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1. Schematics of the fabrication process flow, and taken images. 

 

Figure S1. (a) (i) Isotropic reactive-ion dry etching (Bosch process: C4F8 and SF6). (ii) TEOS deposition, 

chemical-mechanical planarization (CMP), and wet recessing. (iii) Gate oxidation, n
+
 poly-Si deposition, 

and patterning for gate formation. (iv-v) Masking and ion implantation for source (B: 5 keV, 5x10
15 

cm
-2

) 

and drain (As: 10 keV, 5x10
15 

cm
-2

) formation. (vi) PR removing, RTA, and ETA. (b) A scanning electron 

microscope (SEM) image of the fabricated platform device. c, Cross-sectional transmission electron 

microscope (TEM) images of the fabricated device along the gate (d), and the SiNW. The length of the 

intrinsic region, which corresponds to the gate length (LG), is 300 nm, and the diameter (DNW) of the SiNW 

is 45 nm. The length of the source and drain region (LSD) is 500 nm. 

Bulk-Si substrate

SiNW patterning

Bosch process

Isolation formation

Gate oxidation

Gate formation

S/D implantation

RTA

ETA

PR

PR PR

Si Isolation

SiNW Gate

Source

(p+) 

Drain

(n+) Gate
Gate

Gate

Source

(p+) 

Drain

(n+) 

(i) (ii) (iii)

(iv) (v) (vi)

a

Gate

(VG)

500 nm

Drain

(VD )

Source

(VS = GND)

Isolation

Gate 

dielectric

Gate

SiNW

10 nm 100 nm

LG

Gate

b c d

DNW

LG

LSD

LG

SiNW

LSD

LSD



S-3 

 

2. Power consumption and thermal budget of the various kinds of annealing. 

Table S1. Comparison of the various kinds of annealing. 

Type Heat  Source 
Power  

(W) 

Time 

(sec) 

Rapid thermal annealing  

(RTA
S1

) 
halogen lamp 10

3
  1 

Laser annealing (LSA
S2

) laser 10 ~ 10
3
 10

-9
 

Electrothermal annealing
S3

 Drift current 12 mW 10
-3

 

Electrothermal annealing
S4

 Drift current 3 mW 10
3
 

Electrothermal annealing
S5

 Drift current 0.68 mW 10
-4

 

This work Tunneling current 370 nW 10
-4
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3. Time dependency of the ION after ETA 

 

Figure S2.  Measured ION of the device after VETA. The improved performance is remained without 

degradation. 
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4. Dopant activation-induced ambipolar characteristics at the drain 

 

Figure S3.  Measured ID-VG characteristics of the device after excessive VETA. The IOFF is increased due to 

the tunneling of the electrons from the intrinsic region to the drain. 

 

It is noticeable that the increase in the IOFF is related to the ambipolar characteristics of the device, 

as shown by the blue line in Figure S3. In general, the source and drain of the TFET are sufficiently 

activated by utilizing global thermal annealing methods. However, the thermal process cannot anneal the 

source and drain selectively. Hence, the increment in the IOFF caused by the tunneling effect near the drain, 

is considered to be one of the challenging issues in the field of electron devices. This increment in IOFF can 

be reduced by several drain engineering, such as gate to drain overlap
S6

, low doping concentration
S7

, and 

large bandgap material. 
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5. Extracted resistance of the source and drain before and after ETA 

 

Figure S4. Extracted RSD before and after ETA by extrapolation of the total resistance of RT.  

Based on the measured ID-VG in Figure 2a, a simple extraction method was applied to extract the 

RSD (= RS + RD) of the device
S8 

as shown in Figure S4. The extracted RSD was 15.4 MΩ in a fresh device, 

but the resistance was reduced to 6.15 MΩ after 8V of ETA. 
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