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SA. Sample preparation 

High-quality Bi2Se3 thin films were grown on 3-inch Al2O3 wafers (2-side polished) at Rutgers 

University using a custom-built MBE system (SVTA) with a base pressure lower than 5×10
−10

 

Torr. The wafers were cleaned ex situ by UV-generated ozone and in situ by heating to C 750 o  

under 10
-6

 Torr of oxygen. Using a two-temperature growth process developed at Rutgers 

University
1
, three quintuple layers of Bi2Se3 were deposited at C35 1 o  as a seed, and the rest of 

the film was deposited at C00 3 o . The flux ratio of Se to Bi was maintained at above 10:1 to 

minimize the number of Se vacancies. After growth, the films were taken out of the vacuum 

chamber, immediately sealed in vacuum bags, and shipped to Yonsei University. 

The slit and rod arrays on the thin films were patterned by AZ5214 with a thickness of 1.5 

mm, followed by baking at C0 9 o  for 1 min. The patterns were etched by a reactive ion etcher 

(40 s.c.c.m., SF6, 10 mTorr, and 45 W) with an etching rate of 18 nm/min. After the fabrication, 

the AZ5214 was removed with acetone. 

 

 

SB. Equations for spectral fitting 

We engineered the TI 2D Dirac plasmons such that the plasmon quasi-resonance spectrally 

overlaps with the  mode phonon. The mixed state of the two distinct resonant species leads to a 

well-established Fano resonance
2–5

. To extract the bare plasmon and phonon resonances from the 

Fano spectra, we employed the following Fano formula which is used to fit the THz extinction. 

Following Giannini et al.,
2,3

 the shape of the Fano resonance associated with coupling of the 

plasmon and phonon resonances is described by the following equation: 
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Here, q is the shape parameter that results in the asymmetry of the Fano resonance,    is the 

reduced frequency, g is the degree of coupling between incident photons and plasmons, and 

)(pl L  is the bare plasmon resonance given by 






















2/
1

1

pl

pl

pl


L ,   (2) 



 4 

where pl  and pl  are the bare plasmon frequency and the plasmon linewidth, respectively. We 

introduce the coupling constant between the incident photon and phonon as w and the coupling 

constant between the phonon and the plasmon as v (see Fig. 1(c) in the main text); then, q and    

are linked to v, w, and g through 
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where ph  is the phonon frequency, and )(v2)( pl

2

ph  L  is the phonon linewidth under 

Fano interference. While )(F  determines the intrinsic Fano resonance, the experimentally 

measured THz extinction requires a fitting equation of a more complex form to account for the 

absorption of the incident photons by bare plasmons and phonons. According to eqs 1, 3, and 4, 

0)( F  when gw/vph  . However, since 0) E  for all of our Tis, there must be 

significant absorption of photons by bare plasmons and phonons
3
. Therefore, our fitting equation 

has the following form: 

)()()()( ph

2

pl

2  LCwLBgAFE  ,   (5) 

where A, B, and C are the fit constants for the Fano resonance, bare plasmon absorption, and bare 

phonon absorption, respectively. Here, the bare phonon resonance is given by 
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where 2

ph v2    is the phonon linewidth without the Fano interference. The results of fitting 

with eq 5 are shown in Fig. 1(b) in the main text, with individual extinction components of 

)(AF , )(pl

2 LBg , and )(ph

2 LCw  shown in Figs. S1 and S2 in Sec. C. We note that the bare 

plasmon spectral peak presented in Fig. 1(b) in the main text is given by )()( pl

2 LgBA  . The 

pump-induced changes in the THz extinction spectra )(E  shown in Fig. 2(b) and Fig. 3(b) in 

the main text are also fitted with eq 5. 
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SC. Spectral fitting results at equilibrium 

In Figs. S1 and S2, we show the fits for TI slits and rods presented in Fig. 1(b) in the main text. 

The fits are composed of a Fano resonance )(AF , bare plasmon absorption )(pl

2 LBg , and 

bare phonon absorption )(ph

2 LCw , as explained in Sec. B. While the Fano resonance accounts 

for the weakly asymmetric shape of )E , the broad non-zero )E  is associated with the bare 

plasmon and phonon absorption. When fitting the data for different L, we used parameters v, w, 

g, A, B, and C with little variation. The resulting fit constants are listed in Tables S1 and S2 in 

Sec. J. 

 

Figure S1. )E  fit spectra for TI slits with L varying from 14 m to 5 m are presented in the 

first row. )(AF  is obtained using eq 5 and shown in the second row; the spectra in the third row 

correspond to )(pl

2 LBg  (red line) and )(ph

2 LCw  (blue line). 

 

As the length L decreases, the spectral reshaping of the )(pl

2 LBg  component implies a 

blue-shift of pl  (see Fig. 1(d) in the main text). Unlike graphene
6
 or metal nanoparticles

7
, the 

edge scattering of plasmons via electron–electron interaction is not significant for our TI 2D 

Dirac plasmons
8
. For slits (rods), we obtained the average plasmon width of THz 5.05.3pl   
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( THz 5.05.2  ). We note that the TI phonon resonance barely shows any L-dependence (

THz 89.1ph   and THz 16.0ph   for both slits and rods), which indicates that the Landau 

damping of phonons through plasmon extinction is not efficient without optical excitation. We 

find that the fit value THz 16.0ph   is consistent with the theoretical values of the plasmon 

width derived from the relationship 2

ph v2    in Sec. B. The Fano coupling parameter 

1/2THz 16.0v   used in the fitting equations leads to THz 16.0ph  . 

 

 

Figure S2. )E  fit spectra and )(AF  for TI rods with L varying from 14 m to 5 m are 

shown in the first and second rows, respectively. The third row shows )(pl

2 LBg  (red line) and 

)(ph

2 LCw  (blue line). 
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SD. 2D plasmon dispersion at equilibrium 

To examine the kpl  relationship illustrated in Fig. 1(d) in the main text, we consider the TI 

2D plasmon dispersion where massless Dirac fermions and massive two-dimensional electron 

gas (2DEG) particles coexist
9–11

, 
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Here, 1s g  and 1v g  are the spin and valley degeneracies of the TI Dirac surface state, 

100TI   is the TI dielectric constant
4
, 1T   ( 10B  ) is the dielectric constant above (below) 

the top (bottom) TI surface, T F,E  ( B F,E ) is the Fermi energy of the top (bottom) TI surface, and z 

is the thickness of the TI thin film
4
. For slits (rods), z = 25 nm (15 nm); we found that a change 

of z by 10 nm barely changes the plasmon dispersion. The parameter R in eq 7 has the following 

form: 

        2T F,BB F,T

2

T F,BB F,TB F,T F,TI

2

B F,T F,

2

TI 2 EEkzEEEEkzEER   .    (8) 

The effective Fermi energy is determined by the linear combination of the Dirac Fermi energy 

Dirac

FE  and 2DEG Fermi energy 
2DEG

FE  as follows, 

)B ,Ti(  4 2DEG

i F,

Dirac

i F,i F,  EEE ,   (9) 

where the subscript B T,i   indicates the top and bottom TI surfaces, respectively. The four 

times higher contribution of 
2DEG

FE  than 
Dirac

FE  to the effective Fermi energy is due to the 

combined effect of two-fold spin degeneracy and parabolic dispersion of 2DEG states
10

. By 

fitting the plasmon dispersion presented in Fig. 1(d) in the main text with eq 7, we obtain the 

Fermi energies of meV 465Dirac

F E  and meV 352DEG

F E  at equilibrium. These Fermi energies 

are associated with the density of Dirac electrons ( -213

Dirac cm 101.1 n ) and the density of 

2DEG ( -212

2DEG cm 102.2 n ) obtained from 

DiracF

Dirac

F 4 nvE  ,    (10) 

*

2DEG

22DEG

F / mnE  ,    (11) 

where m/s 1016 5Fv  is the Fermi velocity of the Dirac states, and 0

* )01.015.0( mm   is 

the effective mass of the 2DEG states
5
.  
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SE. Spectral fitting results non-equilibrium 

Plasmon frequency-dependent THz extinction 

In this part, we discuss the fitting results for the pump-induced changes in THz extinction spectra 

)(E  after optical excitation presented in Fig. 2(b) in the main text. The first row of Fig. S3 

shows the )(E  spectra with and without optical excitation, and the corresponding changes 

)(E  are shown in the second row of Fig. S3. As discussed in the main text, the main 

difference in )(E  for varying L appears near the 1.9 THz  mode phonon resonance, where 

the spectra )(E  for L below μm 8  are strongly asymmetric; such asymmetry is not observed 

for L above μm 9 . To fit the )(E  spectra, we use an equation derived from eq 5 in Sec. B as 

     )()()()( ph

2

pl

2  LCwLBgAFE  ,   (12) 

where  )(AF  is the change in Fano resonance,  )(pl

2 LBg  is the change in bare plasmon 

absorption, and  )(ph

2 LCw  is the change in bare phonon absorption. The response of 

 )(AF  shown in the third row of Fig. S3 exhibits negative values near the  mode phonon 

resonance, which contributes to the sharp dip in the integrated )(E . Here, we find that the 

change in the v-parameter does not lead to any asymmetric )(E  spectra. While the broad non-

zero )(E  is found in  )(pl

2 LBg , the response of  )(ph

2 LCw  accounts for the 

asymmetric shape of the integrated )(E  for L below μm 8 . Due to the increase in ph  for L 

below 8 m, an asymmetric shape of the extinction spectrum emerges near the  phonon mode. 

In contrast, this effect is replaced by the increase in ph  for L above μm 9 . We list the fit 

constants used to fit the data in Tables S1 and S3 in Sec. J. 
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Figure S3. )(E  spectra for TI slits at equilibrium (black line) and after optical excitation (red 

line) are shown in the first row. The corresponding )(E  fit spectra are displayed in the second 

row. Calculated according to eq 12  )(AF ,  )(pl

2 LBg , and  )(ph

2 LCw  are presented in 

the third, fourth, and fifth rows, respectively. 

 

Time-resolved THz extinction 

In Fig. S4, the results of fitting shown in Fig. 3(b) in the main text are illustrated, where Figs. 

S4(a) and S4(b) represent the symmetric and asymmetric responses of the  mode phonon, 

respectively. Similar to  )(AF  in Fig. S3, the Fano interference at various t  results in a 

pronounced extinction dip near the  mode phonon. While the broad non-zero spectra )(E  are 
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determined by the  )(pl

2 LBg  dynamics, the symmetric or asymmetric )(E  responses near 

the  mode phonon resonance are resulted from  )(ph

2 LCw . We list the fit constants in Table 

S4 in Sec. J. 

 

 

Figure S4. )(E  fits and detailed THz spectra at various t  are shown for TI slits for S12 in (a) 

and for S6 in (b). 

 

 

SF. 2D plasmon dispersion at non-equilibrium 

Here, we present the variation of plasmon dispersion shown in Fig. 2(c) in the main text. 

According to the relationships between the Fermi energies and carrier densities described in eqs 

10 and 11 in Sec. D, the changes in the Dirac electron density Diracn  and 2DEG density 2DEGn  

after optical excitation lead to the following changes in the Fermi level of the top TI surface: 

 DiracDiracF

Dirac

T F, 4 nnvE   ,   (13) 

  *

2DEG2DEG

22DEG

T F, / mnnE   .   (14) 



 11 

Here, we assume that the optical pulse is predominantly absorbed by the top surface since the 

penetration depth (~ 20 nm) for the 800 nm pulse is smaller than the thickness of TI (z = 25 

nm)
4
. To calculate the pump-induced carrier densities, we use the following relationships: 

photonDiracDirac /)1( EtrFn    for Dirac states and photon2DEG2DEG /)1( EtrFn    for 2DEG 

states, where 
-15 cm 105  is the absorption coefficient

12
, 5.0r  is the reflection 

coefficient
13

, and QL 4.0Dirac t  ( QL 42DEG t ) is the thickness of the Dirac surface (2DEG) 

state
13,14

. 

Upon optical excitation with 
2μJ/cm 35F , the Fermi energies reach meV 493Dirac

T F, E  and 

meV 2602DEG

T F, E . We find that, due to the relaxation of photoinduced carriers, the Fermi 

energies are reduced to meV 480Dirac

T F, E  and meV 1512DEG

T F, E  at ps 6t ; this values are 

used to fit the plasmon dispersion in Fig. 2(c) in the main text. We obtain the dynamics of the 

Fermi levels using the t -dependent pl  in Fig. S4 in Sec. C; the corresponding 2DEGn  is 

shown in the inset of Fig. 3(c) in the main text. 

 

 

SG. Hyperbolic plasmon–phonon polaritons 

In this section, we discuss why our far-field THz spectroscopy cannot provide direct 

experimental evidence of the hyperbolic phonon polariton (HP2) or hyperbolic plasmon–phonon 

polariton (HP3) modes. Following theoretical and experimental works
15,16

, we first consider the 

HP2 mode in Bi2Se3 TIs with phonon resonances inside the TI slab. The angle )(  between the 

propagation direction and the normal to the plane is given by 

2/1

2/1
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)(tan
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where )( 
 and )( z

 constitute the following iso-frequency surfaces: 
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In a type-II hyperbolic region, where 0)(  z
 and 0)(   , the frequency dispersion of HP2 

modes can be obtained as 
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where nk  is the wavenumber with the mode index n, d is the slab thickness,  

1  is )()()(1  z , 10   is the air permittivity, and 10s  is the substrate 

permittivity. 

Using these HP2 modes, we perform numerical simulations with parameters adapted to our 

TI, and compare our results with those of Ref. 16. Figure S5(a) displays the HP2 modes for a TI 

slab thickness of d = 120 nm, where we see that the frequency dispersion of HP2 reproduces Fig. 

4 in Ref. 16 well. Then, considering the relationship 1 dkn
, decreasing d from 120 nm to 25 

nm shifts the HP2 modes toward higher wavenumbers (Fig. S5(b)). In our TI geometry with d = 

25 nm, the HP2 dispersion of 0k  is the dominant mode in the wavenumber range of our 

experiment (10
3
 cm

−1 
~ 10

4
 cm

−1
).  

 

 

Figure S5. (a) HP2 frequency HP2  as a function of Re(k) for eV 0  and d = 120 nm. (b) 

HP2  as a function of Re(k) for eV 0  and d = 25 nm. 

 

Hereafter, we discuss the hyperbolic modes for the doped surface states, i.e., HP3 modes 

with Dirac plasmons in the Bi2Se3 slab. The HP3 dispersion for n = 0 has the following form: 
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where 
top  and bot  are the conductance values for the top and bottom Bi2Se3 surfaces, 

respectively. In the long-wavelength limit, the sheet conductivity follows the Drude formula, 








i

e

e 


||

4 2

2


,   (19) 

where   is the Fermi energy, and THz 1e  is the electron scattering rate. The solutions to eqs 

18 and 19 can be obtained from numerical simulations, in a form of the real and imaginary parts 

of the complex 0k . The simulation results are displayed in Figs. S6(a) and (c) for different Fermi 

energies (so that the carrier densities are different). The )Re( 0k  dispersion away from the 

phonon resonance at 1.9 THz resembles that of the surface plasmon, while a strongly dispersive 

feature is clearly visible near the phonon frequency 
ph . These HP3 modes are expected to 

propagate inside the Bi2Se3 slab, experiencing periodic reflections at the top and bottom surfaces.  

 

 
Figure S6. (a), (b) HP3 frequencies HP3  as functions of Re(k) and Im(k) for eV 1.0  and d = 

25 nm. (c), (d) HP3  as a function of Re(k) and Im(k) for eV 3.0  and d = 25 nm. 

 

It is known that one needs to employ a scattering-type near-field technique to experimentally 

observe the HP3 modes. This is because HP3 modes are excited by the electric field component 

normal to the slab orientation. Our experimental apparatus is, however, based on far-field 
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measurement, which limits its ability to observe the HP3 modes. Moreover, a significant 

damping of HP3 modes is observed near 
ph  in the )Im( 0k  dispersion curves (Figs S6(b) and 

(d)). This implies that the polaritonic waves near 
ph  barely survive inside the slab due to the 

increased optical loss. This consideration was also discussed in Ref. 16 in regard to s-SNOM 

simulations. Although it is possible that the hyperbolic HP3 modes affect our experimental data, 

we believe that the hyperbolic responses do not directly modify the shape of the observed change 

of phonon spectra near 
ph . 

 

 

SH. Phonon Landau damping 

In this section, we use time-dependent Boltzmann’s transport equations and Maxwell’s equations 

to obtain the dispersion of phonon polaritons. The results are compared to the experimental 

results. Figure S7 shows the result for the phonon frequency and broadening for different Fermi 

energies and temperatures, while Fig. S8 shows the results for the time-dependent counterparts 

of the phonon frequency and broadening. 

We first examine the variations of phonon polariton spectra for different Fermi levels and 

temperatures. Assuming that the phonon density 
phf  fluctuates due to the external electric field 

E  with the electric potential  , Boltzmann’s transport equation without collisions can be 

written as
17

  

0phev

ph

phph

ph





f

m

e
f

t

f
Ev .   (20) 

Here, 
phv  is the velocity vector of the phonon, 

phm  is the phonon effective mass, and 
phef  is the 

correction to the phonon velocity due to the electron–phonon interaction, which is key for 

deriving the phonon dispersion. Maxwell’s equation can be applied to integrate 
phf :  

 v
3

ph

2 df
e


 ,   (21) 

where 0100   is the Bi2Se3 permittivity. To solve eq 20, we assume that 
phf  and   vary 

periodically with r  and t  in the form of   ti  exp rk
18

, which yields 
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0 )( phev
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phph  f
m

e
ifi kvk  ,   (22) 

and 

 v
3

ph

2 df
e

k


 .   (23) 

Equating eqs 22 and 23, we obtain the following phonon dispersion relation: 
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Since eq 24 contains a pole at 
phvk  , an integration path around the pole is necessary. To 

simplify the problem, we assume one-dimensional integration with ku phvk , which modifies 

eq 24 as 
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Eq 25 without the pole can be calculated term by term using the relationship 
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where the integration around the pole results in a complex number   
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ufki
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Hence, eq 25 can be solved as 
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To extract the phonon dispersion from eq 27, we further consider the phonon velocity correction 

due to the electron–phonon interaction
19

, 











eB

2*

eB

*

2DEG

2DEG
phe

2
exp)(

Tk

um

Tk

um

t

n
uf ,   (28) 

where 2DEGn  is the two-dimensional electron gas density (2DEG), m 104 9

2DEG

t  is the 

thickness of the 2DEG, 
0

* 15.0 mm   is the effective mass of the 2DEG electrons, and eT  is the 

electron temperature. We note that eq 28 is defined on an interval of ) ,0(   and reaches its 

maximum at the electron velocity *

eB / mTku  . Inserting eq 28 into eq 27 and integrating 

from 0 to  , we have 
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where 0  is defined as ph

2

2DEG0  / men   . Given 
phm  at the   phonon mode is 

*7

ph 10~ mm 20
, we obtain the phonon dispersion relation due to the electron–phonon interaction. 

Here, the change in the phonon frequency 
ph  is written as   /)Re(ph

, and the change 

in the phonon linewidth 
ph  corresponds to Landau damping with )Im(ph  . 

 

 

 

Figure S7. (a), (b) 
ph  and 

ph  as functions of k at different 2DEGn . (c), (d) 
ph  and 

ph  as 

functions of k at different eT . 

 

Figures S7(a) and (b) show the numerical simulation results for the carrier-density-

dependent 
ph  and 

ph  at a fixed electron temperature of K 700e T . We see that both 
ph  

and 
ph  depend on k, and 

ph  increases with 2DEGn . Figures S7(c) and (d) depict the eT -

dependent 
ph  and 

ph  for a fixed 2DEGn . The origin of phonon Landau damping can be 

quantitatively understood by introducing a screening parameter called Debye length D
19

, which 
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represents the screening effect of a free electron plasma. Given that D  is 2

0

*

eB / mTk , the 

peak of 
ph  emerges when 1

D

 k . This implies that the phonon Landau damping originates 

from the screening effects of the electron plasma; the oscillating phonon wave is screened by the 

incoherent thermal motion of free electrons. 

Having discussed the effects of 2DEGn  and eT  on the phonon dispersion relation, we now 

discuss the relevance of the presented theoretical analysis to our experimental observations. 

After optical excitation, both 2DEGn  and eT  vary as functions of the pump-probe delay t . 

Employing t -dependent 2DEGn  and eT  values from the calculations described in Fig. 3(c) in the 

manuscript and Supporting Information Sec. I, in Fig. S8 we show the t -dependent 
ph  and 

ph  dispersion curves. Here, we examine two key aspects of comparison between the theory 

and the experimental observations. Firstly, 
ph  increases as a function of k (Fig. S8(a)), while 

ph  significantly decreases above -13 cm 104~ k . This indeed occurs when 
pl  is the same as 

ph  (Fig. S8(b)), which is consistent with our experimental observations shown in Fig. 2 in the 

manuscript. Secondly, both 
ph  and 

ph  relax with t , which accounts for the t -dependent 

data shown in Fig. 3 in the manuscript. As 2DEGn  and eT  return to equilibrium, 
ph  and 

ph  

decrease due to electron–phonon coupling. The simulation results are not scaled to exactly match 

the experimental results. This may be because we did not consider the hot phonon effect, as 

discussed in Supporting Information Sec. I. The main result of the simulations is that we can 

understand why the phonon Landau damping emerges after optical excitation and relaxes as a 

function of t  through theoretical electromagnetic modeling.  
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Figure S8. (a), (b) 
ph  and 

ph  as functions of k at different t . The shaded region in (b) 

corresponds to 
phpl   . 

 

To summarize, we performed numerical investigation of the phonon Landau damping based 

on a model of electron plasma using Boltzmann’s and Maxwell’s equations. The theoretical 

analysis qualitatively corroborates the density- and temperature-dependent experimental 

observations for Bi2Se3 plasmonic structures with given 2DEGn  and eT . According to our 

interpretation, the observed frequency and linewidth changes of the phonon polaritons arise from 

the screening effect of the electron plasma; further, the phonon polaritons can be engineered by 

changing the momentum and resonance energy of the associated Dirac plasmons. 

 

 

SI. Hot phonon dynamics 

Here, we inspect the hot phonon effect due to the increased lattice temperature. The relaxation 

dynamics of ph  in S6 and S12 are described by exponential decay through the following 

equations: 

)/exp()S( diffth6ph t ,   (30) 

)/exp()/exp()S( LDLDdiffth12ph  tt  ,   (31) 

with the results presented in Fig. S9(a). We observe that optical excitation results in increase of 

both )S( 6ph  and )S( 12ph  by THz 06.0th   owing to the increased lattice 

temperature
21,22

, with the corresponding decay determined by a thermal diffusion time constant 

ps 21diff  23,24
. Eq 31 includes an additional phonon damping term with THz 14.0LD  , 

which accounts for the Landau damping of the phonon. As discussed in Sec. H, the fast decay of 

the Landau damping closely follows the decay of photoexcited electrons, which is characterized 

by the time constant ps 1.4LD  .  

To systemically describe the hot phonon effect after optical excitation, we employ a two-

temperature model (TTM). The results are displayed in Fig. S9(b). Upon optical excitation, the 

energy density absorbed by electrons is zFr /)1(  , where 5.0r  is the reflectivity, 
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2μJ/cm 35F  is the incident pump fluence, and m 105.2 8z  is the film thickness. The 

increased electron temperature eT  equilibrates with the lattice temperature LT  through dynamic 

relaxation. The dynamics of eT  and LT  are simulated using the following rate equations
25

: 

) ,(
)()1(

2

1
Lephe

2

ee TTU
z

tFr
T

dt

d











 
 ,   (32) 

  ) ,( Lephe

diff

LL
LL TTU

TC
TC

dt

d



,   (33) 

where 2-3

e K m J 10   is the electron specific heat coefficient 
25,26

, LC  is the Debye phonon 

heat capacity, and ) ,( Lephe TTU   is the electron–phonon energy coupling rate. The Debye model 

yields the following relationships
25

: 
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 ,   (35) 

where K 180D  26
 is the Debye temperature of Bi2Se3, and 

-3-1-115 m s K J 102g  is the 

electron–phonon coupling constant. We note that the TTM is applicable for temperatures above 

K 36/5D  27
; for lower temperatures, electron–electron thermalization becomes significant. In 

our case of K 78L T , the transient dynamics of eT  and LT  are described by the TTM reasonably 

well. Figure S7(b) shows the relaxation of eT  and LT  equilibrating at ps 10~t . We see that the 

decay of eT  is similar to that measured in angle-resolved photoemission spectroscopy 

(ARPES)
26

. From the increase of LT  above the initial value of 78 K, the contribution th  due to 

the hot phonon effect is evident. 

When DLe  , TT , g  is directly related to the dimensionless electron–phonon coupling 

constant  , which is expressed with the following equation
25

, 

B

2

e3

k
g




 .   (36) 
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Here, 
22 THz) 9.2(  is the second moment of the Debye phonon spectrum in Bi2Se3 that can 

be calculated as
28
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2

2










,   (37) 

where )(D  is the phonon density of states. Using eq 36, a value of 0.082  is obtained, 

which is consistent with the result previously measured with ARPES
29

. 

 

 

Figure S9. (a) ph  at different t  are shown for S12 (blue dots) and S6 (red dots). Red and blue 

solid lines are fits to the data obtained from eqs 30 and 31. (b) Transient responses of eT  and LT  

are obtained from eqs 32 and 33. 
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SJ. Fit constants 

Fit 

constants 

L=14 

m 

L=12 

m 

L=10 

m 

L=9 

m 

L=8 

m 

L=7 

m 

L=6 

m 

L=5 

m 

v (THz
1/2

) 0.15 0.16 0.2 0.19 0.13 0.14 0.2 0.16 

w (THz) 0.15 0.15 0.19 0.2 0.15 0.17 0.2 0.18 

g (THz
1/2

) 0.45 0.44 0.44 0.42 0.51 0.5 0.42 0.42 

pl (THz) 1.38 1.49 1.64 1.73 1.83 1.95 2.1 2.27 

pl (THz) 4 4 4 3.5 4 3 3 3 

ph (THz) 1.89 1.89 1.9 1.9 1.89 1.89 1.9 1.9 

ph (THz) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 

A 0.53 0.51 0.4 0.49 0.36 0.33 0.47 0.47 

B 0.95 0.92 0.88 1.06 0.79 0.73 0.85 1.03 

C 7 6.7 7 6.2 7 7 6.2 7 

Table S1. Fit constants for TI slits in equilibrium (Fig. S1 and Fig. S3). 

 

Fit 

constants 

L=14 

m 

L=12 

m 

L=9 

m 

L=7 

m 

L=6 

m 

L=5 

m 

v (THz
1/2

) 0.19 0.18 0.2 0.14 0.15 0.15 

w (THz) 0.14 0.16 0.2 0.19 0.19 0.2 

g (THz
1/2

) 0.5 0.41 0.39 0.44 0.44 0.45 

pl (THz) 1.38 1.49 1.73 1.95 2.1 2.27 

pl (THz) 2.2 3 3 3 2.2 2.5 

ph (THz) 1.89 1.89 1.9 1.89 1.9 1.9 

ph (THz) 0.16 0.16 0.16 0.16 0.16 0.16 

A 0.23 0.28 0.30 0.3 0.29 0.28 

B 0.45 0.48 0.57 0.52 0.48 0.53 

C 3 3 2.5 2 2.7 2.5 

Table S2. Fit constants for TI rods in equilibrium (Fig. S2). 
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Fit 

constants 

L=14 

m 

L=12 

m 

L=10 

m 

L=9 

m 

L=8 

m 

L=7 

m 

L=6 

m 

L=5 

m 

v (THz
1/2

) 0.18 0.18 0.23 0.24 0.13 0.14 0.2 0.16 

w (THz) 0.16 0.16 0.19 0.2 0.16 0.18 0.2 0.18 

g (THz
1/2

) 0.45 0.45 0.44 0.45 0.52 0.52 0.49 0.49 

pl (THz) 1.61 1.73 1.9 2 2.1 2.2 2.45 2.7 

pl (THz) 5 5 4 4.5 3.6 4 3.8 3.8 

ph (THz) 1.9 1.9 1.9 1.9 1.91 1.92 1.92 1.92 

ph (THz) 0.24 0.24 0.23 0.25 0.19 0.19 0.2 0.2 

A 0.53 0.56 0.46 0.5 0.36 0.33 0.47 0.54 

B 0.95 0.92 0.88 1.06 0.79 0.73 0.85 1.03 

C 5.2 6.1 5.6 5.8 7 5.9 6.5 8 

Table S3. Fit constants for TI slits in non-equilibrium (Fig. S3). 

 

Fit 

constants 

L=12 m L=6 m 

t=3 ps t=4 ps t=6 ps t=8 ps t=3 ps t=4 ps t=6 ps t=8 ps 

v (THz
1/2

) 0.18 0.18 0.18 0.18 0.2 0.2 0.2 0.2 

w (THz) 0.16 0.16 0.16 0.16 0.2 0.2 0.2 0.2 

g (THz
1/2

) 0.49 0.46 0.44 0.46 0.48 0.53 0.49 0.42 

pl (THz) 2 1.89 1.73 1.63 2.8 2.6 2.45 2.3 

pl (THz) 5 4.7 4.9 4.8 5.7 4.7 3.8 3.3 

ph (THz) 1.89 1.89 1.9 1.9 1.93 1.92 1.92 1.92 

ph (THz) 0.25 0.234 0.21 0.19 0.21 0.21 0.2 0.2 

A 0.59 0.59 0.56 0.51 0.47 0.47 0.47 0.47 

B 1.02 1.04 0.96 0.786 1.16 0.73 0.74 1 

C 5 5.2 6.2 6.5 6.1 6.8 6.5 5.6 

Table S4. Fit constants for time-resolved THz extinction in TI slits (Fig. S4). 
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