1,6-Addition of Tertiary Carbon Radicals Generated From Alcohols or Carboxylic Acids by Visible-Light Photoredox Catalysis

Samir Y. Abbas, Peng Zhao, and Larry E. Overman*
Department of Chemistry, University of California, Irvine, California 92697-2025

Supporting Information - Table of Contents
Materials and Methods S1
Experimental Procedures S2-S19
NMR Spectra. S20-S70
References. S71

Materials and Methods.

Unless stated otherwise, reactions were conducted in oven-dried glassware under an atmosphere of nitrogen or argon using anhydrous solvents (either freshly distilled or passed through activated alumina columns). For all photoredox reactions, solvents were sparged with argon for five minutes prior to use. All commercially obtained reagents were used as received. $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \text { ppy }\right)_{2}(\mathrm{dtbpy})\right] \mathrm{PF}_{6} .{ }^{1}$ Hemioxalate salts, ${ }^{1}$ and ethyl (E) -penta-2,4-dienoate, ${ }^{2}$ methyl (E-penta-2,4-dienoate, ${ }^{2}(E)$-hexa-3,5-dien-2-one, ${ }^{3}$ methyl (E)-2-methylpenta-2,4-dienoate, ${ }^{4} \quad(E)$-5-methylhexa-3,5-dien-2-one, ${ }^{5}$ methyl (E)-2,4-dimethylpenta-2,4-dienoate, ${ }^{6} \quad$ dimethyl $\quad(E)$-2-(but-2-en-1-ylidene)malonate, ${ }^{7} \quad$ 3-vinylcyclopent-2-en-1-one, ${ }^{8}$ and 3-vinylcyclohex-2-en-1-one ${ }^{9}$ were prepared according to literature procedures. Reaction temperatures were controlled using an IKAmag temperature modulator. Thin-layer chromatography (TLC) was conducted with E. Merck silica gel 50 F254 pre-coated plates, (0.25 mm), and visualized by exposure to UV light $(254 \mathrm{~nm})$ and potassium permanganate staining. EMD silica gel 60 (particle size $0.040-0.063 \mathrm{~mm}$) was used for flash column chromatography. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker spectrometers (at 500 or 600 MHz) and are reported relative to deuterated solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity, coupling constant (Hz) and integration. High-resolution mass spectra were obtained from UC Irvine Mass Spectrometry Facility with a Micromass LCT spectrometer. Kessil KSH150B 34 W LED Grow Light 150, Blue LEDs were purchased from http://www.amazon.com.

Safety Note: Blue light from high-intensity LEDs can be damaging to eyesight. It is important that the reaction setup be surrounded by an appropriate shield to protect researchers from exposure to the light from the LED lamps. Researchers should wear blue-light blocking safety glasses, such as Uvex Skyper Blue Computer Blocking Glasses (model \#: S1933X), when the lamps are in operation.

General procedure for the coupling of an oxalate salt with a 1,3-diene:

An 8 mL -scintillation vial equipped with a Teflon septum and a magnetic stir bar was charged with the oxalate salt ($0.1 \mathrm{mmol}, 1.0$ equiv) and $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}(\mathrm{dtbpy})\right] \mathrm{PF}_{6}(1.1$ $\mathrm{mg}, 0.001 \mathrm{mmol}, 0.01$ equiv). A $3: 1$ mixture of DME/THF ($4 \mathrm{~mL}, 0.025 \mathrm{M}$) was added, followed by water ($18 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 10$ equiv), and the 1,3 -diene $(0.11 \mathrm{mmol}, 1.1$ equiv). The reaction mixture was degassed by sparging with argon for 10 min , and the vial was sealed and irradiated (2 x 34 W blue LED lamps) for 18 h with the reaction temperature rising to $60{ }^{\circ} \mathrm{C}$ because of heat given off from the LEDs. The reaction mixture was diluted with water (10 mL) and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 10 \mathrm{~mL}$). The combined ethereal extracts were washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by flash column chromatography on silica gel to yield corresponding addition products. In some cases, the product contained trace amounts of the Z stereoisomer, which had not been removed by chromatographic purification. ${ }^{10}$ Results of these experiments are summarized in Schemes 2 and 3 of the publication.

2×34 W Bl
74 \% yield
12

Ethyl (E)-5-(1-methylcyclohexyl)pent-3-enoate (12): According to the general procedure, cesium oxalate $10(35 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and ethyl (E)-penta-2,4-dienoate ($\mathbf{1 1}$) ($14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used
the acceptor. The crude residue was purified by flash chromatography (50:1 hexanes/EtOAc) to yield ethyl ester $12(17 \mathrm{mg}, 74 \%)$ as a pale yellow oil. ${ }^{10} \mathrm{R}_{f} 0.2$ (50:1 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.59-5.54(\mathrm{~m}$, $1 \mathrm{H}), 5.52-5.47(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.39(\mathrm{~m}, 5 \mathrm{H}), 1.26-1.20(\mathrm{~m}, 8 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,131.3,124.0,60.6,45.0,38.5,37.8,33.4,26.6,25.2,22.2,14.4$; IR (thin film) 2925, 2860, 1744, 1450, $1249 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$247.1674, observed 247.1680.

Methyl (E)-5-(1-methylcyclohexyl)pent-3-enoate (13): According to the general procedure, cesium oxalate $\mathbf{1 0}(35 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and methyl (E)-penta-2,4-dienoate ($12 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography ($50: 1$ hexanes/EtOAc) to yield methyl ester $\mathbf{1 3}(16 \mathrm{mg}, 77 \%)$ as a pale yellow oil. ${ }^{10} \mathrm{R}_{f} 0.2$ (50:1 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.61-5.56(\mathrm{~m}$, $1 \mathrm{H}), 5.54-5.49(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.47-1.40(\mathrm{~m}, 5 \mathrm{H}), 1.32-1.20(\mathrm{~m}, 5 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.9,131.6,123.8,51.9,45.0,38.2,37.8,33.5,26.6,25.3,22.2$; IR (thin film) 2924 , 2847, 1747, 1436, $1251 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 211.1698, observed 211.1698 .

Ethyl (E)-5-(1-isopropylcyclohexyl)pent-3-enoate (14): According to the general procedure, the cesium oxalate ($35 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.1$ equiv) was used as the radical precursor and ethyl (E)-penta-2,4-dienoate (11) ($14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used
the acceptor. The crude residue was purified by flash chromatography (50:1 hexanes/EtOAc) to yield ethyl ester $14\left(15 \mathrm{mg}, 60 \%\right.$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.2$ (40:1 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.59-$ $5.50(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.70 (sept, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.47-1.41(\mathrm{~m}, 5 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 8 \mathrm{H}), 0.83(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,131.9,123.6,60.7,38.6,37.8,36.0,32.2$, 31.7, 26.6, 21.7, 16.9, 14.4; IR (thin film) 2928, 2863, 1741, 1455, $1369 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 270.2433$, observed 270.2428.

Ethyl (\boldsymbol{E})-5-(1-methylcyclopentyl)pent-3-enoate (15): According to the general procedure, the cesium oxalate ($30 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and ethyl (E)-penta-2,4-dienoate (11) ($14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography (50:1 hexanes/EtOAc) to yield ethyl ester $\mathbf{1 5}\left(14 \mathrm{mg}, 64 \%\right.$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.2$ (40:1 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.61-$ $5.56(\mathrm{~m}, 1 \mathrm{H}), 5.54-5.50(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.02$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 5 \mathrm{H}), 0.92$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,132.6,123.7,60.7,45.1,42.4,39.1,38.5$, 26.6, 24.7, 14.4; IR (thin film) 2954, 2928, 2867, 1741, $1458 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$228.1964, observed 228.1956.

Ethyl (E)-8-((tert-butyldimethylsilyl)oxy)-6,6-dimethyloct-3-enoate (16): According to the general procedure, the cesium oxalate ($42 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and ethyl (E)-penta-2,4-dienoate (11) ($14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv)
was used the acceptor. The crude residue was purified by flash chromatography (100:1 hexanes/EtOAc) to yield ethyl ester 16 ($24 \mathrm{mg}, 73 \%$ yield) as a pale yellow oil. ${ }^{11} \mathrm{R}_{f} 0.5$ (50:1 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.60-$ $5.50(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,131.5,124.3,60.7,60.2,45.7,44.3,38.5,32.9$, 27.5, 26.2, 18.5, 14.4, -5.1; IR (thin film) 2956, 2929, 2857, 1734, $1471 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$351.2332, observed 351.2326.

Preparation of Ethyl (E)-6,6-dimethyl-8-phenyloct-3-enoate (17) on 1 Mmol Scale:

 According to the general procedure, the cesium oxalate ($368 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and ethyl (E)-penta-2,4-dienoate (11) ($139 \mathrm{mg}, 1.1 \mathrm{mmol}$, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography (100:1 hexanes/EtOAc) to yield ethyl ester 17 ($203 \mathrm{mg}, 74 \%$ yield) as a pale yellow oil. ${ }^{10} \mathrm{R}_{f} 0.2$ (100:1 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 3 \mathrm{H}), 5.65-5.55(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.51-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,143.6,131.4,128.5,125.7,124.3,60.7,45.0,44.3,38.5,33.7,30.9,27.2,27.1$, 14.1; IR (thin film) $3026,2957,1744,1469,1366 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$297.1830, observed 297.1826.

18
(E)-6-(1-methylcyclohexyl)hex-4-en-2-one (18): According to the general procedure, cesium oxalate 10 ($35 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and (E)-hexa-3,5-dien-2-one ($11 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography ($50: 1$ hexanes/EtOAc) to yield ketone $\mathbf{1 8}$ ($15 \mathrm{mg}, 0.077 \mathrm{mmol}, 77 \%$ yield) as a pale yellow oil. ${ }^{10} \mathrm{R}_{f} 0.6$ ($85: 15$ hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.61-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.48$ $(\mathrm{m}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.47-1.40(\mathrm{~m}$, $5 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 5 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.8,132.1$, 124.1, 48.1, 45.1, $37.8,33.5,29.5,26.6,25.4,22.2$; IR (thin film) 2935, 2859, 1718, 1450, $1356 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$217.1568, observed 217.1560.

Ethyl (E)-5-((1S,3aR,6aR)-1-methyloctahydropentalen-1-yl)pent-3-enoate (19):

According to the general procedure, the cesium oxalate ($52 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and ethyl (E)-penta-2,4-dienoate ($21 \mathrm{mg}, 0.165 \mathrm{mmol}$, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography ($50: 1$ hexanes/EtOAc) to yield ethyl ester 19 ($24 \mathrm{mg}, 64 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.5$ ($90: 10$ hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.61-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.48(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.04$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.82-$ $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , CDCl_{3}) $\delta 172.3,132.1,123.6,60.5,53.5,44.5,44.4,42.6,38.4,37.2,35.3,31.5,29.2$, 27.9, 21.6, 14.3; IR (thin film) 2941, 2862, 1736, 1159, $968 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$273.1830, observed 273.1817.

Ethyl
(E)-5-((1S,2S,4aS,8aS)-2,5,5,8a-tetramethyl-1-(2-(pivaloyloxy)ethyl)decahydronaphthalen-2-yl)pent-3-enoate (20): According to the general procedure, the cesium oxalate ($81 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and ethyl (E)-penta-2,4-dienoate $(21 \mathrm{mg}, 0.165 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography (20:1 hexanes/EtOAc) to yield ethyl ester 20 ($36 \mathrm{mg}, 54 \%$ yield) as a pale yellow oil. ${ }^{10} \mathrm{R}_{f} 0.6$ ($80: 20$ hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.58-$ $5.50(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.03-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~d}$, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.68(\operatorname{app} \mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H})$, $1.60-1.47(\mathrm{~m}, 5 \mathrm{H}), 1.43-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.27(\mathrm{app} \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 1.16$ $-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.86-0.84(\mathrm{~m}, 7 \mathrm{H}) 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.80-0.78(\mathrm{~m}, 4 \mathrm{H}), 0.71(\mathrm{t}, J=3.7 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.7,172.1,130.8,124.7,66.40,60.6,56.4,55.8$, $47.2,42.1,40.1,39.6,39.2,38.7,38.4,38.1,33.3,27.3,25.3,21.6,19.8,18.6,18.3,16.1$, 14.3; IR (thin film) 2931, 1726, 1282, $1152 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 471.3450$, observed 471.3450 .

Ethyl
(E)-5-((3R,3aS,6R,7S,8aS)-3,6,8,8-tetramethyloctahydro-1H-3a,7-methanoazulen-6-yl)pent-3-enoate (21): According to the general procedure, the lithium oxalate ($45 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and ethyl (E)-penta-2,4-dienoate ($21 \mathrm{mg}, 0.165 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography ($50: 1$ hexanes/EtOAc) to yield ethyl ester 21 ($26 \mathrm{mg}, 52 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.5$ (90:10 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.56-5.48(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.04(\mathrm{~d}, ~ J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.44(\mathrm{~m}, 1 \mathrm{H}), 1.87$ (sextet, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-$ $1.70(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.24$ (m, 2H), $1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=7.1$
$\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 172.3,131.6,123.7,60.5,57.6,57.1,53.6,45.2$, $44.3,42.0,39.9,38.5,38.1,37.0,33.6,30.4,29.8,29.4,27.0,25.5,15.5,14.3$; IR (thin film) 2935, 1738, 1462, $1157 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{Na}]^{+} 355.2613$, observed 355.2618.

Ethyl (E)-6,6-dimethyl-8-(pyridin-3-yl)oct-3-enoate (22): According to the general procedure, the cesium oxalate ($55 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and ethyl (E)-penta-2,4-dienoate ($21 \mathrm{mg}, 0.165 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography ($5: 1$ hexanes/EtOAc) to yield ethyl ester 22 ($24 \mathrm{mg}, 58 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.2$ (80:20 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~d}, \mathrm{~J}=1.8$ $\mathrm{Hz}, 1 \mathrm{H}$), $8.42(\mathrm{dd}, \mathrm{J}=4.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{td}, \mathrm{J}=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, \mathrm{J}=7.6$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.54(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.57$ $-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.95(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,149.9,147.2,135.8,131.0,124.4$, $123.3,60.6,44.8,43.8,38.3,33.6,27.9,20.1,14.3$; IR (thin film) 2954, 2906, 1732, $1172 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C} 17 \mathrm{H} 25 \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$298.1783, observed 298.1789.

23

Methyl (\boldsymbol{E})-2-methyl-5-(1-methylcyclohexyl)pent-3-enoate (23): According to the general procedure, cesium oxalate $10(35 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and methyl (E)-2-methylpenta-2,4-dienoate ($14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography (50:1 hexanes/EtOAc) to yield methyl ester 23 ($17 \mathrm{mg}, 74 \%$ yield) as a pale yellow oil.
$\mathrm{R}_{f} 0.2$ ($40: 1$ hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $5.59-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.46(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{p}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.22(\mathrm{~m}, 13 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.8$, $131.2,129.0,52.0,44.9,43.1,37.832,37.826,33.5,26.6,25.3,22.2,17.8$; IR (thin film) 2925, 2860, 1755, 1452, $1375 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{Na}]^{+}$247.1674, observed 247.1677.

Methyl (E)-8-((tert-butyldimethylsilyl)oxy)-2,6,6-trimethyloct-3-enoate (24):

According to the general procedure, the cesium oxalate ($42 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and methyl (E)-2-methylpenta-2,4-dienoate ($14 \mathrm{mg}, 0.11$ mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography ($95: 5$ hexanes/EtOAc) to yield methyl ester 24 ($23 \mathrm{mg}, 69 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.7$ (85:15 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.60-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{dd}, \mathrm{J}=15.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.65(\mathrm{~m}, 5 \mathrm{H})$, $3.13(\mathrm{p}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $175.5,131.5,129.0,60.2,52.0,45.6,44.3,43.1,32.9,27.4,26.2,18.5,17.7,-5.1$; IR (thin film) 2955, 2930, 2857, 1730, $1463 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$351.2332, observed 351.2342.

Methyl (E)-2,6,6-trimethyl-8-phenyloct-3-enoate (25): According to the general procedure, the cesium oxalate ($110 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and methyl (E)-2-methylpenta-2,4-dienoate ($42 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography (95:5
hexanes/EtOAc) to yield methyl ester 25 ($52 \mathrm{mg}, 62 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.7$ (85:15 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.17(\mathrm{~m}, 3 \mathrm{H}), 5.62-5.52(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.16$ (quintet, $J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.50-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.5,143.5,131.4,128.9$, $128.4,128.3,125.6,51.8,44.7,44.2,43.0,33.6,30.7,27.09,27.06,17.6$; IR (thin film) 2953, 2933, 1738, 1454, $1161 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{Na}]^{+} 297.1830$, observed 297.1840.

Methyl (E)-4-methyl-5-(1-methylcyclohexyl)pent-3-enoate (26): According to the general procedure, the cesium oxalate $10(35 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and methyl (E)-4-methylpenta-2,4-dienoate ($14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography (40:1 hexanes/EtOAc) to yield methyl ester $26(15 \mathrm{mg}, 67 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.2$ ($50: 1$ hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 5.29 (t, J = 7.0 Hz, 1H), 3.69 (s, 3H), 3.07 (d, J = 7.0 Hz, 2H), 1.99 (s, 2H), 1.69 (s, 3H), $1.50-1.41(\mathrm{~m}, 5 \mathrm{H}), 1.29-1.26(\mathrm{~m}, 5 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $173.1,137.2,119.6,52.3,51.9,38.5,34.4,34.0,26.7,25.3,22.4,19.7$; IR (thin film) 2925, 2849, 1758, 1435, $1260 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right]^{+}$242.2120, observed 242.2110 .

(E)-5-methyl-6-(1-methylcyclohexyl)hex-4-en-2-one (27): According to the general procedure, cesium oxalate 10 ($35 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and (E)-5-methylhexa-3,5-dien-2-one ($12 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used
the acceptor. The crude residue was purified by flash chromatography (50:1 hexanes/EtOAc) to yield ketone 27 ($14 \mathrm{mg}, 68 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.2$ (50:1 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.29(\mathrm{tt}, J=7.2$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.15 ($\mathrm{s}, 3 \mathrm{H}$), 2.00 ($\mathrm{s}, 2 \mathrm{H}), 1.69(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.49-1.41(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 5 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 207.6, 137.6, 119.7, $52.4,44.0,38.5,34.4,29.6,26.7,25.4,22.4,19.8$; IR (thin film) 2928, 2860, 1716, 1450, $1355 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}[\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right]^{+}$226.171, observed 226.2164.

Methyl (E)-8-((tert-butyldimethylsilyl)oxy)-4,6,6-trimethyloct-3-enoate
According to the general procedure, the cesium oxalate ($42 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and methyl (E)-4-methylpenta-2,4-dienoate ($14 \mathrm{mg}, 0.11$ mmol, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography ($95: 5$ hexanes/EtOAc) to yield methyl ester 28 ($18 \mathrm{mg}, 56 \%$ yield) as a pale yellow oil. ${ }^{10} \mathrm{R}_{f} 0.7$ (85:15 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.68(\mathrm{~m}, 5 \mathrm{H}), 3.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.98(\mathrm{~s}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,137.0,120.0,60.3,52.4,51.9,45.3,34.0$, $33.8,27.8,26.2,19.5,18.5,-5.0$; IR (thin film) $2954,2857,1744,1471,1255 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$351.2332, observed 351.2332 .

Methyl (E)-2,4-dimethyl-5-(1-methylcyclohexyl)pent-3-enoate (29): According to the general procedure, cesium oxalate $10(35 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.1$ equiv) was used as the radical precursor and methyl (E)-2,4-dimethylpenta-2,4-dienoate ($15 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography (95:5 hexanes/EtOAc) to yield methyl ester $29(15 \mathrm{mg}, 64 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.7$ (85:15 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $5.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.32(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 5 \mathrm{H}), 1.26-1.21(\mathrm{~m}, 8 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 176.2,135.5,127.8,52.2,51.9,39.2,38.53,38.48,34.4,26.7,25.3,22.4,19.7$, 18.1; IR (thin film) 2925, 2860, 1740, 1452, $1376 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$256.2277, observed 256.2270.

Dimethyl (E)-2-(3-(1-methylcyclohexyl)but-1-en-1-yl)malonate (31): According to the general procedure, cesium oxalate $10(35 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.1$ equiv) was used as the radical precursor and dimethyl (E)-2-(but-2-en-1-ylidene)malonate ($20 \mathrm{mg}, 0.11 \mathrm{mmol}$, 1.1 equiv) was used the acceptor. The crude residue was purified by flash chromatography ($25: 1$ hexanes/EtOAc) to yield malonate $\mathbf{3 1}(20 \mathrm{mg}, 71 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.4$ (20:1 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.67-5.60(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.13$ (p, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 5 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 5 \mathrm{H}), 0.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 0.78 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.15,169.13,140.2,121.0,55.6,52.9$, $52.8,45.6,36.5,36.1,35.4,26.6,22.1,22.0,20.2,14.2$; IR (thin film) 2925, 2860, 1740, 1452, $1376 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$305.1729, observed 305.1719.

3-(2-(1-Methylcyclohexyl)ethyl)cyclopent-2-en-1-one (32): According to the general procedure, cesium oxalate $10(35 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and 3-vinylcyclopent-2-en-1-one ($12 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography ($5: 1$ hexanes/EtOAc) to yield ketone 32 ($13 \mathrm{mg}, 64 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.2$ (5:1 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.94(\mathrm{p}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-$ $2.58(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.43(\mathrm{~m}, 7 \mathrm{H}), 1.33-1.26$ $(\mathrm{m}, 5 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.3,184.4,129.3,39.5,37.8$, $35.5,32.7,31.9,27.9,26.6,24.8,22.2$; IR (thin film) 2923, 2854, $1733,1615,1438 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$229.1568, observed 229.1578.

3-(2-(1-Methylcyclohexyl)ethyl)cyclohex-2-en-1-one (33): According to the general procedure, cesium oxalate $\mathbf{1 0}(35 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and 3-vinylcyclohex-2-en-1-one ($14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography (5:1 hexanes/EtOAc) to yield ketone $\mathbf{3 3}$ ($9 \mathrm{mg}, 40 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.2$ ($5: 1$ hexanes/ EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.89(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-$ 2.35 (m, 2H), $2.31(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{p}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.45$ $-1.37(\mathrm{~m}, 7 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 5 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 200.2$, $168.1,125.6,39.5,37.9,37.5,32.8,32.5,30.2,26.6,25.0,23.0,22.2$; IR (thin film) 2924 , 2859, 1690, 1624, $1453 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$ 243.1725, observed 243.1725 .

3-(3,3-dimethylbutyl)cyclohex-2-en-1-one (34): According to the general procedure, the cesium oxalate ($28 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and 3-vinylcyclohex-2-en-1-one ($14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography ($5: 1$ hexanes/EtOAc) to yield ketone 34 ($6 \mathrm{mg}, 30 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.2$ (5:1 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.88(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.34(\mathrm{~m}, 2 \mathrm{H})$, $2.30(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{p}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.38-1.35(\mathrm{~m}$, $2 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.1,167.8,125.6,41.5,37.5,33.7$, 30.5, 30.1, 29.4, 23.0; IR (thin film) 2953, 2867, 2080, $1673,1625 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$203.1412, observed 203.1413.

General procedure for the coupling of carboxylic acids with 1,3-dienes:

A 8 mL -scintillation vial equipped with a Teflon septum and magnetic stir bar was charged with the carboxylic acid ($0.1 \mathrm{mmol}, 1.0$ equiv) and $\left[\operatorname{Ir}\left(\mathrm{dF}_{(}\left(\mathrm{CF}_{3}\right) \text { ppy }\right)_{2}(\mathrm{dtbpy})\right] \mathrm{PF}_{6}$ ($1.1 \mathrm{mg}, 0.001 \mathrm{mmol}, 0.01$ equiv). A $3: 1$ mixture of DME/THF ($4 \mathrm{~mL}, 0.025 \mathrm{M}$) was added, followed by water ($18 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 10$ equiv), $\mathrm{K}_{2} \mathrm{HPO}_{4}(23 \mathrm{mg}, 0.13$ equiv, 1.3 equiv) and the pentadienoate 11 ($14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv). The reaction mixture was degassed by sparging with argon for 10 min and the vial was sealed and irradiated (2×34 W blue LED lamps) for 18 h with the reaction temperature rising to $60^{\circ} \mathrm{C}$ because of heat given off from the LEDs. The reaction mixture was diluted with water $(10 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 10 \mathrm{~mL})$. The combined ethereal extracts were washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was purified by flash column chromatography on silica gel to yield corresponding addition products. Results of these experiments are summarized in Scheme 4 of the publication.

Ethyl (\boldsymbol{E})-5-(1-methylcyclohexyl)pent-3-enoate (12): According to the general procedure, carboxylic acid ($14 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and pentadienoate $11(14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography (5:1 hexanes/EtOAc) to yield ethyl ester 12 ($16 \mathrm{mg}, 72 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.2$ (50:1 hexanes/EtOAc); visualized with KMnO_{4}. Spectral data match those above reported.

Ethyl (\boldsymbol{E})-5-(1-methylcyclopentyl)pent-3-enoate (15): According to the general procedure, carboxylic acid ($13 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and pentadienoate $11(14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography ($5: 1$ hexanes/EtOAc) to yield ethyl ester 15 ($13 \mathrm{mg}, 62 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.2$ (50:1 hexanes/EtOAc); visualized with KMnO_{4}. Spectral data match those above reported.

Ethyl (E)-8-((tert-butyldimethylsilyl)oxy)-6,6-dimethyloct-3-enoate (16): According to the general procedure, carboxylic acid ($25 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and pentadienoate $11(14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography ($5: 1$ hexanes/EtOAc) to yield ethyl ester 16 ($21 \mathrm{mg}, 64 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.2$ (50:1 hexanes/EtOAc); visualized with KMnO_{4}. Spectral data match those above reported.

Ethyl (\boldsymbol{E})-6,6-dimethyl-8-phenyloct-3-enoate (17): According to the general procedure, carboxylic acid ($19 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and pentadienoate 11 ($14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography ($5: 1$ hexanes/EtOAc) to yield ethyl ester 17 (20 $\mathrm{mg}, 73 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.2$ ($50: 1$ hexanes/EtOAc); visualized with KMnO_{4}. Spectral data match those above reported.

3-(2-(1-Methylcyclohexyl)ethyl)cyclopent-2-en-1-one (32): According to the general procedure, carboxylic acid ($14 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and 3-vinylcyclopent-2-en-1-one ($12 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography ($5: 1$ hexanes/EtOAc) to yield ketone 32 ($11 \mathrm{mg}, 54 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.2$ ($50: 1$ hexanes/EtOAc); visualized with KMnO_{4}. Spectral data match those above reported.

Ethyl (E)-6-(((benzyloxy)carbonyl)amino)-7-phenylhept-3-enoate (35): According to the general procedure, carboxylic acid ($30 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and pentadienoate $11(14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography ($5: 1$ hexanes/EtOAc) to yield ethyl ester 35 ($20 \mathrm{mg}, 52 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.2$ (5:1 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.18$ (m, $10 \mathrm{H}), 5.65-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.58-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.84-$ $2.77(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 171.8,155.8,137.8,136.7,129.8,129.5,128.54,128.49$, $128.11,128.07,126.5,125.7,66.6,60.7,51.8,40.4,38.1,36.7,14.2$; IR (thin film) 3342 , 2928, 1731, 1528, $1251 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$ 404.1838, observed 404.1829.

Ethyl (\boldsymbol{E})-5-(tetrahydrofuran-2-yl)pent-3-enoate (36): According to the general procedure, carboxylic acid ($12 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and pentadienoate $11(14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography (10:1 hexanes/EtOAc) to yield ethyl ester 36 ($13 \mathrm{mg}, 67 \%$ yield) as a pale yellow oil. $\mathrm{R}_{f} 0.2$ (10:1 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4}{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.67-5.56(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{p}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.36-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.26$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,131.0,124.3,78.9,68.1,60.8$, 38.9, 38.4, 31.0, 25.9, 14.4; IR (thin film) 3541, 2977, 1738, 1645, $1177 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$221.1154, observed 221.1151.

tert-Butyl (E)-2-(5-ethoxy-5-oxopent-2-en-1-yl)pyrrolidine-1-carboxylate
According to the general procedure, carboxylic acid ($22 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was used as the radical precursor and pentadienoate 11 ($14 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was used the acceptor. The crude residue was purified by flash chromatography (5:1 hexanes/EtOAc) to yield ethyl ester $37\left(16 \mathrm{mg}, 55 \%\right.$ yield) as a pale yellow oil. ${ }^{10} \mathrm{R}_{f} 0.2$ (5:1 hexanes/EtOAc); visualized with $\mathrm{KMnO}_{4} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) at $70{ }^{\circ} \mathrm{C} \delta$ $5.61-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.44-5.38(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{br}, 1 \mathrm{H}), 3.31$ (br, 1H), $3.20-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{br}, 1 \mathrm{H}), 2.12-2.09(\mathrm{~m}$,
$1 \mathrm{H}), 1.54-1.33(\mathrm{~m}, 15 \mathrm{H}), 0.98(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ at $70{ }^{\circ} \mathrm{C}$ $\delta 170.5,153.8,130.5,124.5,78.1,59.7,56.8,46.4,37.9,37.2,29.6,28.3,23.0,13.8$; IR (thin film) 2979, 2877, 1738, 1696, $1393 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$320.1838, observed 320.1836.

Spectral Data

$\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,151 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 151 MHz)

F2 - Acquisition farameters	
	${ }^{20170926}$
	${ }_{\text {ave }} 15$.
	mon cerbo
polerog	zacis
nve	
	300
fitrers	
	0.9043968
Din	13.800
${ }_{\text {TE }}^{\text {TE }}$	${ }^{19.65}$
${ }^{\text {d }}$	0.400000001
${ }_{\text {P11 }}^{\text {Tro }}$	0.03000
Noc1	${ }_{130}^{13}$
	waltz16
${ }_{\text {PLIN12 }}$	0.36000001
$\begin{gathered} \text { LBE } \\ \substack{\text { ger }} \end{gathered}$	1.0

$\begin{array}{lll}195 & 190 & 185 & 180 & 175 & 170 & 165 & 160 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5 & 0 & & 5 p m\end{array}$

Z-restored spin-echo 13 C spectrum with 1 H decoupling

${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 151 \mathrm{MHz}$)

[^0]

13C spectrum with 1H decoupling

13C spectrum with 1 H decoupling

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

	/V/data/2
F2- Acqued	sition parameters
	${ }_{\text {cke }}^{23} \times 1$
PRobsid	5 mm cebro $\mathrm{BB}^{\text {- }}$
poizrog	
	126
Pres	,
	50439
те	
${ }^{\text {D11 }}$	0.40000001 sec 0.03000000 sec
	150.9194088 MFz
NOC1	
${ }_{\text {PLM }}$	64.0000000
CBAMu18L $62=-=-=-$	
	500.1330010
Prgiz	valt
${ }_{\text {PLW } 12}$	0.36000001 w

Z-restored spin-echo 13C spectrum with 1H decoupling

TBSO

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

13 C spectrum with 1 H decoupling

${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

Z-restored spin-echo 13C spectrum with 1H decoupling

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

13 C spectrum with 1 H decoupling

CDCl_{3}

Curre NAME $\underset{\text { ERPNOMO }}{\text { ERTMO }}$ DATPATH	
P2-	on Par
	${ }_{2}^{201703} 16$
${ }_{\text {Time }}^{\text {Tims }}$	
	5 mm cPbeo miol
PUlipros	
$\begin{aligned} & \text { FIDD } \\ & \underset{A g}{ } \end{aligned}$. 09989478
Dw	52.000
DE	,
C1	
1	
PIW1	20,0000000

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

Z-restored spin-echo 13C spectrum with 1H decoupling

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

CDCl_{3}

298.52
$666 \cdot 0 \varepsilon$
$\begin{aligned} & 98 \varepsilon \cdot 8 \varepsilon \\ & \angle L 8 \cdot 8 \varepsilon \\ & \hline \end{aligned}$
084.09
T2T*89

[^1]

References:

1. (a) Nawrat, C. C.; Jamison, C. R.; Slutskyy, Y.; MacMillan, D. W. C.; Overman, L. E. J. Am. Chem. Soc. 2015, 137, 11270-11273. (b) Jamison, C. R.; Slutskyy, Y.; Overman, L. E. Org. Synth. 2017, 94, 167-183.
2. Zhang, H.; Ma, S.; Yuan, Z.; Chen, P.; Xie, X.; Wang, X.; She, X. Org. Lett., 2017, 19, 3478-3481.
3. Wender, P. A.; Sieburth, S, McN.; Petraitis, J. J.; Singh, S. K. Tetrahedron, 1981, 37, 3967-3975.
4. Lemarch, A.; Bach, T. Tetrahedron, 2004, 60, 9659-9673.
5. Rodriguez, J; Waegell, B. Synthesis, 1988, 7, 534-535.
6. Takasu, A.; Yamamoto, H.; Inai, Y.; Hirabayashi, T. Macromolecules, 2001, 34, 62356242.
7. Zhang, W.; Ghiviriga, I.; Grenning, A. J. Tetrahedron, 2017, 73, 4076-4083
8. Fisher, M. J.; Hehre, W. J.; Kahn, S. D.; Overman, L. E. J. Am. Chem. Soc., 1988, 110, 4625-4633.
9. Krasutsky, S. G.; Jacobo, S. H.; Tweedie, S. R.; Krishnamoorthy, R.; Filatov, A. S. Org. Process Res. Dev., 2015, 19, 284-289.
10. This sample contained a trace amount ($\sim 5 \%$) of the Z stereoisomer as seen by the diagnostic small signals for its vinylic carbons in the ${ }^{13} \mathrm{C}$ NMR spectra.
11. This sample contained $\sim 10 \%$ of the Z stereoisomer as seen by the diagnostic small signals for its vinylic carbons in the ${ }^{13} \mathrm{C}$ NMR spectra.

[^0]:

[^1]:

