, carboxylic acid (30 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and pentadienoate **11** (14 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (5:1 hexanes/EtOAc) to yield ethyl ester **35** (20 mg, 52% yield) as a pale yellow oil. R_f 0.2 (5:1 hexanes/EtOAc); visualized with KMnO4. ¹H NMR (600 MHz, CDCl₃) δ 7.38 – 7.18 (m, 10H), 5.65 – 5.60 (m, 1H), 5.58 – 5.53 (m, 1H), 5.11 – 5.06 (m, 2H), 4.67 (d, *J* = 7.2 Hz, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.99 (d, *J* = 6.0 Hz, 1H), 3.05 (d, *J* = 6.6 Hz, 2H), 2.84 – 2.77 (m, 2H), 2.31 – 2.27 (m, 1H), 2.18 – 2.13 (m, 1H), 1.26 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.8, 155.8, 137.8, 136.7, 129.8, 129.5, 128.54, 128.49, 128.11, 128.07, 126.5, 125.7, 66.6, 60.7, 51.8, 40.4, 38.1, 36.7, 14.2; IR (thin film) 3342, 2928, 1731, 1528, 1251 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₂₃H₂₇NO₄ [M + Na]⁺ 404.1838, observed 404.1829.

Ethyl (*E*)-5-(tetrahydrofuran-2-yl)pent-3-enoate (36): According to the general procedure, carboxylic acid (12 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and pentadienoate 11 (14 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (10:1 hexanes/EtOAc) to yield ethyl ester 36 (13 mg, 67% yield) as a pale yellow oil. R_f 0.2 (10:1 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (500 MHz, CDCl₃) δ 5.67 – 5.56 (m, 2H), 4.14 (q, *J* = 7.0 Hz, 2H), 3.87 (p, *J* = 6.5 Hz, 2H), 3.73 (q, *J* = 7.0 Hz, 1H), 3.05 (d, J = 6.0 Hz, 2H), 2.36 – 2.30 (m, 1H), 2.27 – 2.22 (m, 1H), 1.98 – 1.84 (m, 3H), 1.54 – 1.47 (m, 1H), 1.26 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 131.0, 124.3, 78.9, 68.1, 60.8, 38.9, 38.4, 31.0, 25.9, 14.4; IR (thin film) 3541, 2977, 1738, 1645, 1177 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₁H₁₈O₃ [M + Na]⁺ 221.1154, observed 221.1151.

tert-Butyl (*E*)-2-(5-ethoxy-5-oxopent-2-en-1-yl)pyrrolidine-1-carboxylate (37): According to the general procedure, carboxylic acid (22 mg, 0.1 mmol, 1.0 equiv) was used as the radical precursor and pentadienoate **11** (14 mg, 0.11 mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (5:1 hexanes/EtOAc) to yield ethyl ester **37** (16 mg, 55% yield) as a pale yellow oil.¹⁰ R_f 0.2 (5:1 hexanes/EtOAc); visualized with KMnO₄. ¹H NMR (500 MHz, C₆D₆) at 70 °C δ 5.61 – 5.56 (m, 1H), 5.44 – 5.38 (m, 1H), 3.95 (q, *J* = 7.0 Hz, 2H), 3.80 (br, 1H), 3.31 (br, 1H), 3.20 – 3.19 (m, 1H), 2.85 (d, *J* = 7.0 Hz, 2H), 2.46 (br, 1H), 2.12 – 2.09 (m,

1H), 1.54 - 1.33 (m, 15H), 0.98 (t, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, C₆D₆) at 70 °C δ 170.5, 153.8, 130.5, 124.5, 78.1, 59.7, 56.8, 46.4, 37.9, 37.2, 29.6, 28.3, 23.0, 13.8; IR (thin film) 2979, 2877, 1738, 1696, 1393 cm⁻¹; HRMS (ESI/TOF) *m/z* calculated for C₁₆H₂₇NO₄ [M + Na]⁺ 320.1838, observed 320.1836.

Spectral Data

1H spectrum

13C spectrum with 1H decoupling	131.342 	77.441 77.229	60.629 61.629 61.971 38.476 37.775		Current Data Farameters NAME P2-2151-E EXENO 2 FROCNO 1 DATEATH //v/data/zhaop3/nmr F2-A.cquisition Parameters Dta_2_20170421 Time_20170421 TIMSTROM Av600 FROSHD 5 mm CPBBO BB- FULEROS 2gd230 TD 65536 SOLVENT CDC13 BO 4 SMH 36221.833 Hz FULES 0.552855 Hz AQ 0.9043968 sec RG 2050 DM 1.552855 Hz AQ 0.904568 sec RG 2050 DM 1.552855 Hz AQ 0.904568 sec RG 2050 DM 1.552855 Hz AM 1.55
12 ¹³ C NMR (CDCl ₃ , 151 MHz)					DB 11.6.65 Used DB 0.40000001 sec 10.0 D1 0.0300000 sec 10.0 TD0 150.9194080 MHz 130010 NCC1 150.9194080 MHz 130 NCC1 130.0100 usec 130 P1 10.00 usec 140 FD1 0.000000 W W FD2 600.130010 MHz NUC2 NUC2 0.000000 W H CPDPEG(2 waltr16 PCPD2 PCPD2 0.36000001 W PLMI2 PLM1 65536 SF S1 65536 SF 2.2 0.000000 W PLMI2 PLM12 0.0000000 W PLM12 PLM2 0.36000001 W PLM12 PLM12 0.000000 W PLM12 PLM1 0.3600001 W PLM12 PLM1 0.300000000 W PLM12 PLM1 0.000000 W PLM1 RB 0 1.00 RB 1.00<
		CDCI ₃			
195 190 185 180 175 170 165 160 155 150 145	140 135 130 125 120 115 110 105	100 95 90 85 80 75 70 65	60 55 50 45 40	35 30 25 20 15 10 5 0	ppm

1H spectrum

Z-restored spin-echo 13C spectrum with 1H decoupling	124.328	77.483	60.198	 	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
TBSO Me 16 ¹³ C NMR (CDCl ₃ , 151 MHz)					The control of the control o
	CDCI				GPANH[1] SINE.100 GPNAM[1] SINE.100 GPX 0 SP 125.7803996 SP 125.7803996 SP 0 LB 1.00 FC 2.00
					NG

195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 ppm

1H spectrum

1H spectrum

S43

1H spectrum	7.270	5.273 5.273	3.689	1.286 1.567 1.568 1.1567 1.497 1.497 1.497 1.446 1.449 1.449 1.449 1.449 1.289 0.868	$\begin{array}{c} \text{Current Data Parameters}\\ \text{NMME} & P2-2112+f10\\ \text{DVFM} & 1\\ \text{PROCNO} & 1\\ \text{PROCNO} & 1\\ \text{DATPATH} / v/data/zhaop3/nmr\\ \text{F2} - Acquisition Parameters\\ Date 20170319\\ \text{Time} & 16.43\\ \text{INSTRUM} & cryo500\\ \text{PROBHD} 5 \text{ rm} CPTCI 1H-\\ \text{PULPROG} & zq30\\ \text{TD} & 81728\\ \text{SOLVENT} & CDC13\\ \text{NS} & 4\\ DS & 2\\ \text{SWH} & 8012.820 \text{ Hz}\\ \text{FIDRES} & 0.098043 \text{ Hz}\\ \text{AQ} & 5.0998273 \text{ sec}\\ \text{RG} & 7.1\\ \text{DW} & 62.400 \text{ usec}\\ \text{DE} & 6.00 \text{ usec}\\ \text{DE} & 2000 \text{ cc}\\ \text{C} & 000 \text{ cc}\\ \text{C} & 0000 \text{ cc}\\ \text{C} & 0000 \text{ cc}\\ \text{C} & 000000 \text{ cc}\\ \text{C} & 00000000000000000000000000000000000$
¹ H NMR (CDCl ₃ ,	0Me 600 MHz)				DS 8012.820 Hz FIDRES 0.098043 Hz AQ 5.0998271 sec RG 6.400 usec DF 6.000 usec DF 0.000000 sec MCWEK 0.01500000 sec MCWEK 0.01500000 sec MCVEK 0.050000 sec MCCL 1H P1 7.50 usec F11 1.60 dB SF01 500.2235015 MHz F2 Frocessing parameters SI 6536 SF 500.2200265 MHz WW EM SEB 0 LB 0.30 Hz GB 0 PC 1.00
CD	Cl ₃				

· · · ·								· · · · · ·		· · · · · ·	· · · · · ·					· · · · · ·	· · · · · ·			· · · · · ·		· · · · · ·
	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	ppm
									100				2.822	2.000		2.034	2.802	2.992				

S55

S56

13C spectrum with 1H decoupling	129.310	77.439	9.462 37.805 35.516 32.738 32.738 27.923 27.923 26.593 21.171 22.173	Oursent Data Parameters NAME Dr_2096-P VENO 2 PFOCNO 1 DATFATH /v/data/zhaop3/nmr F2 Acquisition Parameters Date_ 20170304 Time 15.53 INSTRUM 5506 PROBED 5 mm CPBB0 B80 PROBED 5 mm CPBB0 B80 TD 65536 SOLVENT CDC13 NS 78 DS 4 SNH 6221.883 Hz
0				DS 36231.43 Hz SWH 36231.43 Hz FIDEES 0.552856 Hz AG 0.90026 Hz AG 0.90026 Hz AG 0.90006 Hz DW 13.800 usec DE 19.65 usec DI 0.4000000 sec D1 0.000000 sec SF01 150.9194080 MHz NOC1 130.9194080 MHz NOC1 10.00 usec F1 1.0.00 usec SF03 600.1330010 MHz VOC2 80.000 usec PCPD2 80.000 usec PLW12 0.36000000 W
32 ¹³ C NMR (CDCl ₃ , 151 MHz)				F2 = Frocessing parameters SI rose370 MHz VGW EM SSB 0 LB 1.00 Hz GB 0 FC 1.00
		CDCI3		
220 210 200 190 180 170 160 15	0 140 130 120 110	100 90 80 70 60	50 40 30 20 10	0 ppm

1H spectrum @ 70oC

References:

1. (a) Nawrat, C. C.; Jamison, C. R.; Slutskyy, Y.; MacMillan, D. W. C.; Overman, L. E. *J. Am. Chem. Soc.* **2015**, *137*, 11270–11273. (b) Jamison, C. R.; Slutskyy, Y.; Overman, L. E. *Org. Synth.* **2017**, *94*, 167–183.

2. Zhang, H.; Ma, S.; Yuan, Z.; Chen, P.; Xie, X.; Wang, X.; She, X. Org. Lett., 2017, 19, 3478–3481.

3. Wender, P. A.; Sieburth, S, McN.; Petraitis, J. J.; Singh, S. K. *Tetrahedron*, **1981**, *37*, 3967–3975.

4. Lemarch, A.; Bach, T. *Tetrahedron*, **2004**, *60*, 9659–9673.

5. Rodriguez, J; Waegell, B. Synthesis, 1988, 7, 534-535.

6. Takasu, A.; Yamamoto, H.; Inai, Y.; Hirabayashi, T. *Macromolecules*, **2001**, *34*, 6235–6242.

7. Zhang, W.; Ghiviriga, I.; Grenning, A. J. Tetrahedron, 2017, 73, 4076-4083

8. Fisher, M. J.; Hehre, W. J.; Kahn, S. D.; Overman, L. E. J. Am. Chem. Soc., 1988, 110, 4625–4633.

9. Krasutsky, S. G.; Jacobo, S. H.; Tweedie, S. R.; Krishnamoorthy, R.; Filatov, A. S. Org. Process Res. Dev., **2015**, *19*, 284–289.

10. This sample contained a trace amount (~5%) of the Z stereoisomer as seen by the diagnostic small signals for its vinylic carbons in the ¹³C NMR spectra.

11. This sample contained ~10% of the Z stereoisomer as seen by the diagnostic small signals for its vinylic carbons in the ¹³C NMR spectra.