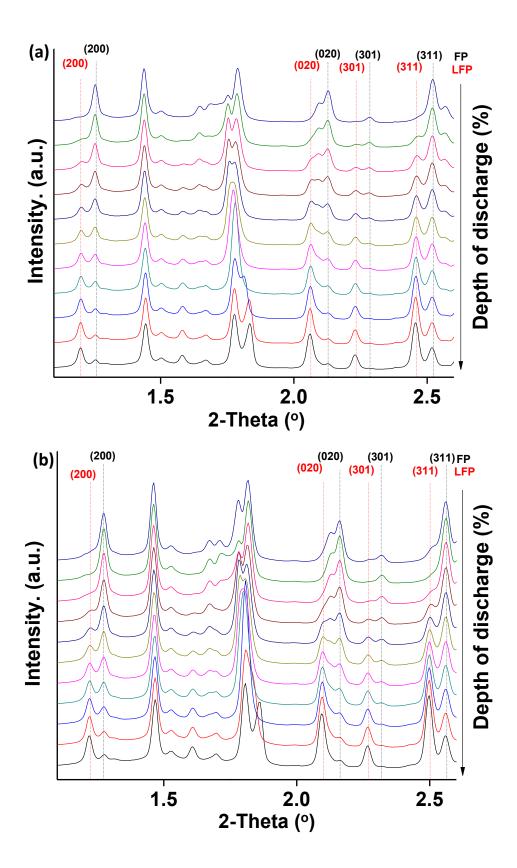
Supporting information for


Capacity Fading Mechanism of The Commercial 18650 LiFePO₄-Based Lithium Ion Batteries: An *In-Situ* Time-Resolved High-Energy Synchrotron XRD Study

Qi Liu^{1,2†}, Yadong Liu^{1†}, Fan Yang^{1,2}, Hao He¹, Xianghui Xiao³, Yang Ren³, Wenquan Lu⁴, Eric Stach⁵, and Jian Xie^{*,1}

¹Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
²School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47097
³X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
⁴Chemical Science and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
⁵Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104-6272

[†]These authors contributed equally to this work.

^{*} Corresponding author: jianxie@iupui.edu

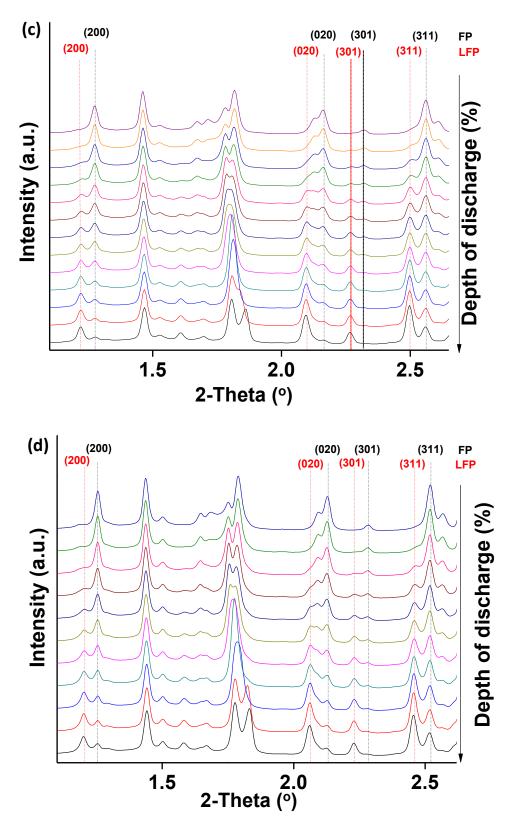


Figure S1 XRD patterns between 2θ = 1.0 ° and 2.8 ° during discharge process at 1C rate: (a) 500th, (b) 1000th, (c) 1500th, (d) 2000th cycles.

Cycle Number	R_0	$C_{\rm SEI}$	$R_{\rm SEI}$	$C_{ m dl}$	$R_{ m ct}$	σ
1st	0.076434	0.35731	0.002323	0.85074	0.00406	1.982
2500th	0.079489	0.47317	0.002184	0.73111	0.004583	3.096

Table S1. Summary of electrochemical impedance spectra fitting results