Catalytic Dehydrogenative Stannylation of C(sp)–H Bonds Involving Cooperative Sn–H Bond Activation of Hydrostannanes Francis Forster, Victoria M. Rendón López, and Martin Oestreich* Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany martin.oestreich@tu-berlin.de #### **Supporting Information** #### **Table of Contents** | 1 | General Information | S3 | |-----|---|-----| | 2 | General Procedures (GPs) | S5 | | 2.1 | GP 1: Dehydrogenative Stannylation of Alkynes | S5 | | 2.2 | GP 2: NMR Investigations of Sulfur-Stabilized Stannylium Ions [5·R ₃ SnH] ⁺ [BAr ^F ₄] ⁻ | S6 | | 2.3 | GP 3: NMR Investigations of Adducts [5b ·RCCH] ⁺ [A] ⁻ | S6 | | 3 | Detailed Optimization Studies | S7 | | 4 | Experimental Details for the Preparation of Alkynyl Stannanes 3aa–3at, 3ba, and Vinyl Stannane 4au | S8 | | 5 | Experimental Details for the Preparation of [5c] ⁺ [BAr ^F ₄] ⁻ | S30 | | 6 | Experimental Details for the NMR Investigations of Sulfur-Stabilized | S31 | | | Stannylium lons [5·R ₃ SnH] ⁺ [BAr ^F ₄] ⁻ | | | 6.1 | [5a ⋅nBu₃SnH] ⁺ [BAr ^F ₄] ⁻ | S32 | | 6.2 | [5b · <i>n</i> Bu₃SnH] ⁺ [BAr ^F ₄] [−] | S33 | | 6.3 | [5c · <i>n</i> Bu ₃ SnH] ⁺ [BAr ^F ₄] ⁻ | S34 | | 6.4 | [5d · <i>n</i> Bu₃SnH] ⁺ [BAr ^F ₄] ⁻ | S35 | | 6.5 | [5b ·Et₃SnH] ⁺ [BAr ^F ₄] [−] | S36 | | S2 | |----| | | | 7 | Experimental Details for the NMR Investigations of Adducts [5b·RCCH] ⁺ [A] ⁻ | S36 | |-----|---|------| | 7.1 | $[\mathbf{5b} \cdot PhCCH]^{+}[B(C_{6}F_{5})_{4}]^{-}$ | S36 | | 7.2 | [5b ·4-TolCCH] ⁺ [BAr ^F ₄] ⁻ | S37 | | 8 | Experimental Details of Mechanistic Studies | S38 | | 8.1 | Preparation of Stannyl Thioether DmpSSn <i>n</i> Bu₃ | S38 | | 8.2 | Promoted ¹ H/ ² H Scrambling Between <i>n</i> Bu ₃ SnD (2a - <i>d</i> ₁) and Et ₃ SnH (2b) | S39 | | 8.3 | Attempted Scrambling Between Phenyl Acetylene-d ₁ (1a-d ₁) and | | | | 1-Ethynyl-4-methylbenzene (1i) | S40 | | 8.4 | Competition Experiment | S41 | | 8.5 | Attempted Hydrogenation of Alkynyl Stannane 3aa and Dehydrogenation | | | | of Vinyl Stannane 4aa | S42 | | 8.6 | Intermolecular Competition Experiment between 1c and 1i | S43 | | 9 | NMR Spectra | S44 | | 10 | References | S182 | #### 1 General Information All reactions were performed in flame-dried glassware using a MBraun glove box ($O_2 < 1.0$ ppm, H₂O < 0.5 ppm) or conventional Schlenk techniques under a static pressure of argon (glove box) or nitrogen gas. Liquids and solutions were transferred with syringes or pipettes in the glove box. C₆H₆, CH₂Cl₂, and *n*-pentane were purified and dried using a MBraun solvent system. Technical grade solvents (n-pentane and Et₃N) were distilled prior to use. Tetracosane was purchased from commercially sources, dried via azeotropic distillation (benzene), degassed, and stored in a glove box. Alkynes 1a-1u, nBu₃SnH (2a), and Ph₃SnH (2c) were purchased from commercially sources. Liquid alkynes and nBu₃SnH (2a) were freshly distilled and degassed prior to use. Ph₃SnH (2c) was degassed prior to use. Solid alkynes were dissolved in *n*-pentane and filtered over neutral Al₂O₃ (Brockmann Grade I, 58 Å, 60 mesh) by Alfa Aesar prior to use. We note that these purifications are absolutely crucial for the success of these dehydrogenative couplings as otherwise significant amounts of hydrostannylated products are formed. If not noted otherwise, the ratio of products was determined by GLC analysis. Et₃SnH (2b) was prepared according to a literature procedure. [S1] The ruthenium(II) chloride precatalysts as well as catalysts $[5a]^{\dagger}[BAr_{a}^{F}]^{-}$, $[5b]^{\dagger}[BAr_{a}^{F}]^{-}$, $[5b]^{\dagger}[B(C_{6}F_{5})_{a}]^{-}$, and $[5d]^{\dagger}[BAr_{a}^{F}]^{-}$ were prepared according to literature procedures. [S2] C6D6 (purchased from Eurisotop) was stored over 4Å molecular sieves. CD2Cl2 was degassed and stored in a glove box over 4Å molecular sieves. ¹H, ¹¹B, ¹³C, ¹⁹F, ³¹P, and ¹¹⁹Sn NMR spectra were recorded in C₆D₆ or CD₂Cl₂ on Bruker AV 400, Bruker AV 500, and Bruker AV 700 instruments. Chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane and are referenced to the residual solvent resonance as the internal standard (C_6D_5H : $\delta = 7.16$ ppm for ¹H NMR and C_6D_6 : $\delta = 128.1$ for ^{13}C NMR, and CDHCl $_2$: δ = 5.32 ppm for 1H NMR and 53.8 ppm for ^{13}C NMR). $^{11}B,\ ^{19}F,\ ^{31}P,$ and ¹¹⁹Sn NMR spectra were calibrated according to the IUPAC recommendation using a unified chemical shift scale based on the proton resonance of trimethylsilane as primary reference. [S3] Data are reported as follows: chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet, m_c = centrosymmetrical multiplet), coupling constant (Hz), and integration. For the hydrostannane adducts and the alkyne adducts integrals of protons overlayed by excess of R₃SnH, alkyne or the solvent are labeled with Δ. The assignment of atoms 2 and 6, 2" and 6" as well as 3" and 5" of the DmpS ligand [DmpS = 2,6bis(2,4,6-trimethylphenyl)phenylthiolate] in the adducts was not possible. High-resolution mass spectrometry (HRMS) was performed by the Analytical Facility of the Institut für Chemie, Technische Universität Berlin. Gas liquid chromatography (GLC) was performed on an Agilent Technologies 7890A gas chromatograph equipped with a HP-5 capillary column (30 m × 0.32 mm, 0.25 μm film thickness) by CS-Chromatographie Service using the following program: N_2 carrier gas, injection temperature 250 °C, detector temperature 300 °C, flow rate 1.7 mL/min; temperature program: start temperature 40 °C, heating rate 10 °C/min, end temperature 280 °C for 10 min. Infrared (IR) spectra were recorded on a Jasco FT/IR-4100 spectrophotometer equipped with a FT-IR unit and are reported as wave numbers (cm⁻¹). Data are reported as follows: absorption, intensity (w = weak, m = medium, s = strong, vs = very strong). #### **2** General Procedures (GPs) #### 2.1 GP 1: Dehydrogenative Stannylation of Alkynes **Scheme S1** Dehydrogenative stannylation of alkynes. In a glove box, a 2-mL screw-capped vial is charged with catalyst $[5]^+[A]^-$ (2.0 µmol, 1.0 mol %), tetracosane as internal standard (1 mg), the solvent (1M), hydrostannane **2** (0.20 µmol, 1.0 equiv), and alkyne **1** (0.22 mmol, 1.1 equiv). The vial is sealed and stirred using a stir bar for 24 h to 48 h at 30 °C. The reaction is quenched using a solution of Et₃N in *n*-pentane (1%). Filtration over a plug of neutral Al_2O_3 and Celite yields after evaporation of the solvents the pure alkynyl stannanes **3aa–3at** and **3ba** with the corresponding alkenyl stannanes **4aa–4at** and **4ba**. #### 2.2 GP 2: NMR Investigations of Sulfur-Stabilized Stannylium lons [5·R₃SnH][†][BAr^F₄]⁻ $$R_{3}$$ P R_{3} R **Scheme S2** NMR investigations of sulfur-stabilized stannylium ions. In a glove box, a J. Young NMR tube is charged with ruthenium(II) thiolate complex [$\mathbf{1}$]⁺[A]⁻ (14 µmol, 1.0 equiv), CD_2Cl_2 (0.5 mL), and hydrostannane **2** (17 µmol, 1.2 equiv). The tube is sealed, cooled to -78 °C, shaken vigorously until the green solution turns yellow, and directly subjected to NMR analysis at -20 °C or -60 °C. #### 2.3 GP 3: NMR Investigations of Adducts [5b·RCCH]⁺[A]⁻ $$IPr_3P$$ IPr_3P I **Scheme S3** NMR investigations of the alkyne adducts. In a glove box, a J. Young NMR tube is charged with ruthenium(II) thiolate complex [1] $^{+}$ [A] $^{-}$ (14 µmol, 1.0 equiv), CD $_{2}$ Cl $_{2}$ (0.5 mL), and alkyne 1 (17 µmol, 1.2 equiv). The tube is sealed, shaken vigorously until the green solution turns yellow, and directly subjected to NMR analysis. #### 3 Detailed Optimization Studies **Table S1** Catalyst screening and optimizations^a | entry | catalyst | mol % | R ₃ SnH | solvent | T
(°C) | t
(h) | 3aa:4aa | conv. | |------------------------|--|-------|--------------------|--|-----------|----------|---------|-------| | 1 ¹³ | NaOH | 10 | <i>n</i> Bu₃SnH | DME | 80 | 72 | dec. | >99 | | 2 ¹³ | KO <i>t</i> Bu | 10 | <i>n</i> Bu₃SnH | DME | 80 | 72 | dec. | >99 | | 3 ¹³ | NaO <i>t</i> Bu | 10 | <i>n</i> Bu₃SnH | DME | 80 | 72 | dec. | >99 | | 4 | [5a]⁺[BAr ^F ₄]⁻ | 1.0 | <i>n</i> Bu₃SnH | CH ₂ Cl ₂ | 30 | 18 | >99:1 | 32 | | 5 | [5b] ⁺ [BAr ^F ₄] ⁻ | 1.0 | <i>n</i> Bu₃SnH | CH ₂ Cl ₂ | 30 | 18 | >99:1 | >99 | | 6 | [5c]⁺[BAr ^F ₄]⁻ | 1.0 | <i>n</i> Bu₃SnH | CH ₂ Cl ₂ | 30 | 18 | >99:1 | 80 | | 7 | [5d] ⁺ [BAr ^F ₄] ⁻ | 1.0 | <i>n</i> Bu₃SnH | CH ₂ Cl ₂ | 30 | 18 | 96:4 | 32 | | 8 | $[\mathbf{5b}]^{+}[B(C_{6}F_{5})_{4}]^{-}$ | 1.0 | <i>n</i> Bu₃SnH | CH ₂ Cl ₂ | 30 | 18 | >99:1 | >99 | | 9 ^c | $[\mathbf{5b}]^{+}[B(C_{6}F_{5})_{4}]^{-}$ | 1.0 | <i>n</i> Bu₃SnH | CH_2CI_2 | 30 | 18 | >99:1 | >99 | | 10 | $[\mathbf{5b}]^{+}[B(C_{6}F_{5})_{4}]^{-}$ | 1.0 | <i>n</i> Bu₃SnH | PhF | 30 | 18 | >99:1 | 98 | | 11 | $[\mathbf{5b}]^{+}[B(C_{6}F_{5})_{4}]^{-}$ | 1.0 | <i>n</i> Bu₃SnH | PhCI | 30 | 18 | 99:1 | 99 | | 12 | $[\mathbf{5b}]^{+}[B(C_{6}F_{5})_{4}]^{-}$ | 1.0 | <i>n</i> Bu₃SnH | PhH | 30 | 18 | >99:1 | 53 | | 13 | $[\mathbf{5b}]^{+}[B(C_{6}F_{5})_{4}]^{-}$ | 1.0 | <i>n</i> Bu₃SnH | <i>n</i> -C ₇ H ₁₆ | 30 | 18 | _ | 3 | | 14 | [5b] ⁺ [BAr ^F ₄] ⁻ | 1.0 | Et₃SnH | CH ₂ Cl ₂ | 30 | 24 | 93:7 | >99 | | 15 | [5b] ⁺ [BAr ^F ₄] ⁻ | 1.0 | Ph₃SnH | CH_2CI_2 | 30 | 24 | dec. | 90 | ^aAll reactions were performed according to **GP 1**, if not
otherwise noted. dec. = decomposition. ^cCatalyst was prepared *in situ*. ## 4 Experimental Details for the Preparation of Alkynyl Stannanes 3aa–3at, 3baTributyl(phenylethynyl)stannane (3aa) Prepared according to **GP 1** with ruthenium thiolate complex [**5b**][†][BAr^F₄]⁻ (2.8 mg, 2.0 μmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using nBu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and phenyl acetylene (**1a**, 23 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded the pure alkynyl stannane **3aa** (70 mg, 0.18 mmol, 90%) as a colorless oil. ¹H **NMR** (500 MHz, C₆D₆) δ /ppm = 0.92 (t, ${}^{3}J_{H,H}$ = 7.4 Hz, 9H), 1.06 (t, ${}^{3}J_{H}$ = 7.9 Hz, ${}^{2}J_{H,^{119}Sn}$ = 53.4 Hz, 6H), 1.34–1.44 (m_c, 6H), 1.58–1.78 (m, ${}^{3}J_{H,^{119}Sn}$ = 59.2 Hz, 6H), 6.90–7.00 (m, 3H), 7.54–7.58 (m, 2H). ¹³C{¹H} **NMR** (126 MHz, C₆D₆) δ /ppm = 11.4 (${}^{1}J_{C,^{119}Sn}$ = 382.4 Hz, ${}^{1}J_{C,^{117}Sn}$ = 365.4 Hz), 13.9, 27.4 (${}^{2}J_{C,^{119}Sn}$ = 60.1 Hz), 29.4 (${}^{3}J_{C,^{119}Sn}$ = 23.6 Hz), 93.3, 110.9, 124.9, 128.5, 132.3, 147.1. ¹¹⁹Sn{¹H} **NMR** (186 MHz, C₆D₆) δ /ppm = -66.2. **R**_f = 0.80 (*n*-pentane). **IR** (ATR): \tilde{v} /cm⁻¹ = 2955 (m), 2918 (m), 2135 (w), 1487 (m), 754 (s), 689 (s). **HRMS** (EI) for [M–*n*Bu][†]: calcd *m*/z 335.0816, found 335.0821. The same reaction performed on a 1.0 mmol scale delivered the pure alkynyl stannane **3aa** as pale yellow oil in 91% yield. #### 4.2 Triethyl(phenylethynyl)stannane (3ba) Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[B(C_6F_5)₄]⁻ (2.8 mg, 2.0 µmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using Et₃SnH (**2b**, 42 mg, 0.20 mmol, 1.0 equiv) and phenyl acetylene (**1a**, 23 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded the pure alkynyl stannane **3ba** (41.0 mg, 0.13 mmol, 66%) as a colorless oil. ¹**H NMR** (500 MHz, C_6D_6) δ /ppm = 0.94 (q, $^3J_{H,H}$ = 8.0 Hz, $^2J_{H,^{119}Sn}$ = 51.5 Hz, 6H), 1.28 (t, $^3J_{H,H}$ = 8.0 Hz, $^2J_{H,^{119}Sn}$ = 83.0 Hz, $^2J_{H,^{117}Sn}$ = 78.9 Hz, 9H), 6.85–7.02 (m, 3H), 7.45–7.65 (m, 2H). ¹³C{¹H} NMR (126 MHz, C_6D_6) δ /ppm = 2.6 ($^1J_{C,^{119}Sn}$ = 388.0 Hz, $^1J_{C,^{117}Sn}$ = 372.0 Hz), 11.1 ($^2J_{C,^{119}Sn}$ = 27.0 Hz), 92.6, 111.1, 124.8, 128.5, 132.3 148.6. ¹¹⁹Sn{¹H} NMR (186 MHz, C_6D_6) δ /ppm = -51.5. R_f = 0.80 (n-pentane). IR (ATR): \tilde{v} /cm⁻¹ = 2944 (m), 2908 (m), 2867 (m), 2135 (w), 1487 (m), 1210 (w), 1010 (m), 755 (s), 665 (s), 510 (s). **HRMS** (EI) for [M–nBu]⁺: calcd m/z 279.0190, found 279.0204. #### 4.3 Tributyl((4-fluorophenyl)ethynyl)stannane (3ab) Prepared according to **GP 1** with ruthenium thiolate complex [**5b**][†][B(C_6F_5)₄]⁻ (2.8 mg, 2.0 μmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using nBu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and 1-ethynyl-4-fluorobenzene (**1b**, 27 mg, 0.22 mmol, 1.2 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded the pure alkynyl stannane **3ab** (74 mg, 0.18 mmol, 90%) as a colorless oil. ¹H **NMR** (500 MHz, C_6D_6) δ/ppm = 0.92 (t, $^3J_{H,H}$ = 7.4 Hz, 9H), 0.98–1.14 (m, $^2J_{H,^{119}Sn}$ = 53.5 Hz, 6H), 1.25–1.50 (m_c, 6H), 1.58–1.78 (m, $^3J_{H,^{119}Sn}$ = 59.6 Hz, 6H), 6.54–6.59 (m_c, 2H), 7.28–7.33 (m_c, 2H). ¹³C{¹H} **NMR** (126 MHz, C_6D_6) δ/ppm = 11.4 ($^1J_{C,^{119}Sn}$ = 381.9 Hz, $^1J_{C,^{117}Sn}$ = 365.5 Hz), 13.9, 27.4 ($^2J_{C,^{119}Sn}$ = 59.0 Hz), 29.4 ($^3J_{C,^{119}Sn}$ = 23.5 Hz), 93.0 ($^1J_{C,^{119}Sn}$ = 340.0 Hz, $^1J_{C,^{117}Sn}$ = 326.0 Hz), 109.6 ($^2J_{C,^{119}Sn}$ = 65.3 Hz), 115.6 ($^3J_{C,^{19}F}$ = 22.0 Hz), 120.9 ($^4J_{C,^{19}F}$ = 3.6 Hz), 134.1 ($^3J_{C,^{19}F}$ = 8.2 Hz), 162.6 ($^1J_{C,^{19}F}$ = 248.8 Hz). ¹¹⁹Sn{¹H} NMR (186 MHz, C_6D_6) δ/ppm = –65.9. ¹⁹F{¹H} NMR (471 MHz, C_6D_6) δ/ppm = –111.3. **R**_f = 0.80 (n-pentane). **IR** (ATR): \bar{v} /cm⁻¹ = 2955 (m), 2920 (m), 2138 (w), 1600 (m), 1504 (s), 1464 (m), 1229 (m), 1206 (m), 1154 (m), 834 (s). **HRMS** (EI) for [M–nBu]⁺: calcd m/z 353.0722, found 353.0714. #### 4.4 Tributyl((4-(trifluoromethyl)phenyl)ethynyl)stannane (3ac) Sn $$n$$ Bu₃ F₃C 3ac C₂₁H₃₁F₃Sn M = 459.2 g/mol Prepared according to **GP 1** with ruthenium thiolate complex [**5b**][†][B(C₆F₅)₄]⁻ (2.8 mg, 2.0 μmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using nBu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and 4-ethynyl- α,α,α -trifluorotoluene (**1c**, 38 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 48 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded alkynyl stannane **3ac** in a ratio of 99:1 with **4ac** as a yellow oil (75 mg, 0.16 mmol, 82%). ¹H **NMR** (500 MHz, C₆D₆) δ/ppm = 0.93 (t, ${}^3J_{\text{H,H}}$ = 7.4 Hz, 9H), 0.97–1.20 (m, ${}^2J_{\text{H,119}Sn}$ = 53.8 Hz, 6H), 1.20–1.48 (m_c, 6H), 1.50–1.80 (m, ${}^3J_{\text{H,119}Sn}$ = 60.0 Hz, 6H), 7.11 (d, ${}^3J_{\text{H,H}}$ = 8.0 Hz, 2H), 7.31 (d, 3J = 8.0 Hz, 2H). ¹³C{¹H} **NMR** (126 MHz, C₆D₆) δ/ppm = 11.4 (${}^1J_{\text{C,119}Sn}$ = 382.0 Hz, ${}^1J_{\text{C,117}Sn}$ = 364.0 Hz), 13.9, 27.4 (${}^2J_{\text{C,119}Sn}$ = 58.0 Hz), 29.4 (${}^3J_{\text{C,119}Sn}$ = 24.0 Hz), 97.1, 109.2 (${}^2J_{\text{C,119}Sn}$ = 60.0 Hz), 124.7 (q, ${}^1J_{\text{C,19}F}$ = 272.2 Hz), 125.4 (q, ${}^3J_{\text{C,19}F}$ = 4.0 Hz), 129.7 (q, ${}^2J_{\text{C,19}F}$ = 33.0 Hz), 132.4 (2C). ¹¹⁹Sn{¹H} **NMR** (186 MHz, C₆D₆) δ/ppm = –64.3. ¹⁹F{¹H} **NMR** (471 MHz, C₆D₆) δ/ppm = 62.6. **R**_f = 0.80 (*n*-pentane). **IR** (ATR): \tilde{v} /cm⁻¹ = 2957 (m), 2922 (m), 1738 (w), 1613 (m), 1320 (s), 1166 (w), 1127 (s), 1065 (s), 1017 (m), 841 (s), 608 (s). **HRMS** (EI) for [M–*n*Bu][†]: calcd *m*/*z* 403.0690, found 403.0697. #### 4.5 Methyl 4-((tributylstannyl)ethynyl)benzoate (3ad) $$SnnBu_3$$ 3ad $C_{22}H_{34}OSn$ $M = 449.2 \text{ g/mol}$ Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[BAr^F₄]⁻ (1.4 mg, 2.0 µmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using nBu₃SnH (**2a**, 29 mg, 0.10 mmol, 1.0 equiv) and methyl 4-ethynylbenzoate (**1d**, 18 mg, 0.11 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 48 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded alkynyl stannane **3ad** in a ratio of >95:5 with **4ad** (determined by ¹H NMR spectroscopy) as a colorless oil (34 mg, 0.075 mmol, 75%). ¹H NMR (500 MHz, C₆D₆) δ /ppm = 0.92 (t, ³J_{H,119}Sn = 54.5 Hz, 6H), 1.24–1.50 (m_c, 6H), 1.58–1.77 (m_c, ³J_{H,119}Sn = 59.3 Hz, 6H), 3.42 (s, 3H), 7.43–7.49 (m, 2H), 7.90–7.94 (m, 2H). ¹³C{¹H} NMR (126 MHz, C₆D₆) δ /ppm = 11.4 (1 J_{C,119}Sn = 381.6 Hz, 1 J_{C,117}Sn = 364.6 Hz), 13.9, 27.4 (2 J_{C,119}Sn = 60.4 Hz), 29.4 (3 J_{C,119}Sn = 23.6 Hz), 51.6, 97.5, 110.1, 129.1, 129.9, 129.9, 132.1, 166.1. ¹¹⁹Sn{¹H} NMR (186 MHz, C₆D₆) δ /ppm = -64.7. **R**_f = 0.80 (*n*-pentane). **IR** (ATR): \tilde{v} /cm⁻¹ = 2918 (m), 2849 (m), 2131 (w), 1722 (s), 1603 (m), 1434 (m), 1272 (vs), 1173 (m), 1105 (m), 1017 (m), 768 (s), 694 (m). **HRMS** (APCI) for [M+H]*: calcd m/z 451.1654, found 451.1655. #### 4.6 Tributyl((4-chlorophenyl)ethynyl)stannane (3ae) Sn $$n$$ Bu₃ CI 3ae C₂₀H₃₁CISn M = 425.6 g/mol Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[B(C_6F_5)₄]⁻ (2.8 mg, 2.0 µmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using nBu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and 1-chloro-4-ethynylbenzene (**1e**, 30 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded alkynyl stannane **3ae** in a ratio of 96:4 with **4ae** as a yellow oil (74 mg, 0.17 mmol, 86%). ¹H **NMR** (500 MHz, C_6D_6) δ /ppm = 0.92 (t, $^3J_{H,H}$ = 7.4 Hz, 9H), 0.96–1.14 (m, $^2J_{H,^{119}Sn}$ = 53.7 Hz, 6H), 1.23–1.52 (m_c, 6H), 1.56–1.78 (m, $^3J_{H,^{119}Sn}$ = 60.3 Hz, 6H), 6.85–6.90 (m, 2H), 7.20–7.26 (m, 2H). ¹³C{¹H} **NMR** (126 MHz, C_6D_6) δ /ppm = 11.4 ($^1J_{C,^{119}Sn}$ = 382.0 Hz, $^1J_{C,^{117}Sn}$ = 365.0 Hz), 13.9, 27.4 ($^2J_{C,^{119}Sn}$ = 58.0 Hz), 29.4 ($^3J_{C,^{119}Sn}$ = 24.0 Hz), 94.8, 109.6 ($^2J_{C,^{119}Sn}$ = 63.0 Hz), 123.2, 128.9, 133.4, 134.1. ¹¹⁹Sn{¹H} **NMR** (186 MHz, C_6D_6) δ /ppm = -65.5. **R**_f = 0.80 (n-pentane). **IR** (ATR): \bar{v} /cm⁻¹ = 2955 (m), 2919 (m), 2136 (w), 1486 (s), 1207 (w), 1094 (m), 1014 (m), 826 (s), 645 (s). **HRMS** (EI) for [M–nBu]⁺: calcd m/z 369.0427, found 369.0422. #### 4.7 ((4-Bromophenyl)ethynyl)tributylstannane (3af) $$SnnBu_3$$ Br 3af $C_{20}H_{31}BrSn$ $M = 470.1 \text{ g/mol}$ Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[B(C_6F_5)₄]⁻ (2.8 mg, 2.0 µmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using nBu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and 1-bromo-4-ethynylbenzene (**1f**, 40 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded alkynyl stannane **3af** in a ratio of >95:5 with **4af** (determined by ¹H NMR spectroscopy) as a yellow oil (78.0 mg, 0.17 mmol, 83%). ¹H NMR (500 MHz, C₆D₆) $\bar{\delta}$ /ppm = 0.92 (t, $^3J_{H,H}$ = 7.4 Hz, 9H), 0.96–1.18 (m, $^2J_{H,^{119}Sn}$ = 54.1 Hz, 6H), 1.22–1.52 (m_c, 6H), 1.53–1.78 (m, $^3J_{H,^{119}Sn}$ = 60.6 Hz, 6H), 6.99–7.06 (m, 2H), 7.10–7.20 (m, 2H). ¹³C{¹H} NMR (126 MHz, C₆D₆) $\bar{\delta}$ /ppm = 11.4 ($^1J_{C,^{119}Sn}$ = 382.0 Hz, $^1J_{C,^{117}Sn}$ = 364.0 Hz), 13.9, 27.4 ($^2J_{C,^{119}Sn}$ = 59.0 Hz), 29.4 ($^3J_{C,^{119}Sn}$ = 23.0 Hz), 95.0, 109.6, 122.3, 123.6, 131.8, 133.6. ¹¹⁹Sn{¹H} NMR (186 MHz, C₆D₆) $\bar{\delta}$ /ppm = -65.3. R_f = 0.80 (n-pentane). **IR** (ATR): \bar{v} /cm⁻¹ = 2954 (m), 2919 (m), 2137 (w),
1483 (s), 1206 (w), 1070 (m), 1010 (m), 882 (s), 611 (s). **HRMS** (EI) for [M–nBu]⁺: calcd m/z 412.9921, found 412.9916. #### 4.8 Tributyl((4-methoxyphenyl)ethynyl)stannane (3ag) Prepared according to **GP 1** with ruthenium thiolate complex [**5b**] $^{+}$ [B(C₆F₅)₄] $^{-}$ (2.8 mg, 2.0 µmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using *n*Bu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and 4-ethynylanisole (**1g**, 29 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 48 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded alkynyl stannane **3ag** in a ratio of 96:4 with **4ag** as a yellow oil (72 mg, 0.17 mmol, 85%). ¹H **NMR** (500 MHz, C₆D₆) δ /ppm = 0.93 (t, $^3J_{\text{H,H}}$ = 7.4 Hz, 9H), 0.98–1.15 (m, $^2J_{\text{H,H}}$ 9, = 53.3 Hz, 6H), 1.29–1.46 (m_c, 6H), 1.60–1.80 (m_c, $^3J_{\text{H,H}}$ 9, = 59.3 Hz, 6H), 3.16 (s, 3H), 6.53–6.58 (m, 2H), 7.48–7.52 (m, 2H). ¹³C{¹H} **NMR** (126 MHz, C₆D₆) δ /ppm = 11.4 ($^1J_{\text{C,H}}$ 9, = 382.9 Hz, $^1J_{\text{C,H}}$ 7, = 365.2 Hz), 13.9, 27.4 ($^2J_{\text{C,H}}$ 9, = 58.4 Hz), 29.4 ($^3J_{\text{C,H}}$ 9, = 23.5 Hz), 54.7, 91.1, 111.0, 114.2, 117.1, 133.7, 159.8. ¹¹Sn{¹H} **NMR** (186 MHz, C₆D₆) δ /ppm = -67.1. **R**_f = 0.80 (*n*-pentane). **IR** (ATR): \tilde{v} /cm⁻¹ = 2954 (m), 2919 (m), 2132 (w), 1604 (m), 1506 (s), 1245 (s), 1035 (s), 830 (s), 727 (s). **HRMS** (EI) for [M–*n*Bu] $^+$: calcd *m/z* 365.0922, found 365.0921. #### 4.10 ([1,1'-biphenyl]-4-ylethynyl)tributylstannane (3ah) Sn $$n$$ Bu₃ Ph 3ah C₂₆H₃₆Sn M = 467.3 g/mol Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[B(C₆F₅)₄]⁻ (2.8 mg, 2.0 µmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using nBu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and 4-ethynylbiphenyl (**1h**, 40 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded alkynyl stannane **3ah** in a ratio of 97:3 with **4ah** as a yellow oil (85 mg, 0.18 mmol, 90%). ¹**H NMR** (500 MHz, C₆D₆) δ /ppm = 0.95 (t, ${}^3J_{H,H}$ = 7.4 Hz, 9H), 0.99–1.24 (m, ${}^2J_{H,{}^{119}Sn}$ = 53.5 Hz, 6H), 1.25–1.60 (m_c, 6H), 1.61–1.84 (m, ${}^3J_{H,{}^{119}Sn}$ = 60.1 Hz, 6H), 7.06–7.12 (m, 1H), 7.13–7.20 (m, 2H), 7.23–7.28 (m_c, 2H), 7.28–7.34 (m, 2H), 7.56–7.66 (m_c, 2H). ¹³**C**{¹**H} NMR** (126 MHz, C₆D₆) δ /ppm = 11.1 (${}^1J_{C,{}^{119}Sn}$ = 382.0 Hz, ${}^1J_{C,{}^{117}Sn}$ = 364.0 Hz), 13.6, 27.0 (${}^2J_{C,{}^{119}Sn}$ = 59.0 Hz), 29.0 (${}^3J_{C,{}^{119}Sn}$ = 23.0 Hz), 93.8, 110.5, 123.4, 126.9, 127.0, 127.3, 128.6, 132.4, 140.4, 140.6. ¹¹⁹**Sn**{¹**H} NMR** (186 MHz, C₆D₆) δ /ppm = -66.1. **R**_f = 0.80 (n-pentane). **IR** (ATR): \tilde{v} /cm⁻¹ = 2954 (m), 2919 (m), 2131 (w), 1483 (m), 1073 (w), 1007 (w), 838 (s), 762 (s), 695 (s), 577 (s). **HRMS** (EI) for [(C₂₆H₃₆¹¹⁶Sn)-nBu]⁺: calcd m/z 407.1125, found 407.1141. #### 4.11 Tributyl(4-tolylethynyl)stannane (3ai) $$SnnBu_3$$ 3ai $C_{21}H_{34}Sn$ $M = 405.2 \text{ g/mol}$ Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[BAr^F₄]⁻ (2.8 mg, 2.0 μmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using *n*Bu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and *p*-ethynyltoluene (**1i**, 25 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded alkynyl stannane **3ai** in a ratio of 97:3 with **4ai** as a yellow oil (70 mg, 0.17 mmol, 86%). ¹**H NMR** (500 MHz, C₆D₆) δ/ppm = 0.92 (t, ${}^3J_{\text{H,H}}$ = 7.4 Hz, 9H), 0.98–1.15 (m, ${}^2J_{\text{H,H}}$ 9, = 53.6 Hz, 6H), 1.34–1.44 (m_c, 6H), 1.59–1.79 (m, ${}^3J_{\text{H,H}}$ 9, = 59.7 Hz, 6H), 1.96 (s, 3H), 6.79 (d, 3J = 7.7 Hz, 2H), 7.52 (d, 3J = 8.0 Hz, 2H). ¹³C**{**¹**H} NMR** (126 MHz, C₆D₆) δ/ppm = 11.4 (${}^1J_{\text{C,H}}$ 9, = 381.7 Hz, 1 $J_{\text{C,H}}$ 9, = 365.7 Hz), 13.9, 21.3, 27.4 (${}^2J_{\text{C,H}}$ 9, = 59.0 Hz), 29.4 (${}^3J_{\text{C,H}}$ 9, = 23.3 Hz), 92.3, 111.2, 122.0, 129.3, 132.3, 138.0. ¹¹⁹Sn**{**¹**H} NMR** (186 MHz, C₆D₆) δ/ppm = -66.7. **R**_f = 0.80 (*n*-pentane). **IR** (ATR): \tilde{v} /cm⁻¹ = 2955 (m), 2919 (m), 2134 (w), 1507 (m), 815 (s). **HRMS** (EI) for [M–*n*Bu]⁺: calcd *m*/*z* 349.0973, found 349.0975. #### 4.12 Tributyl(3-tolylethynyl)stannane (3aj) Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[BAr^F₄]⁻ (2.8 mg, 2.0 μmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using nBu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and m-ethynyltoluene (**1j**, 25 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded the pure alkynyl stannane **3aj** (70 mg, 0.17 mmol, 86%) as a yellow oil. ¹H **NMR** (500 MHz, C₆D₆) δ/ppm = 0.93 (t, ${}^3J_{\text{H,H}}$ = 7.4 Hz, 9H), 0.98–1.16 (m, ${}^2J_{\text{H,119}Sn}$ = 53.8 Hz, 6H), 1.34–1.44 (m_c, 6H), 1.58–1.78 (m, ${}^3J_{\text{H,119}Sn}$ = 59 Hz, 6H), 1.95 (s, 3H), 6.80 (d, 3J = 7.8 Hz, 1H), 6.93 (t, 3J = 7.7 Hz, 1H), 7.37–7.46 (m, 2H). ¹³C{¹H} **NMR** (126 MHz, C₆D₆) δ/ppm = 11.4 (${}^1J_{\text{C,119}Sn}$ = 381.8 Hz, ${}^1J_{\text{C,117}Sn}$ = 365.6 Hz), 13.9, 21.1, 27.4 (${}^2J_{\text{C,119}Sn}$ = 59.0 Hz), 29.4 (${}^3J_{\text{C,119}Sn}$ = 23.8 Hz), 92.7, 111.2, 124.9, 128.5, 129.0, 129.5, 133.0, 138.0. ¹¹⁹Sn{¹H} **NMR** (186 MHz, C₆D₆) δ/ppm = -66.4. **R**_f = 0.80 (n-pentane). **IR** (ATR): \tilde{v} /cm⁻¹ = 2955 (m), 2919 (m), 2129 (w), 1463 (m), 781 (s), 690 (s). **HRMS** (EI) for [M–nBu]⁺: calcd m/z 349.0973, found 349.0969. #### 4.13 Tributyl(2-tolylethynyl)stannane (3ak) $$SnnBu_3$$ 3ak $C_{21}H_{34}Sn$ $M = 405.2 \text{ g/mol}$ Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[BAr^F₄]⁻ (2.8 mg, 2.0 μmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using *n*Bu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and *o*-ethynyltoluene (**1k**, 25 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded the pure alkynyl stannane **3ak** (77 mg, 0.19 mmol, 94%) as a yellow oil. ¹H **NMR** (500 MHz, C₆D₆) δ/ppm = 0.93 (t, ${}^3J_{\text{H,H}}$ = 7.4 Hz, 9H), 0.98–1.13 (m, ${}^2J_{\text{H,119}Sn}$ = 53.4 Hz, 6H), 1.35–1.44 (m_c, 6H), 1.59–1.79 (m, ${}^3J_{\text{H,119}Sn}$ = 59.6 Hz, 6H), 2.49 (s, 3H), 6.86–6.92 (m, 1H), 6.92–6.99 (m, 2H), 7.58 (d, ${}^3J_{\text{H,H}}$ = 7.8 Hz, 1H). ¹³C{¹H} **NMR** (126 MHz, C₆D₆) δ/ppm = 11.5 (${}^1J_{\text{C,119}Sn}$ = 381.9 Hz, ${}^1J_{\text{C,117}Sn}$ = 365.0 Hz), 13.9, 21.1, 27.4 (${}^2J_{\text{C,119}Sn}$ = 59.0 Hz), 29.4 (${}^3J_{\text{C,Sn}}$ = 23.5 Hz), 97.2, 109.8, 124.7, 125.9, 128.2, 129.7, 132.6, 140.4. ¹¹⁹Sn{¹H} **NMR** (186 MHz, C₆D₆) δ/ppm = -65.2. **R**_f = 0.80 (*n*-pentane). **IR** (ATR): \tilde{v} /cm⁻¹ = 2955 (m), 2920 (m), 2130 (w), 1456 (m), 754 (s). **HRMS** (EI) for [M–*n*Bu]*: calcd *m/z* 349.0973, found 349.0977. #### 4.14 Tributyl(3-phenylprop-1-yn-1-yl)stannane (3al) **3al** $C_{21}H_{34}Sn$ M = 405.2 g/mol Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[BAr^F₄]⁻ (2.8 mg, 2.0 μmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using nBu₃SnH (**2a**, 57 mg, 0.20 mmol, 1.0 equiv) and prop-2-yn-1-ylbenzene (**1l**, 25 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded the pure alkynyl stannane **3al** (71 mg, 0.18 mmol, 88%) as a pale yellow oil. ¹**H NMR** (500 MHz, C_6D_6) δ/ppm = 0.92 (t, $^3J_{H,H}$ = 7.4 Hz, 9H), 0.94–1.09 (t, $^3J_{H,H}$ = 8.1 Hz, $^2J_{H,^{119}Sn}$ = 53.5 Hz, 6H), 1.33–1.43 (m, 6H), 1.57–1.77 (m, $^3J_{H,^{119}Sn}$ = 59.0 Hz, 6H), 3.53 (s, $^4J_{H,^{119}Sn}$ = 10.5 Hz, 2H), 7.00–7.06 (m, 1H), 7.14 (d, $^3J_{H,H}$ = 7.7 Hz, 2H), 7.33 (d, $^3J_{H,H}$ = 7.7 Hz, 2H). ¹³**C**{¹**H**} **NMR** (126 MHz, C_6D_6) δ/ppm = 11.3 ($^1J_{C,^{119}Sn}$ = 382.8 Hz, $^1J_{C,^{117}Sn}$ = 366.6 Hz), 13.9, 26.9, 27.4 ($^2J_{C,^{119}Sn}$ = 58.1 Hz), 29.4 ($^3J_{C,Sn}$ = 21.6 Hz), 84.5, 109.0, 126.7, 128.3, 128.6, 137.6. ¹¹⁹Sn{¹H} **NMR** (186 MHz, C_6D_6) δ/ppm = –68.7. **R**_f = 0.80 (*n*-pentane). **IR** (ATR): \tilde{v} /cm⁻¹ = 2954 (m), 2919 (m), 2870 (m), 2850 (m), 2153 (w), 1453 (m), 727 (s), 694 (vs). **HRMS** (EI) for [M–*n*Bu]⁺: calcd *m/z* 349.0973, found 349.0988. #### 4.15 Tributyl(cyclopentylethynyl)stannane (3am) Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[BAr^F₄]⁻ (2.8 mg, 2.0 μmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using nBu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and cyclopentyl acetylene (**1m**, 21 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded the pure alkynyl stannane **3am** (69 mg, 0.18 mmol, 90%) as a yellow oil. ¹**H NMR** (500 MHz, C₆D₆) δ /ppm = 0.92 (t, ³ $J_{H,H}$ = 7.4 Hz, 9H), 0.95–1.08 (m, 6H), 1.22–1.34 (m, 2H), 1.34–1.44 (m_c, 6H), 1.55–1.63 (m, 2H), 1.63–1.70 (m, 6H), 1.70–1.76 (m, 2H), 1.76–1.84 (m, 2H), 2.56–2.70 (q, ³ $J_{H,H}$ = 7.5 Hz, 1H). ¹³C{¹H} NMR (126 MHz, C₆D₆) δ /ppm = 11.3 (¹ $J_{C,^{119}Sn}$ = 383.4 Hz, ¹ $J_{C,^{117}Sn}$ = 366.5 Hz), 13.9, 25.2, 27.4 (² $J_{C,^{119}Sn}$ = 58.0 Hz), 29.4 (³ $J_{C,^{119}Sn}$ = 23.3 Hz), 32.1, 34.8, 80.6, 116.7. ¹¹⁹Sn{¹H} NMR (186 MHz, C₆D₆) δ /ppm = -70.1. **R**_f = 0.80 (*n*-pentane). **IR** (ATR): \tilde{v} /cm⁻¹ = 2955 (m), 2920 (m), 2146 (w), 1738 (w), 1455 (m), 1376 (m), 1071 (m), 866 (m), 667 (m), 504 (m). **HRMS** (EI) for [M–*n*Bu]⁺: calcd *m*/*z* 327.1129, found 327.1114. #### 4.16 Tributyl(cyclohexylethynyl)stannane (3an) SnnBu₃ 3an $$C_{20}H_{38}Sn$$ M = 397.2 g/mol Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[BAr^F₄]⁻ (2.8 mg, 2.0 μmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using *n*Bu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and cyclohexyl acetylene (**1n**, 24 mg, 0.22
mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded the pure alkynyl stannane **3an** (71 mg, 0.18 mmol, 89%) as a yellow oil. ¹H **NMR** (500 MHz, C₆D₆) δ/ppm = 0.93 (t, $^3J_{\text{H,H}}$ = 7.4 Hz, 9H), 0.95–1.08 (m, 6H), 1.09–1.34 (m, 4H), 1.34–1.44 (m_c, 6H), 1.50–1.62 (m, 2H), 1.62–1.72 (m, 8H), 1.72–1.85 (m, 2H), 2.40–2.48 (m, 1H). ¹³C{¹H} **NMR** (126 MHz, C₆D₆) δ/ppm = 11.3 ($^1J_{\text{C,}}^{119}\text{Sn}}$ = 383.8 Hz, $^1J_{\text{C,}}^{117}\text{Sn}}$ = 366.8 Hz), 13.9, 24.9, 26.3, 27.4 ($^2J_{\text{C,}}^{119}\text{Sn}}$ = 58.0 Hz), 29.4 ($^3J_{\text{C,}}^{119}\text{Sn}}$ = 23.9 Hz), 30.8, 33.5, 80.9, 116.5. ¹¹⁹Sn{¹H} **NMR** (186 MHz, C₆D₆) δ/ppm = -69.5. **R**_f = 0.80 (*n*-pentane). **IR** (ATR): \tilde{v}/cm^{-1} = 2955 (m), 2926 (s), 2852 (m), 2147 (w), 1448 (m), 1064 (w), 956 (w), 664 (m), 582 (m). **HRMS** (EI) for [M–*n*Bu]⁺: calcd *m/z* 341.1286, found 341.1288. #### 4.17 Tributyl(hex-1-yn-1-yl)stannane (3ao) 3ao $C_{18}H_{36}Sn$ M = 371.2 g/mol Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[BAr^F₄]⁻ (2.8 mg, 2.0 µmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using nBu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and 1-hexyne (**1o**, 18 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded the pure alkynyl stannane **3ao** (68 mg, 0.18 mmol, 92%) as a colorless oil. ¹H **NMR** (500 MHz, C₆D₆) δ /ppm = 0.80 (t, ³ $J_{H,H}$ = 7.2 Hz, 3H), 0.92 (t, ³ $J_{H,H}$ = 7.4 Hz, 9H), 0.95–1.10 (m, 6H), 1.20–1.55 (m, 10H), 1.55–1.80 (m, ³ $J_{H,119}$ Sn = 59 Hz, 6H), 2.14–2.22 (m_c, 2H). ¹³C{¹H} **NMR** (126 MHz, C₆D₆) δ /ppm = 11.3 ($^{1}J_{C,119}$ Sn = 384.3 Hz, $^{1}J_{C,117}$ Sn = 366.3 Hz), 13.8, 13.9, 20.3, 22.2, 27.4 ($^{2}J_{C,119}$ Sn = 58.0 Hz), 29.4 ($^{3}J_{C,119}$ Sn = 23.6 Hz), 31.6, 81.4 ($^{1}J_{C,119}$ Sn = 397.9 Hz, $^{1}J_{C,117}$ Sn = 379.7 Hz), 112.0 ($^{2}J_{C,119}$ Sn = 75.0 Hz). ¹¹⁹Sn{¹H} **NMR** (186 MHz, C₆D₆) δ /ppm = -70.2. **R**_f = 0.80 (*n*-pentane). **IR** (ATR): \tilde{v} /cm⁻¹ = 2955 (s), 2927 (s), 2149 (m), 1464 (m), 1376 (w), 1073 (w), 875 (w), 669 (m). **HRMS** (EI) for [M-nBu]⁺: calcd m/z 315.1129, found 315.1131. #### 4.18 Tributyl(5-chloropent-1-yn-1-yl)stannane (3ap) **3ap** C₁₇H₃₃ClSn M = 391.6 g/mol Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[BAr^F₄]⁻ (2.8 mg, 2.0 μmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using *n*Bu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and 5-chloro-1-pentyne (**1p**, 23 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded the pure alkynyl stannane **3ap** (69 mg, 0.17 mmol, 88%) as a pale yellow oil. ¹**H NMR** (500 MHz, C₆D₆) $\bar{\delta}$ /ppm = 0.92 (t, $^3J_{\text{H,H}}$ = 7.4 Hz, 9H), 0.95–1.10 (m, 6H), 1.25–1.48 (m_c, 6H), 1.50–1.76 (m, 8H), 2.10–2.26 (m, 2H), 3.20–3.40 (t, $^3J_{\text{H,H}}$ = 6.5 Hz, 2H). ¹³C{¹**H} NMR** (126 MHz, C₆D₆) $\bar{\delta}$ /ppm = 11.3 ($^1J_{\text{C},^{119}\text{Sn}}$ = 383.5 Hz, $^1J_{\text{C},^{119}\text{Sn}}$ = 366.7 Hz), 13.9, 17.9, 27.4 ($^2J_{\text{C},^{119}\text{Sn}}$ = 58.0 Hz), 29.4 ($^3J_{\text{C},^{119}\text{Sn}}$ = 24.0 Hz), 32.1, 43.5, 82.9 ($^1J_{\text{C},^{119}\text{Sn}}$ = 377.0 Hz, $^1J_{\text{C},^{117}\text{Sn}}$ = 360.0 Hz), 109.7 ($^2J_{\text{C},^{119}\text{Sn}}$ = 70.0 Hz). ¹¹⁹Sn{¹**H} NMR** (186 MHz, C₆D₆) $\bar{\delta}$ /ppm = -69.1. **R**_f = 0.80 (*n*-pentane). **IR** (ATR): \bar{v} /cm⁻¹ = 2955 (s), 2919 (s), 2150 (w), 2022 (w), 1463 (m), 1289 (m), 1073 (w), 864 (w), 658 (m). **HRMS** (EI) for [M–*n*Bu]⁺: calcd *m*/*z* 335.0583, found 335.0573. #### 4.19 (4-bromobut-1-yn-1-yl)tributylstannane (3aq) 3aq $C_{16}H_{31}BrSn$ M = 422.0 g/mol Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[BAr^F₄]⁻ (2.8 mg, 2.0 μmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using nBu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and 4-bromo-1-butyne (**1q**, 30 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 48 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded the pure alkynyl stannane **3aq** (55 mg, 0.13 mmol, 66%) as a pale yellow oil. ¹H **NMR** (500 MHz, C₆D₆) $\bar{\delta}$ /ppm = 0.93 (t, ³ $J_{H,H}$ = 7.4 Hz, 9H), 0.95–1.10 (m, 6H), 1.20–1.50 (m_c, 6H), 1.55–1.80 (m, ³ $J_{H,119}$ Sn = 60.2 Hz, 6H), 2.30–2.50 (m, 2H), 2.90–3.06 (t, ³ $J_{H,H}$ = 7.0 Hz, 2H). ¹³C{¹H} **NMR** (126 MHz, C₆D₆) $\bar{\delta}$ /ppm = 11.3 ($^{1}J_{C,119}$ Sn = 383.8 Hz, $^{1}J_{C,117}$ Sn = 365.2 Hz), 13.9, 24.8, 27.4 ($^{2}J_{C,119}$ Sn = 58.0 Hz), 29.4 ($^{3}J_{C,119}$ Sn = 24.0 Hz), 30.3, 84.6, 107.9 ($^{2}J_{C,119}$ Sn = 70.0 Hz). ¹¹⁹Sn{¹H} **NMR** (186 MHz, C₆D₆) $\bar{\delta}$ /ppm = -67.8. **R**_f = 0.80 (n-pentane). **IR** (ATR): $\bar{\nu}$ /cm⁻¹ = 2955 (s), 2920 (s), 2151 (w), 1463 (m), 1209 (m), 982 (w), 875 (w), 665 (s). **HRMS** (EI) for [M–nBu]⁺: calcd m/z 364.9921, found 364.9924. #### 4.20 Trimethyl((tributylstannyl)ethynyl)silane (3ar) **3ar** $C_{17}H_{36}SiSn$ M = 387.3 g/mol Prepared according to **GP 1** with ruthenium thiolate complex [**5b**][†][B(C_6F_5)₄]⁻ (2.8 mg, 2.0 µmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using nBu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and trimethylsilyl acetylene (**1r**, 22 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 48 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded the pure alkynyl stannane **3ar** (68 mg, 0.17 mmol, 87%) as a pale yellow oil. ¹H **NMR** (500 MHz, C_6D_6) δ /ppm = 0.21 (s, 9H), 0.90 (t, $^3J_{H,H}$ = 7.3 Hz, 9H), 0.97 (t, $^3J_{H,H}$ = 7.9 Hz, 6H), 1.22–1.48 (m_c, 6H), 1.48–1.76 (m, $^3J_{H,^{119}Sn}$ = 60.4 Hz, 6H). ¹³C{¹H} **NMR** (126 MHz, C_6D_6) δ /ppm = 0.43 ($^1J_{C,^{29}Si}$ = 56.0 Hz), 11.3 ($^1J_{C,^{119}Sn}$ = 380.5 Hz, $^1J_{C,^{117}Sn}$ = 363.4 Hz), 13.9, 27.3 ($^2J_{C,^{119}Sn}$ = 58.0 Hz), 29.3 ($^3J_{C,^{119}Sn}$ = 24.0 Hz), 113.4, 118.9 ($^1J_{C,^{29}Si}$ = 42.0 Hz). ²⁹Si{¹H} **NMR** (99 MHz, C_6D_6) δ /ppm = –21.0. ¹¹⁹Sn{¹H} **NMR** (186 MHz, C_6D_6) δ /ppm = –73.6. **R**_f = 0.80 (n-pentane). **IR** (ATR): \tilde{v} /cm⁻¹ = 2956 (m), 2922 (m), 2150 (w), 1560 (w), 1464 (w), 1376 (w), 1248 (m), 839 (s), 759 (m), 693 (s). **HRMS** (EI) for [M–nBu][†]: calcd m/z 331.0898, found 331.0908. #### 4.21 Triisopropyl((tributylstannyl)ethynyl)silane (3as) 3as $C_{23}H_{48}SiSn$ M = 471.4 g/mol Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[BAr^F₄]⁻ (2.8 mg, 2.0 μmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using nBu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and (triisopropylsilyl)acetylene (**1s**, 40 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded the pure alkynyl stannane **3as** (42 mg, 0.090 mmol, 45%) as a pale yellow oil. ¹H **NMR** (500 MHz, C₆D₆) δ/ppm = 0.88–1.00 (m, 15H), 1.05–1.15 (m, 3H), 1.16–1.26 (m, 18H), 1.30–1.45 (m_c, 6H), 1.56–1.80 (m, ${}^{3}J_{H,^{119}Sn}$ = 60.1 Hz, 6H). ¹³C{¹H} **NMR** (126 MHz, C₆D₆) δ/ppm = 11.4 (${}^{1}J_{C,^{119}Sn}$ = 380.6 Hz, ${}^{1}J_{C,^{117}Sn}$ = 362.2 Hz), 11.7, 14.0, 19.0, 27.3 (${}^{2}J_{C,^{119}Sn}$ = 56.0 Hz), 29.4 (${}^{3}J_{C,^{119}Sn}$ = 24.6 Hz), 114.9, 115.1. ²⁹Si{¹H} **NMR** (99 MHz, C₆D₆) δ/ppm = -3.6. ¹¹⁹Sn{¹H} **NMR** (186 MHz, C₆D₆) δ/ppm = -71.1. **R**_f = 0.80 (n-pentane). **IR** (ATR): \tilde{v} /cm⁻¹ = 2956 (m), 2922 (m), 2864 (m), 2150 (w), 1463 (m), 1377 (w), 1073 (w), 995 (w), 882 (m), 712 (s), 671 (s). **HRMS** (EI) for [M–nBu]⁺: calcd m/z 415.1837, found 415.1845. #### 4.22 Tributyl(cyclohex-1-en-1-ylethynyl)stannane (3at) $$SnnBu_3$$ 3at $C_{20}H_{36}Sn$ $M = 395.2 \text{ g/mol}$ Prepared according to **GP 1** with ruthenium thiolate complex [**5b**]⁺[BAr^F₄]⁻ (2.8 mg, 2.0 µmol, 1.0 mol %) in CH₂Cl₂ (0.1 mL) using nBu₃SnH (**2a**, 58 mg, 0.20 mmol, 1.0 equiv) and 1-ethynylcyclohexene (**1t**, 24 mg, 0.22 mmol, 1.1 equiv) at 30 °C. The reaction was quenched after 24 h. Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded the pure alkynyl stannane **3at** (67 mg, 0.17 mmol, 84%) as a yellow oil. ¹**H NMR** (500 MHz, C₆D₆) δ /ppm = 0.91 (t, ³ $J_{H,H}$ = 7.4 Hz, 9H), 0.94–1.09 (m, ² $J_{H,^{119}Sn}$ = 53.3 Hz, 6H), 1.25–1.32 (m, 2H), 1.32–1.42 (m_c, 8H), 1.54–1.77 (m, ³ $J_{H,^{119}Sn}$ = 59.6 Hz, 6H), 1.77–1.84 (m, 2H), 2.17–2.25 (m, 2H), 6.18–6.26 (m, 1H). ¹³C{¹H} NMR (126 MHz, C₆D₆) δ /ppm = 11.4 (¹ $J_{C,^{119}Sn}$ = 383.0 Hz, ¹ $J_{C,^{117}Sn}$ = 365.9 Hz), 13.9, 21.9, 22.7, 25.8, 27.4 (² $J_{C,^{119}Sn}$ = 58.0 Hz), 29.4 (³ $J_{C,^{119}Sn}$ = 23.4 Hz), 30.1, 89.3, 113.2, 122.3, 134.4. ¹¹⁹Sn{¹H} NMR (186 MHz, C₆D₆) δ /ppm = -67.6. **R**_f = 0.80 (*n*-pentane). **IR** (ATR): \tilde{v} /cm⁻¹ = 2954 (m), 2923 (s), 2126 (w), 1463 (m), 1376 (m), 1073 (m), 664 (m), 443 (s). **HRMS** (EI) for [M–nBu]⁺: calcd m/z 339.1129, found 339.1133. ## 4.23 Tributyl(1-phenylprop-1-en-1-yl)stannane (β -(Z)-4au) and Tributyl(1-phenylprop-1-en-2-yl)stannane (α -(Z)-4au) Sn*n*Bu₃ $$β-(Z)-4au \qquad α-(Z)-4au$$ $$75 \qquad : \qquad 25$$ $$C_{21}H_{36}Sn$$ $$M = 407.2 \text{ g/mol}$$ Prepared according to a slightly modified **GP 1** with ruthenium thiolate complex [**5b**]⁺[BAr^F₄]⁻ (1.4 mg, 1.0 µmol, 1.2 mol %) in PhCl (0.05 mL) using nBu₃SnH (**2a**, 25 mg, 0.086 mmol, 1.0 equiv) and prop-1-yn-1-ylbenzene (**1u**, 16 mg, 0.14 mmol, 1.6 equiv) at 80 °C. After evaporation of the solvent, NMR analysis of the crude reaction mixture showed a 75:25 ratio of the regioisomers β -(Z)-**4au** and α -(Z)-**4au**. Spectroscopic data for β -(Z)-4au: ¹H NMR (500 MHz, C_6D_6) δ/ppm = 0.85–1.00 (m, 15H^Δ, SnC H_2 , SnC
H_3), 1.27–1.42 (m, 6H^Δ, SnC H_2), 1.45–1.67 (m, 6H^Δ, SnC H_2), 2.14 (d, ${}^4J_{H,H}$ = 1.7 Hz, ${}^3J_{H,^{119}S_n}$ = 41.5 Hz, 3H, C H_3), 7-02–7.10 (m, 2H, H_{Ar}), 7.12–7.21 (m, 1H^Δ, H_{Ar}), 7.24–7.29 (m, 2H, H_{Ar}), 7.37 (bs, ${}^3J_{H,^{119}S_n}$ = 128.0 Hz, 1H, H_{vinyl}). ¹³C{¹H} NMR (126 MHz, C_6D_6) δ/ppm = 11.0 (SnC H_2), 14.0 (SnC H_3), 27.8 (SnC H_2), 28.3 (CH₃), 29.8 (SnC H_2), 127.1 (CH_{Ar}), 128.3 (CH_{Ar}), 128.4 (CH_{Ar}), 141.9 (CH_{vinyl}), 142.0 (C_q) 144.3 (CSn). ¹¹⁹Sn{¹H} NMR (186 MHz, C_6D_6) δ/ppm = –48.6. Spectroscopic data for α -(Z)-4au: ¹H NMR (500 MHz, C₆D₆) δ/ppm = 1.81 (d, ${}^{3}J_{H,H}$ =6.7 Hz, 3H, CH₃), 6.35 (q, ${}^{3}J_{H,H}$ =6.7 Hz, ${}^{3}J_{H,^{119}Sn}$ = 126.5 Hz, 1H, H_{vinyl}). The butyl groups as well as the aromatic signals are overlapping with the major compound. ¹³C{¹H} NMR (126 MHz, C₆D₆) δ/ppm = 9.1 (SnCH₂), 13.9 (SnCH₂), 20.5 (CH₃), 27.9 (SnCH₂), 29.6 (SnCH₂), 125.7 (CH_{Ar}), 127.3 (CH_{Ar}), 128.6 (CH_{Ar}), 138.5 (CH_{vinyl}), 146.9 (CSn), 148.3 (C₉). ¹¹⁹Sn{¹H} NMR (186 MHz, C₆D₆) δ/ppm = -51.3. The signals found were different to the reported data of α -(E)-4au and β -(E)-4au. [S11] ### 5 2,6- η^6 : η^1 -Bis(2',4',6'-trimethylphenyl)phenylthiolato](tricyclohexylphosphino)-ruthenium(II)-tetrakis[3,5-bis(trifluormethyl)phenyl]borate ([5c][†][BAr^F₄]⁻) [**5c**]⁺[BAr^F₄]⁻ C₇₄H₇₀PRuSBF₂₄ M = 1590.3 g/mol Prepared in a glove box from the neutral chloride [S2g] (50 mg, 66 µmol, 1.0 equiv) and Na[†][BAr^F₄]⁻ (55 mg, 79 μmol, 1.2 equiv) in CH₂Cl₂ (8 mL). The reaction mixture was stirred for 3 h at r.t. and filtrated over a PTFE syringe filter. Subsequent evaporation of the solvent afforded complex $[\mathbf{5c}]^+[\mathsf{BAr}^F_{a}]^-$ as a green solid (65 mg, 46 μ mol, 71%). ¹H NMR (500 MHz, $\mathsf{CD}_2\mathsf{Cl}_2$): $\delta/ppm = 1.01-1.32$ (m, 15H, PC H_2), 1.65-1.83 (m, 15H, PC H_2), 1.87 (s, 6H, 2'-C H_3), 1.94 (s, 6H, 2"-CH₃), 2.05-2.17 (m, 3H, PCHCH₂), 2.29 (s, 3H, 4"-CH₃), 2.35 (s, 3H, 4'-CH₃), 4.82 (s, 2H, H-3'), 6.91 (s, 2H, H-3''), 7.39–7.44 (s, 1H, H-3), 7.56 (s, 4H, o-BAr^F₄), 7.65–7.79 (m, 10H, H-4, H-5, p-BAr^F₄). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂) δ /ppm = 18.7 (2'-CH₃), 20.4 (4'-CH₃, 2"-CH₃), 21.2 (4"-CH₃), 26.7 (PCH₂), 27.7 (d, ${}^{2}J_{CP}$ = 10.9 Hz, PCH₂), 31.1 (PCH₂), 34.8 (d, ${}^{1}J_{CP}$ = 20.5 Hz, PCH), 72.0 (C-3'), 102.9 (d, ${}^{1}J_{CP}$ = 2.8 Hz, C-2'), 106.9 (C-4'), 109.6 (d, J_{CP} = 8.9 Hz, C-1'), 117.9 (p-CH-BAr^F₄), 125.1 (q, ${}^{1}J_{CF} = 271.8$ Hz, CF_{3} -BAr^F₄), 128.4 (C-3''), 128.4 (C-5), 129.3 (q, ${}^{2}J_{CF}$ = 31.9 Hz, m-C-BAr $^{F}_{4}$), 130.3 (C-4), 132.5 (C-3, C-6), 135.2 (p-CH-BAr $^{F}_{4}$), 135.8 (C-2"), 136.0 (C-1"), 138.1 (C-4"), 142.7 (C-2), 162.2 (q, ${}^{1}J_{CR}$ = 49.9 Hz, *i-CH-BAr*^F₄), 163.3 (d, $^{3}J_{CP} = 8.3 \text{ Hz}, \text{ C-1}$). $^{11}B \text{ NMR} (161 \text{ MHz}, \text{CD}_{2}\text{Cl}_{2}) \delta/\text{ppm} = -6.6$. $^{19}F\{^{1}H\} \text{ NMR} (471 \text{ MHz}, \text{CD}_{2}\text{Cl}_{2})$ $\delta/ppm = -62.9.$ ³¹P{¹H} NMR (203 MHz, CD₂Cl₂) $\delta/ppm = 41.5.$ HRMS (ESI) for [5c]⁺: calcd m/z727.3035, found 727.3055, for $[BAr^{F_4}]^{-}$: calcd m/z 863.0654, found 863.0662. ### 6 Experimental Details for the NMR Investigations of Sulfur-Stabilized Stannylium Ions [5·R₃SnH]⁺[BAr^{F₄}]⁻ #### 6.1 $[5a \cdot nBu_3SnH]^{\dagger}[BAr_4]^{-}$ $$F_3C$$ F_3C [**5a**·nBu₃Sn–H]⁺[BAr^F₄]⁻ C₇₄H₈₀PRuSBF₂₄Sn M = 1719.0 g/mol Prepared according to **GP 2** from $[5a]^+[BAr^F_4]^-$ (20 mg, 14 µmol, 1.0 equiv) and nBu_3SnH (2b, 5.0 mg, 17 μ mol, 1.2 equiv) in CD₂Cl₂ (0.5 mL). ¹H NMR (500 MHz, CD₂Cl₂, 213 K): δ /ppm = -8.59 (d, ${}^{2}J_{HP}$ = 49.7 Hz, 1H, RuH), 0.57–0.86 (m, 15H $^{\Delta}$, SnCH $_{2}$, SnCH $_{3}$), 0.85–0.96 (m, 9H, $PCH_{2}CH_{3}$), 1.06–1.29 (m, $12H^{\Delta}$, $SnCH_{2}$), 1.38–1.49 (m, $3H^{\Delta}$, $PCH_{2}CH_{3\Delta}$), 1.49–1.63 (m, 3H, $PCH_2CH_{3,B}$), 1.84 (s, 6H, 4'-CH₃, 6"-CH₃), 1.91 (s, 3H, 2'-CH₃), 2.02 (s, 3H, 2"-CH₃), 2.12 (s, 3H, 6"- CH_3), 2.27 (s, 3H, 4"- CH_3), 5.32 (s, 1H $^{\Delta}$, H-3'), 6.05 (s, 1H, H-5'), 6.90 (s, 1H, H-3"), 6.99 (s, 1H, H-5"), 7.12–7.19 (m, 1H, H-3), 7.39–7.49 (m, 2H, H-4, H-5), 7.55 (s, 4H, p-CH-BAr F_4). 7.73 (s, 8H, o-CH-BAr^F₄). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 213 K): δ /ppm = 7.2 (d, ²J_{CP} = 2.5 Hz, PCH₂CH₃), 13.6 (SnCH₃), 17.5 (SnCH₂), 18.3 (4'-CH₃)*, 18.8 (2'-CH₃), 19.1 (PCH₂CH₃), 19.4 (6'-CH₃)*, 20.7 (4"-CH₃), 20.9 (2"-CH₃), 21.2 (6"-CH₃), 27.0 (${}^{2}J_{C.Sn}$ = 80.2 Hz, SnCH₂), 28.2 $(^{3}J_{C.Sn} = 17.2 \text{ Hz}, SnCH_{2}), 85.2 (C-4'), 91.3 (d, J_{C.P} = 10.0 \text{ Hz}, C-6'), 91.9 (C-5'), 92.7 (C-3'), 98.6$ (C-2'), 114.4 (d, $J_{CP} = 2.7$ Hz, C-1'), 117.3 (p-CH-BAr^F₄), 124.3 (q, ${}^{1}J_{CF} = 272.0$ Hz, CF₃-BAr^F₄), 127.8 (C-4), 127.9 (C-5), 128.4 (q, ${}^{2}J_{C} = 31.9 \text{ Hz}$, $m\text{-}C\text{-}BAr_{4}^{F}$), 128.9 (C-3"), 129.0 (C-5"), 132.2 (C-3), 134.5 (C-1", o-CH-BAr^F₄), 135.4 (C-6"), 136.5 (C-2"), 138.0 (C-4"), 139.6 (C-6), 143.4 (C-2), 143.9 (C-1), 161.5 (q, ${}^{1}J_{\text{C.B}}$ = 49.7 Hz, *i-C-BAr*^F₄). *The peaks are interconvertible. ¹¹**B NMR** (161 MHz, CD_2Cl_2 , 213 K): $\delta/ppm = -6.8$. ¹⁹ $F_4^1H_3$ NMR (471 MHz, CD_2Cl_2 , 213 K): $\delta/ppm = -6.8$. 62.5. ³¹P{¹H} NMR (203 MHz, CD_2Cl_2 , 213 K): $\delta/ppm = 42.4$. ¹¹⁹Sn{¹H} NMR (186 MHz, CD_2Cl_2 , 213 K): $\delta/ppm = 158.6$. #### 6.2 $[5b \cdot nBu_3SnH]^{\dagger}[BAr_4]^{-}$ $$F_3C$$ F_3C **[5a**·*n*Bu₃Sn–H]⁺[BAr^F₄][−] C₇₇H₈₆PRuSBF₂₄Sn M = 1761.1 g/mol Prepared according to **GP 2** from $[5b]^{+}[BAr_{4}^{F}]^{-}$ (20 mg, 15 µmol, 1.0 equiv) and $nBu_{3}SnH$ (2b, 5.0 mg, 17 μ mol, 1.2 equiv) in CD₂Cl₂ (0.50 mL). ¹H NMR (500 MHz, CD₂Cl₂, 253 K): δ /ppm = -8.35 (d, $^2J_{HP}$ = 47.6 Hz, 1H, RuH), 0.82 (d, $^2J_{HH}$ = 7.0 Hz, 9H, SnCH₃), 1.08–1.33 (m, 36H^{Δ}, PCHCH₃, SnCH₂), 1.82-1.89 (m, 6H, 4'-CH₃, 6'-CH₃), 1.94-2.07 (m, 9H, PCHCH₃, 2'-CH₃, 2"- CH_3), 2.17 (s, 3H, 6"- CH_3), 2.28 (s, 3H, 4"- CH_3), 5.77–5.84 (bs, 1H, H-3'), 6.14 (s, 1H, H-5'), 6.91 (s, 1H, H-3"), 6.99 (s, 1H, H-5"), 7.17-7.23 (m, 1H, H-4), 7.42-7.49 (m, 2H, H-3, H-5), 7.55 (s, 4H, p-CH-BAr $^{F}_{4}$), 7.71 (s, 8H, o-CH-BAr $^{F}_{4}$). $^{1}H/^{13}$ C-HSQC/HMBC-NMR (500/126 MHz, $CD_{2}CI_{2},\ 253\ K):\ \delta(^{13}C)/ppm\ =\ 13.6\ (SnCH_{3}),\ 18.4\ (4'-CH_{3})^{*},\ 19.0\ (PCHCH_{3,A}),\ 19.3\ (6'-CH_{3})^{*},$ 19.4 (2'-CH₃), 19.6 (SnCH₂, PCHCH₃), 20.9 (4"-CH₃), 21.7 (2"-CH₃), 21.9 (6"-CH₃), 27.1 (SnCH₂), 28.3 (SnCH₂), 85.9 (C-4'), 90.4 (C-6'), 92.0 (C-5'), 92.7 (C-3'), 100.1 (C-2'), 115.0 (C-1'), 117.6 (p-CH-BAr^F₄), 124.5 (CF₃-BAr^F₄), 128.2 (C-3, C-5, C-6, m-C-BAr^F₄), 129.1 (C-3"), 129.4 (C-5"), 132.7 (C-4), 134.3 (C-1"), 134.8 (o-CH-BAr^F₄), 135.6 (C-6"), 136.5 (C-2"), 138.0 (C-4"), 144.1 (C-1), 144.6 (C-2), 161.8 (*i*-C-BAr $^{F}_{4}$).*The peaks are interconvertible. ¹¹**B NMR** (161 MHz, CD_2Cl_2 , 253 K): $\delta/ppm = -6.7$. ¹⁹ F_4^1H NMR (471 MHz, CD_2Cl_2 , 253 K): $\delta/ppm = -6.7$. 62.7. $^{31}P\{^{1}H\}$ NMR (203 MHz, $CD_{2}Cl_{2}$, 253 K): $\delta/ppm = 69.0$. $^{119}Sn\{^{1}H\}$ NMR (186 MHz, $CD_{2}Cl_{2}$, 253 K): $\delta/ppm = 155.9$. #### 6.3 $[5c \cdot nBu_3SnH]^{\dagger}[BAr_4]^{-}$ $$F_3$$ C F_3 [**5c**·nBu₃Sn-H]⁺[BAr^F₄] $^-$ C₈₆H₉₈PRuSBF₂₄Sn M = 1881.3 g/mol Prepared according to **GP 2** from $[5c]^{+}[BAr^{F}_{a}]^{-}$ (20 mg, 14 µmol, 1.0 equiv) and $nBu_{3}SnH$ (2b, 5.0 mg, 14 μ mol, 1.2 equiv) in CD₂Cl₂ (0.5 mL). ¹H NMR (700 MHz, CD₂Cl₂, 253 K): δ /ppm = -8.54 (d, $^2J_{\rm H,P}$ = 48.7 Hz, 1H, RuH), 0.82 (d, $^2J_{\rm H,H}$ = 7.0 Hz, 9H, SnC H_3), 1.06–1.43 (m, 33H $^\Delta$, $PCHCH_2$, $SnCH_2$), 1.57–1.83 (m, $18H^{\Delta}$, $PCHCH_2$, $PCHCH_2$), 1.84 (m, 3H, $4'-CH_3$), 1.94 (d, J_{HP} = 2.1 Hz, 3H, 6'-CH₃), 2.00 (s, 3H, 2'-CH₃), 2.01 (s, 3H, 2"-CH₃), 2.20 (s, 3H, 6"-CH₃), 2.27 (s, 3H, 4"-CH₃), 5.86 (br s, 1H, H-3'), 6.09 (s, 1H, H-5'), 6.91 (s, 1H, H-3"), 7.00 (s, 1H, H-5") 7.17–7.24 (m, 1H, H-4), 7.43-7.49 (m, 2H, H-3, H-5), 7.55 (s, 4H, p-CH-BAr^F₄), 7.71 (s, 8H, o-CH-BAr^F₄).¹³C{¹H} NMR (175 MHz, CD_2CI_2 , 253 K): $\delta/ppm = 13.4$ (SnCH₃), 18.6 (6'-CH₃), 19.6 (4'-CH₃), 19.9 (2'-CH₃), 20.9 (4"-CH₃), 21.6 (2"-CH₃), 21.6 (6"-CH₃), 26.3 (SnCH₂, PCHCH₂), 27.3 (SnCH₂), 27.6 (m, PCHCH₂), 27.7 (m, PCHCH₂), 28.4 (SnCH₂), 29.3 (m, PCHCH₂), 30.7 (m, PCHCH₂), 37.3 (m, PCHCH₂), 86.5 (C-4'), 90.0 (d, $J_{CP} = 9.7$ Hz, C-6'), 90.6 (C-5'), 94.8 (C-3'), 100.7 (C-2'), 114.9 (C-1'), 117.6 (p-CH-BAr^F₄), 124.7 (q, ${}^{1}J_{CF}$ = 271.8 Hz, CF₃-BAr^F₄), 128.2 (C-3), 128.4 (C-5), 128.6 (q, ${}^{2}J_{CF}$ = 31.9 Hz, m-C-BAr^F₄), 129.1 (C-3"), 129.5 (C-5"), 132.6 (C-4), 134.5 (C-1"), 134.9 (o-CH-BAr^F₄), 135.4 (C-6"), 137.0 (C-2"), 138.3 (C-4"), 140.2 (C-1), 143.3 (C-6), 144.3 (C-2), 161.8 (q, ${}^{1}J_{CB}$ = 50.1 Hz, *i-CH-BAr*^F₄). ¹¹**B NMR** (224 MHz, CD₂Cl₂, 253 K): $\delta/\text{ppm} = -6.7.$ ¹⁹F{¹H} NMR (659 MHz, CD₂Cl₂, 253 K): $\delta/\text{ppm} = -62.7.$ ³¹P{¹H} NMR (283 MHz, CD_2Cl_2 , 253 K): $\delta/ppm = 56.3$. ¹¹⁹Sn{¹H} NMR (261 MHz, CD_2Cl_2 , 253 K): $\delta/ppm = 151.1$. #### 6.4 $[5d \cdot nBu_3SnH]^{\dagger}[BAr_4]^{-}$ [5d·nBu₃Sn-H]⁺[BAr^F₄]⁻ C₈₅H₇₇PRuSBF₂₇Sn M = 1917.1 g/mol Prepared according to **GP 2** from $[5d]^{+}[BAr^{F}_{\lambda}]^{-}$ (20 mg, 15 µmol, 1.0 equiv) and $nBu_{3}SnH$ (2a, 5.0 mg, 17 μ mol, 1.2 equiv) in CD₂Cl₂ (0.5 mL). ¹H NMR (500 MHz, CD₂Cl₂, 213 K): δ /ppm = -8.33 (d, ${}^{2}J_{HP}$ = 49.3 Hz, 1H, RuH), 0.73–0.80 (m, 9H, SnCH₃), 1.01–1.30 (m, 18H $^{\Delta}$, SnCH₂), 1.42 (s, $3H^{\Delta}$, 4'-C H_3), 1.69 (s, 3H, 2'-C H_3), 1.83 (s, 3H, 6"-C H_3), 2.00 (s, 3H, 6'-C H_3), 2.11 (s, 3H, 2"-CH₃), 2.24 (s, 3H, 4"-CH₃), 4.56 (bs, 1H, H-3') 6.22 (s, 1H, H-5'), 6.75 (s, 1H, H-5"), 6.92 (s, 1H, H-3"), 7.06-7.15 (m, 6H, m-CH-PAr), 7.18-7.23 (m, 1H, H-5), 7.29-7.38 (m, 6H, o-CH-PAr), 7.38–7.48 (m, 2H, H-3, H-4), 7.53 (s, 4H, p-CH-BAr $_4$
), 7.72 (s, 8H, o-CH-BAr $_4$). 13 C $_4$ ¹H $_4$ **NMR** (126 MHz, CD_2Cl_2 , 213 K): $\delta/ppm = 13.4$ (SnCH₃), 18.3 (2'-CH₃), 18.5 (4'-CH₃), 18.7 (6'-CH₃), 20.6 (4"-CH₃), 21.0 (2"-CH₃), 21.0 (6"-CH₃), 27.1 (SnCH₂), 28.0 (SnCH₂), 29.7 (SnCH₂), 86.1 (C-4'), 90.8 (C-5'), 90.0 (d, J_{CP} = 10.3 Hz, C-6'), 100.3 (C-3'), 101.6 (C-2'), 114.8 (J_{CP} = 3.9 Hz, C-1'), 115.7 (dd, ${}^{3}J_{CP}$ = 10.8 Hz, ${}^{2}J_{CF}$ = 21.4 Hz, m-CH-PAr), 117.3 (p-CH-BAr^F₄), 124.2 (q, $^{1}J_{CF} = 272.7 \text{ Hz}, CF_{3}\text{-BAr}^{F_{4}}, 127.9 \text{ (C-5)}, 128.4 \text{ (C-4)}, 128.4 \text{ (q, } ^{2}J_{CF} = 31.8 \text{ Hz}, m\text{-C-BAr}^{F_{4}},$ 128.6 (C-5"), 129.2 (C-3"), 129.7 (d, ${}^{1}J_{CP}$ = 49.9 Hz, *i*-C-PAr), 132.1 (C-3), 133.7 (C-1"), 134.4 $(o-CH-BAr^{F}_{4})$, 134.8 (C-2"), 135.1 (dd, $^{2}J_{CP}$ = 12.5 Hz, $^{3}J_{CF}$ = 8.7 Hz, o-CH-PAr), 136.2 (C-6"), 138.0 (C-4"), 139.2 (C-6), 143.1 (C-2), 143.3 (C-1), 161.5 (q, ${}^{1}J_{C,B}$ = 49.9 Hz, i-CH-BAr $^{F}_{4}$), 163.5 (d, ${}^{1}J_{CF}$ = 252.8 Hz, p-C-PAr). ${}^{11}B$ NMR (161 MHz, $CD_{2}CI_{2}$, 213 K): $\delta/ppm = -6.7$. ${}^{19}F\{{}^{1}H\}$ NMR $(471 \text{ MHz}, \text{CD}_2\text{Cl}_2, 253 \text{ K})$: δ/ppm = -109.0 (p-CF-PAr), -62.7 (CF₃-BAr^{F₄}). ³¹P{¹H} NMR (203) MHz, CD_2Cl_2 , 213 K): $\delta/ppm = 49.6$. ¹¹⁹Sn{¹H} NMR (186 MHz, CD_2Cl_2 , 213 K): $\delta/ppm = 154.5$. #### 6.5 $[5b \cdot Et_3SnH]^{\dagger}[BAr_4]^{-}$ [**5b**·Et₃Sn–H]⁺[BAr^F₄]⁻ $C_{71}H_{74}PRuSBF_{24}Sn$ M = 1877.0 g/mol Prepared according to **GP 2** from [**5b**][†][BAr^F₄]⁻ (20 mg, 15 μmol, 1.0 equiv) and Et₃SnH (**2b**, 5.0 mg, 17 μmol, 1.2 equiv) in CD_2Cl_2 (0.5 mL). ¹H NMR (500 MHz, CD_2Cl_2 , 253 K): δ/ppm = -8.38 $(d, {}^{2}J_{HP} = 47.1 \text{ Hz}, 1H, \text{Ru}H), 0.92-1.08 (m, 15H^{\Delta}, \text{SnC}H_{3}, \text{SnC}H_{2}), 1.10-1.17 (m, 18H^{\Delta},$ PCHCH₃), 1.83 (s, 3H, 6'-CH₃), 1.86 (s, 3H, 4'-CH₃), 1.97–2.01 (m, 6H, PCHCH₃, 2"-CH₃), 2.05 $(s, 3H, 2'-CH_3), 2.17 (s, 3H, 6''-CH_3), 2.28 (s, 3H, 4''-CH_3), 5.79 (s, 1H, H-3'), 6.17 (s, 1H, H-5'),$ 6.93 (s, 1H, H-3"), 7.00 (s, 1H, H-5"), 7.19-7.26 (m, 1H, H-4), 7.42-7.50 (m, 2H, H-3, H-5), 7.56 (s, 4H, p-CH-BAr $^{F}_{4}$), 7.72 (s, 8H, o-CH-BAr $^{F}_{4}$). 13 C 14 H NMR (126 MHz, CD₂Cl₂, 253 K): δ/ppm = 10.4 (SnCH₃), 11.1 (SnCH₂), 18.2 (6'-CH₃), 19.1 (PCHCH_{3,A}), 19.2 (4'-CH₃), 19.4 (2'-CH₃), 20.1 $(PCHCH_{3,B})$, 20.8 (4"-CH₃), 21.7 (2"-CH₃), 21.8 (6"-CH₃), 27.2 (d, ${}^{1}J_{C,P}$ = 23.6 Hz, $PCHCH_{3}$), 86.0 (C-4'), 90.4 (d, J_{CP} = 10.3 Hz, C-6'), 92.4 (d, J_{CP} = 3.5 Hz, C-5'), 92.5 (C-3'), 100.0 (C-2'), 115.0 (C-1'), 117.6 (p-CH-BAr^F₄), 124.6 (q, ${}^{1}J_{CF}$ = 272.7 Hz, CF_{3} -BAr^F₄), 128.1 (C-3), 128.3 (C-5), 128.8 (q, ${}^{2}J_{CF}$ = 31.5 Hz, m-C-BAr $^{F}_{4}$), 129.1 (C-3"), 129.2 (C-5"), 132.7 (C-4), 134.3 (C-1"), 134.8 (o-CH-BAr^F₄), 135.6 (C-2"), 136.8 (C-6"), 138.4 (C-4"), 140.0 (C-6), 143.4 (C-1), 144.3 (C-2), 161.8 (q, ${}^{1}J_{CB}$ = 49.8 Hz, i-C-BAr ${}^{F}_{4}$). ¹¹**B NMR** (161 MHz, CD₂Cl₂, 253 K): δ /ppm = -6.7. ¹⁹**F**{¹**H**} **NMR** (471 MHz, CD_2CI_2 , 253 K): $\delta/ppm = -62.7$. ³¹**P**{¹**H**} **NMR** (203 MHz, CD_2CI_2 , 253 K): $\delta/ppm = 69.3$. ¹¹⁹Sn{¹H} NMR (186 MHz, CD_2Cl_2 , 253 K): $\delta/ppm = 150.2$. #### 7. Experimental Details for the NMR Investigations of Adducts [5b·RCCH][†][A]⁻ #### 7.1 $[5b \cdot PhCCH]^{\dagger}[B(C_6F_5)_4]^{-}$ [**5b**·PhCCH][†][B(C_6F_5)₄]⁻ $C_{65}H_{52}PRuSBF_{20}$ M = 1388.0 g/mol Prepared according to **GP 3** from $[5b]^{+}[B(C_6F_5)_4]^{-}$ (20 mg, 15 µmol, 1.0 equiv) and phenyl acetylene (**1a**, 5.0 mg, 17 μmol, 1.2 equiv) in CD₂Cl₂ (0.5 mL). ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ/ppm = 1.07 (s, 3H, 2"-C H_3), 1.10 (dd, $^3J_{H,H}$ = 7.3 Hz, $^3J_{H,P}$ = 13.1 Hz, 9H, PCHC $H_{3,A}$), 1.18 (dd, ${}^{3}J_{HH}$ = 7.3 Hz, ${}^{3}J_{HP}$ = 14.6 Hz, 9H, PCHC H_{3R}), 1.87 (s, 3H, 6'-C H_{3}), 2.02 (s, 3H, 6"-C H_{3}), 2.06-2.20 (m, 9H, PCHCH₃, 2'-CH₃, 4'-CH₃), 2.40 (s, 3H, 4"-CH₃), 5.59 (s, 1H, H-3'), 6.11 (s, 1H, H-5'), 6.49 (d, ${}^{3}J_{HH}$ = 7.7 Hz, 2H, H-2'''), 6.68 (s, 1H, H-3''), 6.93–7.05 (m, 2H, H-5'', H-3'''), 7.12–7.14 (m, 3H, H-3, H-4"), 7.51–7.54 (m, 1H $^{\Delta}$, H-5), 7.60–7.70 (m, 1H, H-4), 8.99 (d, $^{3}J_{HP}$ = 4.7 Hz, PhCCH). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K): δ /ppm = 17.9 (2'-CH₃), 18.6 (d, ²J_{CP}= 2.5 Hz, PCHCH_{3,A}), 18.7 (6'-CH₃), 19.6 (4'-CH₃), 20.0 (2"-CH₃), 20.9 (PCHCH_{3,B}), 21.1 (6"- CH_3), 21.3 (4"- CH_3), 26.1 (d, $^1J_{CP}$ = 21.8 Hz, $PCHCH_3$), 86.3 (C-3'), 97.2 (C-5'), 100.2 (C-4'), 103.0 (d, J_{CP} = 7.6 Hz, C-2'), 107.1 (d, J_{CP} = 6.5 Hz, C-1'), 107.3 (C-6'), 124.5 (C-2''', *i-C*- $B(C_6F_5)_4$), 127.9 (C-4"), 128.6 (C-5"), 128.9 (C-3"), 130.1 (C-5), 130.5 (C-3"), 132.4 (C-4), 133.5 (C-3), 135.1 (C-1"), 135.4 (C-6"), 136.7 (d, ${}^{1}J_{C.F}$ = 244 Hz, m-C-B(C₆F₅)₄), 134.5 (C-1"), 138.0 (C-2"), 138.4 (C-4"), 138.6 (d, ${}^{1}J_{CF}$ = 244.5 Hz, p-C-B(C₆F₅)₄), 139.7 (d, ${}^{3}J_{CP}$ = 3.7 Hz, PhCCH), 141.0 (C-1), 141.9 (C-6), 147.9 (C-2), 148.6 (d, ${}^{1}J_{CF} = 244.5 \text{ Hz}, o-C-B(C_{6}F_{5})_{4}$), 156.0 $(d, {}^{2}J_{CP} = 18.2 \text{ Hz}, \text{PhCCH}).^{11}B \text{ NMR} (161 \text{ MHz}, \text{CD}_{2}\text{Cl}_{2}, 298 \text{ K}): \delta/\text{ppm} = -16.6.^{19}F\{^{1}H\} \text{ NMR}$ (471 MHz, CD₂Cl₂, 298 K): δ/ppm = -167.5 (m, 8F, m-F-B(C₆F₅)₄), -163.6 (t, $^3J_{FF}$ = 20.4 Hz, 4F. p-F-B(C₆F₅)₄), -133.2 (m, 8F, o-F-B(C₆F₅)₄). ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298 K): δ /ppm = 53.8. ### 7.2 [5b·4-ToICCH]⁺[BAr^F₄]⁻ [5b·4-ToICCH]⁺[BAr^F₄]⁻ $C_{74}H_{66}PRuSBF_{24}$ M = 1586.2 g/mol Prepared according to **GP 3** from $[5b]^{+}[BAr^{F_4}]^{-}$ (20 mg, 15 µmol, 1.0 equiv) and 1-ethynyl-4methylbenzene (**1h**, 5.0 mg, 17 μmol, 1.2 equiv) in CD₂Cl₂ (0.5 mL). ¹**H NMR** (500 MHz, CD₂Cl₂, 298 K): δ/ppm = 1.07 (s, 3H, 2"-C H_3), 1.10 (dd, ${}^3J_{H,H}$ = 7.2 Hz, ${}^3J_{H,P}$ = 13.3 Hz 9H, PCHC $H_{3,A}$), 1.18 (dd, ${}^{3}J_{H,H}$ = 7.2 Hz, ${}^{3}J_{H,P}$ = 14.6 Hz 9H, PCHC $H_{3,B}$), 1.86 (s, 3H, 6'-C H_{3}), 2.00 (s, 3H, 6"- CH_3), 2.06–2.16 (m, 9H, $PCHCH_3$, 2'- CH_3 , 4'- CH_3), 2.30 (s, 3H, 4"'- CH_3), 2.39 (s, 3H, 4"- CH_3), 5.56 (s, 1H, H-3'), 6.10 (s, 1H, H-5'), 6.38 (d, ${}^{3}J_{HH}$ = 8.0 Hz, 2H, H-2'''), 6.67 (s, 1H, H-3''), 6.81 (d, ${}^{3}J_{HH}$ = 8.0 Hz, 2H, H-3"), 6.99 (s, 1H, H-5"), 7.18 (m, 1H, H-3), 7.49 (m, 1H, H-5), 7.57 (s, 4H, p-CH-BAr $^{F}_{4}$), 7.62 (m, 1H, H-4), 7.74 (s, 8H, o-CH-BAr $^{F}_{4}$), 8.86 (d, $^{3}J_{HP}$ = 4.8 Hz, 1H, 4-TolCC*H*). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K): δ/ppm = 17.9 (2'- $^{\circ}$ CH₃), 18.7 (d, 2 J_{C,P}= 2.9 Hz, PCHCH_{3,A}), 18.8 (6'-CH₃), 19.7 (4'-CH₃), 20.1 (2"-CH₃), 20.9 (PCHCH_{3,B}), 21.1 (6"-CH₃), 21.3 $(4^{"}-CH_3)$, 21.3 $(4^{"}-CH_3)$, 26.1 $(d, {}^{1}J_{C.P} = 22.0 \text{ Hz}, PCHCH_3)$, 86.3 $(C-3^{\circ})$, 97.1 $(C-5^{\circ})$, 100.1 $(C-5^{\circ})$ 4'), 102.9 (d, J_{CP} = 7.9 Hz, C-2'), 107.1 (d, J_{CP} = 6.3 Hz, C-1'), 107.2 (C-6'), 117.9 (p-CH-BAr F_4), 125.6 (C-2"), 125.0 (q, ${}^{1}J_{CF}$ = 272.7 Hz, CF_{3} -BAr $^{F}_{4}$), 128.5 (C-5"), 128.8 (q, ${}^{2}J_{CF}$ = 31.5 Hz, m-C-BAr^F₄), 129.5 (C-3""), 130.5 (C-5), 130.4 (C-3"), 132.3 (C-4), 133.5 (C-3), 134.5 (d, ${}^{4}J_{CP}$ = 2.6 Hz, C-1"), 135.1 (C-1"), 135.2 (o-CH-BAr^F₄, C-6'), 138.0 (C-2"), 138.1 (C-4"), 138.5 (C-4"), 139.8 (d, ${}^{3}J_{CP}$ = 4.3 Hz, 4-TolCCH), 141.1 (C-1), 141.9 (C-6), 147.9 (C-2), 154.0 (d, ${}^{2}J_{CP}$ = 18.7 Hz, 4-TolCCH), 162.1 (q, ${}^{1}J_{CB}$ = 49.8 Hz, *i-C-*BAr^F₄). 11B **NMR** (161 MHz, CD₂Cl₂, 298 K): δ/ppm = -6.6. ¹⁹F{¹H} NMR (471 MHz, CD₂Cl₂, 298 K): δ /ppm = -62.8. ³¹P{¹H} NMR (202 MHz, CD_2Cl_2 , 298 K): $\delta/ppm = 53.6$. #### 8. Experimental Details of Mechanistic Studies #### 8.1 Preparation of Stannyl Thioether DmpSSnnBu₃ $\begin{array}{c} \mathsf{DmpSSn} n \mathsf{Bu}_3 \\ \mathsf{C}_{36} \mathsf{H}_{52} \mathsf{SSn} \\ \mathsf{M} = 635.6 \ \mathsf{g/mol} \end{array}$ In a glove box, a 2-mL screw-capped vial was charged with DmpSH (33 mg, 0.10 mmol, 1.0 equiv), nBu₃SnH (**2a**, 37 mg, 0.13 mmol, 1.3 equiv), and B(C₆F₅)₃ (5.1 mg, 10 µmol, 1.0 mol %) in CD₂Cl₂ (0.50 mL). The reaction was quenched after 24 h using a solution of Et₃N in n-pentane (1%). After filtration over a plug of neutral Al₂O₃ and Celite and subsequent evaporation of the solvents, the sample was directly submitted to NMR spectroscopy. DmpSSnnBu₃ was observed in a mixture with DmpSH. The product decomposed on silica gel. ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ /ppm = 0.68 (t, $^3J_{H,H}$ = 8.0 Hz, 6H), 0.81 (t, $^3J_{H,H}$ = 7.0 Hz, 9H), 1.09–1.23 (m, 12H), 2.08 (s, 12H), 2.32 (s, 6H), 6.92 (s, 4H), 7.03 (d, $^3J_{H,H}$ = 7.6 Hz, 2H), 7.26 (t, $^3J_{H,H}$ = 7.6 Hz, 1H). ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K): δ /ppm = 13.8, 14.6 ($^1J_{C,^{119}Sn}$ = 321.6 Hz, $^1J_{C,^{117}Sn}$ = 307.0 Hz), 27.4 ($^2J_{C,^{119}Sn}$ = 66.8 Hz), 28.6 ($^3J_{C,^{119}Sn}$ = 19.3 Hz), 126.3, 128.4, 129.7, 134.9, 136.1, 136.4, 140.1, 147.4. ¹¹⁹Sn{¹H} NMR (186 MHz, CD₂Cl₂, 298 K): δ /ppm = 79.6. #### 8.2 Promoted ¹H/²H Scrambling Between *n*Bu₃SnD (2a-*d*₁) and Et₃SnH (2b) $$n \text{Bu}_3 \text{Sn-D} + \text{Et}_3 \text{Sn-H} \xrightarrow{\text{[5b]}^{\dagger} [\text{BAr}^{\text{F}}_4]^{-} (1.0 \text{ mol \%})} D \text{Bu}_3 \text{Sn-H/D} + \text{Et}_3 \text{Sn-H/D}} + \text{Et}_3 \text{Sn-H/D}$$ $$2a - d_1 \qquad 2b \qquad \text{H/D:} \qquad 55:45 \qquad 45:55$$ $$(1.0 \text{ equiv}) \qquad (1.3 \text{ equiv})$$ **Scheme S4** Scrambling experiment between *n*Bu₃SnD (**2a**-*d*₁) and Et₃SnH (**2b**). In a glove box, a 2-mL screw-capped vial was charged with catalyst [$\mathbf{5b}$]⁺[BAr^F₄]⁻ (1.4 mg, 1.0 µmol, 1.0 mol %), CD₂Cl₂ (0.05 mL), nBu₃SnD ($\mathbf{2a}$ - d_1 , 26 mg, 0.11 mmol, 1.0 equiv) and Et₃SnH ($\mathbf{2b}$, 23 mg, 0.089 mmol, 1.3 equiv). The mixture was stirred for 2 h, transferred to a J. Young NMR tube using CD₂Cl₂ (0.45 mL) and subjected to NMR
spectroscopy. Promoted 1 H/ 2 H scrambling between nBu₃SnD ($\mathbf{2a}$ - d_1) and Et₃SnH ($\mathbf{2b}$) was observed by 1 H, 2 H, and 119 Sn NMR spectroscopy. Selected spectroscopic data of the resulting mixture: ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ/ppm = 4.65 (s, 1H, nBu₃SnH), 4.73 (s, 1H, Et₃SnH). ²H NMR (77 MHz, CD₂Cl₂, 298 K): δ/ppm = 4.74 (s, 1H, nBu₃SnD), 4.82 (s, 1H, Et₃SnD). ¹¹⁹Sn{¹H} NMR (186 MHz, CD₂Cl₂, 298 K): δ/ppm = -88.4 (t, $^{1}J_{Sn,D}$ = 241.7 Hz, nBu₃SnD), -86.7 (s, nBu₃SnH), -67.1 (t, $^{1}J_{Sn,D}$ = 239.1 Hz, Et₃SnD), -65.4 (s, Et₃SnH). The same reaction performed without catalyst [**5b**]⁺[BAr^F₄]⁻ did not lead to 1 H/ 2 H scrambling between nBu₃SnD (**2a**- d_1) and Et₃SnH (**2b**). # 8.3 Attempted Scrambling Between Phenyl Acetylene- d_1 (1a- d_1) and 1-Ethynyl-4-methylbenzene (1h) **Scheme S5** Scrambling experiment between phenyl acetylene- d_1 (1a- d_1) and 1-ethynyl-4-methylbenzene (1b). In a glove box, a 2-mL screw-capped vial was charged with catalyst $[\bf{5b}]^{+}[BAr^{F}_{4}]^{-}$ (2.8 mg, 2.0 µmol, 1.4 mol %), $CH_{2}Cl_{2}$ (0.05 mL), phenyl acetylene- d_{1} ($\bf{1a}$ - d_{1} , 16 mg, 0.16 mmol, 1.0 equiv) and 1-ethynyl-4-methylbenzene ($\bf{1h}$, 16 mg, 0.14 mmol, 1.1 equiv). The mixture was stirred for 2 h, transferred to a J. Young NMR tube using $CD_{2}Cl_{2}$ (0.45 mL) and subjected to NMR spectroscopy. No $^{1}H/^{2}H$ scrambling between phenyl acetylene- d_{1} ($\bf{1a}$ - d_{1}) and 1-ethynyl-4-methylbenzene ($\bf{1h}$) was observed by ^{1}H and ^{2}H NMR spectroscopy. #### 8.4 Competition Experiment **Scheme S6** Competition experiment between $[\mathbf{5b} \cdot n \mathsf{Bu}_3 \mathsf{SnH}]^{\dagger} [\mathsf{B}(\mathsf{C}_6 \mathsf{F}_5)_4]^{-}$ and $[\mathbf{5b} \cdot \mathsf{PhCCH}]^{\dagger} [\mathsf{B}(\mathsf{C}_6 \mathsf{F}_5)_4]^{-}$. #### a) Premixing $[5b]^{\dagger}[B(C_6F_5)_4]^{-}$ with phenyl acetylene (1a): In a glove box a J. Young NMR tube was charged with $[\mathbf{5b}]^{+}[B(C_6F_5)_4]^{-}$ (21 mg, 15 µmol, 1.0 equiv) and CD_2Cl_2 (0.5 mL). After addition of phenyl acetylene ($\mathbf{1a}$, 4.0 mg, 39 µmol, 2.9 equiv) the sample was directly subjected to ^{1}H NMR spectroscopy and the formation of $[\mathbf{5b} \cdot PhCCH]^{+}[B(C_6F_5)_4]^{-}$ was confirmed. After subsequent addition of nBu_3SnH ($\mathbf{2a}$, 4.0 mg, 15 µmol, 1.0 equiv) in the glove box the sample was again subjected to NMR spectroscopy and the formation of $[\mathbf{5b} \cdot nBu_3SnH]^{+}[B(C_6F_5)_4]^{-}$ was confirmed. #### b) Premixing $[5b]^{\dagger}[B(C_6F_5)_4]^{\dagger}$ with nBu_3SnH (**2a**): In a glove box a J. Young NMR tube was charged with $[\mathbf{5b}]^{+}[B(C_6F_5)_4]^{-}$ (21 mg, 15 µmol, 1.0 equiv) and CD_2Cl_2 (0.5 mL). After addition of nBu_3SnH (2a, 4.0 mg, 15 µmol, 1.0 equiv) the sample was directly subjected to ^{1}H NMR spectroscopy and the formation of $[\mathbf{5b} \cdot nBu_3SnH]^{+}[B(C_6F_5)_4]^{-}$ was confirmed. After subsequent addition of phenyl acetylene (1a, 4.0 mg, 39 µmol, 2.9 equiv) in the glove box the sample was again subjected to NMR spectroscopy and the formation of $[\mathbf{5b} \cdot PhCCH]^{+}[B(C_6F_5)_4]^{-}$ was confirmed. ## 8.5 Attempted Hydrogenation of Alkynyl Stannane 3aa and Dehydrogenation of Vinyl Stannane 4aa **Scheme S7** Attempted hydrogenation of **3aa** and dehydrogenation of **4aa**. #### a) Attempted hydrogenation of 3aa: In a glove box, a Schlenk tube was charged with catalyst [$\mathbf{5b}$]⁺[BAr^F₄]⁻ (1.4 mg, 1.0 µmol, 1.3 mol %), tetracosane as internal standard (1 mg), CH₂Cl₂ (0.05 mL), and $\mathbf{3aa}$ (30 mg, 77 µmol, 1.0 equiv). Outside the glove box, the Schlenk tube was connected to a hydrogen balloon and the atmosphere was flushed with dihydrogen. The mixture was stirred for 24 h at r.t.. GLC analysis showed no conversion. #### b) Attempted dehydrogenation of 4aa: In a glove box, a 2-mL screw-capped vial was charged with catalyst $[\mathbf{5b}]^{\dagger}[BAr^{F}_{4}]^{-}$ (1.4 mg, 1.0 µmol, 1.3 mol %), tetracosane as internal standard (1 mg), $CH_{2}CI_{2}$ (0.05 mL), and **4aa** (30 mg, 77 µmol, 1.0 equiv). The mixture was stirred for 24 h at r.t.. GLC analysis showed no conversion. #### 8.6 Intermolecular Competition Experiment between 1c and 1i **Scheme S8** Intermolecular Competition Experiment between 1c and 1i. In a glove box, a 2-mL screw-capped vial was charged with catalyst [$\mathbf{5b}$]⁺[BAr^F₄]⁻ (1.4 mg, 1.0 µmol, 1.0 mol %), CH₂Cl₂ (0.05 mL), nBu₃SnH (29 mg, 0.10 mmol, 1.0 equiv), 4-ethynyl- α , α , α -trifluorotoluene ($\mathbf{1c}$, 19 mg, 0.11 mmol, 1.1 equiv) and 1-ethynyl-4-methylbenzene ($\mathbf{1i}$, 13 mg, 0.11 mmol, 1.1 equiv). The mixture was stirred at 30 °C. The reaction was quenched after 48 h using a solution of Et₃N in n-pentane (1%). Filtration over a plug of Al₂O₃ and subsequent evaporation of the solvents afforded a mixture of the alkynyl stannanes $\mathbf{3ac}$ and $\mathbf{3ai}$ as colorless oil. A ratio of $\mathbf{3ac}$: $\mathbf{3ai}$ = 13:87 was determined by GLC analysis and was confirmed by 1 H NMR spectroscopy. ## 9 Spectra *Figure S1* ¹H NMR (500 MHz, C₆D₆): Tributyl(phenylethynyl)stannane (3aa) **Figure S2** $^{13}C\{^1H\}$ NMR (126 MHz, C_6D_6): Tributyl(phenylethynyl)stannane (**3aa**) *Figure* S3 ¹¹⁹Sn{¹H} NMR (186 MHz, C₆D₆): Tributyl(phenylethynyl)stannane (3aa) *Figure S4* ¹H NMR (500 MHz, C₆D₆): Triethyl(phenylethynyl)stannane (**3ba**) **Figure S5** $^{13}C\{^1H\}$ NMR (126 MHz, C_6D_6): Triethyl(phenylethynyl)stannane (**3ba**) Figure S6 ¹¹⁹Sn{¹H} NMR (186 MHz, C₆D₆): Triethyl(phenylethynyl)stannane (3ba) $\textbf{\textit{Figure S7}} \ ^{1}\text{H NMR (500 MHz, } C_{6}D_{6}\text{): } Tributyl((4-fluorophenyl)ethynyl)stannane \textbf{(3ab)}$ Figure S8 ¹³C{¹H} NMR (126 MHz, C₆D₆): Tributyl((4-fluorophenyl)ethynyl)stannane (3ab) Figure S9 ¹⁹F{¹H} NMR (659 MHz, C₆D₆): Tributyl((4-fluorophenyl)ethynyl)stannane (3ab) $\textbf{\textit{Figure S10}} \ ^{119} Sn\{^{1}H\} \ NMR \ (186 \ MHz, \ C_{6}D_{6}): \ Tributyl((4-fluorophenyl)ethynyl) stannane \ \textbf{(3ab)}$ *Figure S11* ¹H NMR (500 MHz, C₆D₆): Tributyl((4-(trifluoromethyl)phenyl)ethynyl)stannane (**3ac**) Figure S12 13 C $\{^1$ H $\}$ NMR (126 MHz, C_6D_6): Tributyl((4-(trifluoromethyl)phenyl)ethynyl)stannane (3ac) $\textbf{\textit{Figure S13}}^{19} F\{^1 H\} \text{ NMR (471 MHz, } C_6 D_6): Tributyl((4-(trifluoromethyl)phenyl)ethynyl)stannane \textbf{(3ac)}$ $\textbf{\textit{Figure S14}}^{119} Sn\{^{1}H\} \ NMR \ (186 \ MHz, \ C_{6}D_{6}): \ Tributyl((4-(trifluoromethyl)phenyl)ethynyl)stannane \ \textbf{(3ac)}$ Figure S15 ¹H NMR (500 MHz, C₆D₆): Methyl 4-((tributylstannyl)ethynyl)benzoate (3ad) Figure S16 ¹³C{¹H} NMR (126 MHz, C₆D₆): Methyl 4-((tributylstannyl)ethynyl)benzoate (3ad) Figure S17 ¹¹⁹Sn{¹H} NMR (186 MHz, C₆D₆): Methyl 4-((tributylstannyl)ethynyl)benzoate (3ad) Figure S18 ¹H NMR (500 MHz, C₆D₆): Tributyl((4-chlorophenyl)ethynyl)stannane (3ae) Figure S19 13 C $\{^1$ H $\}$ NMR (126 MHz, C_6D_6): Tributyl((4-chlorophenyl)ethynyl)stannane (3ae) $\textbf{\textit{Figure S20}} \ ^{119} Sn\{^1H\} \ NMR \ (186 \ MHz, \ C_6D_6): \ Tributyl((4-chlorophenyl)ethynyl) stannane \ \textbf{(3ae)}$ Figure S21 ¹H NMR (500 MHz, C₆D₆): ((4-bromophenyl)ethynyl)tributylstannane (3af) $\textbf{\textit{Figure S22}} \ ^{13}\text{C}\{^{1}\text{H}\} \ \text{NMR (126 MHz, C}_{6}\text{D}_{6}\text{): ((4-bromophenyl)ethynyl)tributylstannane (\textbf{3af})}$ $\textbf{\textit{Figure S23}}^{119} Sn\{^1H\} \ NMR \ (186 \ MHz, \ C_6D_6): ((4-bromophenyl)ethynyl)tributylstannane \ \textbf{(3af)}$ Figure S24 ¹H NMR (500 MHz, C₆D₆): Tributyl((4-methoxyphenyl)ethynyl)stannane (3ag) Figure S25 ¹³C{¹H} NMR (126 MHz, C₆D₆): Tributyl((4-methoxyphenyl)ethynyl)stannane (3ag) $\textbf{\textit{Figure S26}} \ ^{119} Sn\{^{1}H\} \ NMR \ (186 \ MHz, \ C_{6}D_{6}): \ Tributyl((4-methoxyphenyl)ethynyl)stannane \ \textbf{(3ag)}$ Figure S27 ¹H NMR (500 MHz, C₆D₆): ([1,1'-biphenyl]-4-ylethynyl)tributylstannane (3ah) $\textbf{\textit{Figure S28}}^{\ 13}\text{C}\{^1\text{H}\}\ \text{NMR}\ (126\ \text{MHz},\ C_6D_6):\ ([1,1'-biphenyl]-4-ylethynyl) tributylstannane\ (\textbf{3ah})$ $\textbf{\textit{Figure S29}}^{\ 119} Sn\{^1H\} \ NMR \ (186 \ MHz, \ C_6D_6): ([1,1'-biphenyl]-4-ylethynyl) tributyl stannane \ (\textbf{3ah})$ **Figure S30** 1 H NMR (500 MHz, $C_{6}D_{6}$): Tributyl(4-tolylethynyl)stannane (**3ai**) Figure S31 ¹³C{¹H} NMR (126 MHz, C₆D₆): Tributyl(4-tolylethynyl)stannane (3ai) $\textit{Figure S32} \text{ }^{119}\text{Sn}\{^{1}\text{H}\} \text{ NMR (186 MHz, } C_{6}D_{6}\text{): } \text{Tributyl(4-tolylethynyl)stannane (3ai)}$ Figure S33 ¹H NMR (500 MHz, C₆D₆): Tributyl(3-tolylethynyl)stannane (3aj) Figure S34 13 C $\{^1$ H $\}$ NMR (126 MHz, C_6D_6): Tributyl(3-tolylethynyl)stannane (3aj) Figure S35 119 Sn $\{^{1}$ H $\}$ NMR (186 MHz, C_6D_6): Tributyl(3-tolylethynyl)stannane (3aj) Figure S36 ¹H NMR (500 MHz, C₆D₆): Tributyl(2-tolylethynyl)stannane (3ak) $\textbf{\textit{Figure S37}}^{\ 13}\text{C}\{^1\text{H}\}\ \text{NMR}\ (126\ \text{MHz},\ C_6D_6):\ Tributyl(2-tolylethynyl)stannane\ (\textbf{3ak})$ *Figure S38* ¹¹⁹Sn{¹H} NMR (186 MHz, C₆D₆): Tributyl(2-tolylethynyl)stannane (**3ak**) Figure S39 ¹H NMR (500 MHz, C₆D₆): Tributyl(3-phenylprop-1-yn-1-yl)stannane (3al) $\textbf{\textit{Figure S40}} \ ^{13}\text{C}\{^{1}\text{H}\} \ \text{NMR (126 MHz, } C_6D_6)\text{: Tributyl(3-phenylprop-1-yn-1-yl)stannane (\textbf{3al})}$ $\textbf{\textit{Figure S41}}^{119} Sn\{^1H\} \ NMR \ (186 \ MHz, \ C_6D_6): \ Tributyl(3-phenylprop-1-yn-1-yl) stannane \ (\textbf{3al})$ Figure S42 ¹H NMR (500 MHz, C₆D₆): Tributyl(cyclopentylethynyl)stannane (3am) **Figure S43** $^{13}\text{C}\{^1\text{H}\}$ NMR (126 MHz, C_6D_6): Tributyl(cyclopentylethynyl)stannane (**3am**) *Figure S44* ¹¹⁹Sn{¹H} NMR (186 MHz, C₆D₆): Tributyl(cyclopentylethynyl)stannane (**3am**) *Figure S45* ¹H NMR (500 MHz, C₆D₆): Tributyl(cyclohexylethynyl)stannane
(**3an**) $\textit{Figure S46} \ ^{13}\text{C}\{^1\text{H}\} \ \text{NMR} \ (126 \ \text{MHz}, \ \text{C}_6\text{D}_6): \ \text{Tributyl(cyclohexylethynyl)stannane} \ (\textbf{3an})$ $\textbf{\textit{Figure S47}} \ ^{119} Sn\{^{1}H\} \ NMR \ (186 \ MHz, \ C_{6}D_{6}): \ Tributyl(cyclohexylethynyl) stannane \ \textbf{(3an)}$ Figure S48 ¹H NMR (500 MHz, C₆D₆): Tributyl(hex-1-yn-1-yl)stannane (3ao) Figure S49 13 C $\{^1$ H $\}$ NMR (126 MHz, C_6D_6): Tributyl(hex-1-yn-1-yl)stannane (3ao) *Figure \$50* 119 Sn $\{^{1}$ H $\}$ NMR (186 MHz, $C_{6}D_{6}$): Tributyl(hex-1-yn-1-yl)stannane (**3ao**) $\textbf{\textit{Figure S51}}^{\ 1} \text{H NMR (500 MHz, } C_6D_6\text{): } Tributyl(5\text{-chloropent-1-yn-1-yl}) stannane \textbf{(3ap)}$ Figure S52 ¹³C{¹H} NMR (126 MHz, C₆D₆): Tributyl(5-chloropent-1-yn-1-yl)stannane (3ap) *Figure S53* 119 Sn 1 H} NMR (186 MHz, C_6D_6): Tributyl(5-chloropent-1-yn-1-yl)stannane (**3ap**) Figure S54 ¹H NMR (500 MHz, C₆D₆): (4-bromobut-1-yn-1-yl)tributylstannane (3aq) *Figure \$55* 13 C $\{^1$ H $\}$ NMR (126 MHz, C_6D_6): (4-bromobut-1-yn-1-yl)tributylstannane (**3aq**) *Figure S56* 119 Sn $\{^{1}$ H $\}$ NMR (186 MHz, C_6D_6): (4-bromobut-1-yn-1-yl)tributylstannane (**3aq**) Figure S57 ¹H NMR (500 MHz, C₆D₆): Trimethyl((tributylstannyl)ethynyl)silane (3ar) $\textbf{\textit{Figure S58}}^{\ 13}\text{C}\{^1\text{H}\}\ \text{NMR}\ (126\ \text{MHz},\ C_6D_6):\ Trimethyl((tributylstannyl)ethynyl)silane\ (\textbf{3ar})$ **Figure S59** ²⁹Si-DEPT NMR (99 MHz, C_6D_6 , optimized for J = 8 Hz): Trimethyl((tributylstannyl)ethynyl)silane (**3ar**) *Figure S60* ¹¹⁹Sn{¹H} NMR (186 MHz, C₆D₆): Trimethyl((tributylstannyl)ethynyl)silane (**3ar**) Figure S61 ¹H NMR (500 MHz, C₆D₆): Triisopropyl((tributylstannyl)ethynyl)silane (3as) $\textbf{\textit{Figure S62}} \ ^{13}\text{C}\{^1\text{H}\} \ \text{NMR} \ (126 \ \text{MHz}, \ C_6D_6): \ Triisopropyl((tributylstannyl)ethynyl)silane \ \textbf{(3as)}$ **Figure S63** ²⁹Si-DEPT NMR (99 MHz, C_6D_6 , optimized for J = 8 Hz): Triisopropyl((tributylstannyl)ethynyl)silane (**3as**) Figure S64 ¹¹⁹Sn{¹H} NMR (186 MHz, C₆D₆): Triisopropyl((tributylstannyl)ethynyl)silane (3as) $\textbf{\textit{Figure S65}}^{\ 1} \text{H NMR (500 MHz, C}_{6} \text{D}_{6} \text{): Tributyl(cyclohex-1-en-1-ylethynyl)stannane (\textbf{3at})}$ Figure S66 ¹³C{¹H} NMR (126 MHz, C₆D₆): Tributyl(cyclohex-1-en-1-ylethynyl)stannane (3at) Figure S67 ¹¹⁹Sn{¹H} NMR (186 MHz, C₆D₆): Tributyl(cyclohex-1-en-1-ylethynyl)stannane (3at) Figure S68 ¹H NMR (500 MHz, C_6D_6): Tributyl(1-phenylprop-1-en-2-yl)stannane (β-(Z)-4au) and Tributyl(1-phenylprop-1-en-1-yl)stannane (α-(Z)-4au) **Figure S69** 13 C{ 1 H} NMR (126 MHz, C₆D₆): Tributyl(1-phenylprop-1-en-2-yl)stannane (β-(*Z*)-**4au**) and Tributyl(1-phenylprop-1-en-1-yl)stannane (α-(*Z*)-**4au**) **Figure S70** ¹¹⁹Sn{¹H} NMR (186 MHz, C₆D₆): Tributyl(1-phenylprop-1-en-2-yl)stannane (β-(Z)-4au) and Tributyl(1-phenylprop-1-en-1-yl)stannane (α-(Z)-4au) **Figure S71** 1 H NMR (500 MHz, $CD_{2}CI_{2}$): [**5c**] $^{+}$ [BAr $^{F}_{4}$] $^{-}$ **Figure S72** $^{13}\text{C}\{^1\text{H}\}$ NMR (126 MHz, CD_2Cl_2): $[\mathbf{5c}]^{\dagger}[\text{BAr}^F_{4}]^{-}$ **Figure S73** $^{11}B\{^{1}H\}$ NMR (161 MHz, $CD_{2}CI_{2}$): [**5c**] $^{+}[BAr^{F}_{\ 4}]^{-}$ **Figure S74** ¹⁹F{¹H} NMR (471 MHz, CD₂Cl₂): [**5c**]⁺[BAr^F₄]⁻ **Figure S75** $^{31}P\{^{1}H\}$ NMR (203 MHz, $CD_{2}CI_{2}$): [**5c**] $^{+}[BAr_{4}^{F}]^{-}$ **Figure S76** ¹H NMR (500 MHz, CD_2CI_2 , 213 K): $[5a \cdot nBu_3SnH]^{+}[BAr_4^{F}]^{-}$ Figure S77 Expanded ¹H NMR (500 MHz, CD₂Cl₂, 213 K): Aromatic region of [5a·nBu₃SnH][†][BAr^F₄]⁻ Figure S78 Expanded ¹H NMR (500 MHz, CD₂Cl₂, 213 K): Aliphatic region of [5a·nBu₃SnH]⁺[BAr^F₄]⁻ **Figure S79** $^{13}\text{C}\{^1\text{H}\}$ NMR (125 MHz, CD₂Cl₂, 213 K): [**5a**·*n*Bu₃SnH] † [BAr $^F_{\ 4}$] $^-$ **Figure S80** $^{11}B\{^{1}H\}$ NMR (161 MHz, $CD_{2}CI_{2}$, 213 K): [$\mathbf{5a} \cdot nBu_{3}SnH]^{\dagger}[BAr_{4}^{F}]^{-}$ **Figure S81** $^{19}F\{^1H\}$ NMR (471 MHz, CD_2CI_2 , 213 K): $[\mathbf{5a} \cdot n \mathsf{Bu}_3 \mathsf{SnH}]^{\dagger}[\mathsf{BAr}^F_{4}]^{-}$ **Figure S83** 119 Sn 1 H} NMR (186 MHz, CD₂Cl₂, 213 K): [**5a**·*n*Bu₃SnH] † [BAr F ₄] $^{-}$ **Figure S84** 1 H NMR (500 MHz, CD₂Cl₂, 253 K): [**5b**·*n*Bu₃SnH] $^{+}$ [BAr $^{F}_{4}$] $^{-}$ **Figure S85** Expanded ¹H NMR (500 MHz, CD_2CI_2 , 253 K): Aromatic region of $[\mathbf{5b} \cdot nBu_3SnH]^{\dagger}[BAr_4^F]^{\dagger}$ (* = CH_2CI_2) **Figure S86** Expanded ¹H NMR (500 MHz, CD_2CI_2 , 253 K): Aliphatic region of [**5b**· nBu_3SnH][†][BAr^F₄]⁻ **Figure S87** 1 H/ 13 C HSQC NMR (500/126 MHz, CD₂Cl₂, 253 K): [**5b**·nBu₃SnH] $^{+}$ [BAr $^{F}_{4}$] $^{-}$ Figure S88 ¹H/¹³C HMBC NMR (500/126 MHz, CD₂Cl₂, 253 K): [5b·nBu₃SnH][†][BAr^F₄]⁻ Figure S89 ¹¹B{¹H} NMR (161 MHz, CD₂Cl₂, 253 K): [5b·nBu₃SnH]⁺[BAr^F₄]⁻ **Figure S90** ¹⁹ $F\{^1H\}$ NMR (471 MHz, CD₂Cl₂, 253 K): [**5b**·*n*Bu₃SnH]⁺[BAr^F₄]⁻ **Figure S91** $^{31}P\{^{1}H\}$ NMR (203 MHz, $CD_{2}CI_{2}$, 253 K): $[{\bf 5b}\cdot n{\rm Bu}_{3}{\rm SnH}]^{+}[{\rm BAr}^{F}_{\ 4}]^{-}$ **Figure S92** 119 Sn 1 H} NMR (186 MHz, CD $_{2}$ Cl $_{2}$, 253 K): [**5b**·nBu $_{3}$ SnH] $^{+}$ [BAr $^{F}_{4}$] $^{-}$ **Figure S93** 1 H NMR (700 MHz, CD₂Cl₂, 253 K): [$\mathbf{5c} \cdot n \mathbf{Bu_3} \mathbf{SnH}$] $^{\dagger} [\mathbf{BAr}^{\mathbf{F}}_{4}]^{-}$ Figure S94 Expanded ¹H NMR (700 MHz, CD₂Cl₂, 253 K): Aromatic region of [5c·nBu₃SnH][†][BAr^F₄]⁻ **Figure S95** Expanded ¹H NMR (700 MHz, CD_2CI_2 , 253 K): Aromatic region of $[\mathbf{5c} \cdot n Bu_3 SnH]^{\dagger}[BAr_4^F]^{-}$ **Figure S96** 13 C 1 H} NMR (175 MHz, CD₂Cl₂, 253 K): [**5c**·*n*Bu₃SnH] † [BAr F ₄] $^{-}$ Figure S97 ¹¹B{¹H} NMR (224 MHz, CD₂Cl₂, 253 K): [5c·nBu₃SnH]⁺[BAr^F₄]⁻ **Figure S98** ¹⁹ $F\{^1H\}$ NMR (659 MHz, CD_2CI_2 , 253 K): [**5c**·*n*Bu₃SnH]⁺[BAr^F₄]⁻ *Figure \$100* ¹¹⁹Sn{¹H} NMR (261 MHz, CD₂Cl₂, 253 K): [**5c**⋅*n*Bu₃SnH][†][BAr^F₄][−] **Figure S101** 1 H NMR (500 MHz, CD₂Cl₂, 213 K): $[\mathbf{5d} \cdot n \mathsf{Bu}_{3}\mathsf{SnH}]^{\dagger}[\mathsf{BAr}^{\mathsf{F}}_{4}]^{-}$ **Figure S102** Expanded 1 H NMR (500 MHz, CD₂Cl₂, 213 K): Arylarea of $[\mathbf{5d} \cdot n \mathbf{Bu}_3 \mathbf{SnH}]^{\dagger}[\mathbf{BAr}^{\mathbf{F}}_{\phantom{\mathbf{A}}}]^{}$ **Figure S103** Expanded 1 H NMR (500 MHz, CD₂Cl₂, 213 K): Aliphatic region of $[\mathbf{5d} \cdot n \mathsf{Bu}_3 \mathsf{SnH}]^{\dagger}[\mathsf{BAr}^F_{4}]^{-}$ **Figure S104** $^{13}\text{C}\{^1\text{H}\}$ NMR (126 MHz, CD_2Cl_2 , 213 K): $[\mathbf{5d} \cdot n \text{Bu}_3 \text{SnH}]^{\dagger}[\text{BAr}^F_{4}]^{-}$ $\textit{Figure 105} \ ^{11} B\{^{1} H\} \ NMR \ (161 \ MHz, \ CD_{2}Cl_{2}, \ 213 \ K): \ [\textbf{5d} \cdot n Bu_{3}SnH]^{+} [BAr^{F}{}_{4}]^{-}$ Figure \$106 ¹⁹F{¹H} NMR (471 MHz, CD₂Cl₂, 213 K): [5d·nBu₃SnH]⁺[BAr^F₄]⁻ **Figure \$108** 119 Sn $\{^{1}$ H $\}$ NMR (186 MHz, CD₂Cl₂, 213 K): [**5d**·*n*Bu₃SnH] $^{+}$ [BAr $^{F}_{4}$] $^{-}$ **Figure S109** ¹H NMR (500 MHz, CD_2CI_2 , 253 K): [**5b**·Et₃SnH]⁺[BAr^F₄]⁻ (* = Et₂O) **Figure S110** Expanded 1 H NMR (500 MHz, CD_2CI_2 , 253 K): Aromatic region of $[\mathbf{5b} \cdot Et_3SnH]^{\dagger}[BAr_4^F]^{-}$ $\textbf{\textit{Figure S111}} \ \, \text{Expanded} \ \, ^{1}\text{H NMR (500 MHz, CD}_{2}\text{Cl}_{2}, 253 \text{ K)} : \ \, \text{Aliphatic region of } [\textbf{5b} \cdot \text{Et}_{3}\text{SnH}]^{\dagger} [\text{BAr}^{\text{F}}_{\phantom{\text{4}}}]^{-}$ **Figure S112** $^{13}\text{C}\{^1\text{H}\}$ NMR (126 MHz, CD₂Cl₂, 253 K): $[\mathbf{5b}\cdot\text{Et}_3\text{SnH}]^{^+}[\text{BAr}^F_{4}]^{^-}$ **Figure S113** $^{11}B\{^{1}H\}$ NMR (161 MHz, $CD_{2}CI_{2}$, 253 K): [**5b**·Et₃SnH] $^{+}$ [BAr $^{F}_{4}$] $^{-}$ **Figure S114** 19 F $\{^1$ H $\}$ NMR (471 MHz, CD₂Cl₂, 253 K): [**5b**·Et₃SnH] $^+$ [BAr F_4] $^-$ **Figure S115** $^{31}P\{^{1}H\}$ NMR (203 MHz, $CD_{2}CI_{2}$, 253 K): [**5b**·Et $_{3}SnH]^{+}[BAr_{4}^{F}]^{-}$ **Figure S116** 119 Sn $\{^{1}$ H $\}$ NMR (186 MHz, CD $_{2}$ Cl $_{2}$, 253 K): [**5b**·Et $_{3}$ SnH] $^{+}$ [BAr $_{4}^{F}$] $^{-}$ *Figure S117* 1 H NMR (500 MHz, CD₂Cl₂, 298 K): [**5b**·PhCCH] $^{^{+}}$ [B(C₆F₅)₄] $^{^{-}}$ Figure S118 Expanded ¹H NMR (500 MHz, CD₂Cl₂, 298 K): Aromatic region of [5b·PhCCH]⁺[B(C₆F₅)₄]⁻ $\textbf{\textit{Figure S119}} \ \text{Expanded} \ ^{1}\text{H NMR (500 MHz, CD}_{2}\text{Cl}_{2}, \ 298 \ \text{K): Aliphatic region of } [\textbf{5b} \cdot \text{PhCCH}]^{+}[\text{B}(\text{C}_{6}\text{F}_{5})_{4}]^{-}$ **Figure S120** $^{13}\text{C}\{^1\text{H}\}$ NMR (126 MHz, CD_2Cl_2 , 298 K): $[\mathbf{5b}\cdot\text{PhCCH}]^{^+}[B(C_6F_5)_4]^{^-}$ *Figure S121* 11 B $\{^{1}$ H $\}$ NMR (161 MHz, CD $_{2}$ CI $_{2}$, 298 K): [5b·PhCCH] $^{^{+}}$ [B(C $_{6}$ F $_{5}$) $_{4}$] $^{^{-}}$ *Figure S122* ¹⁹F{¹H} NMR (471 MHz, CD₂Cl₂, 298 K): [**5b**·PhCCH]⁺[B(C₆F₅)₄][−] $\textbf{\textit{Figure S123}} \ \ ^{31}P\{^{1}H\} \ \ NMR \ \ (202 \ \ MHz, \ CD_{2}CI_{2}, \ 298 \ \ K): \ \ [\textbf{5b} \cdot PhCCH]^{^{+}}[B(C_{6}F_{5})_{4}]^{^{-}}$ Figure S124 ¹H NMR (500 MHz, CD₂Cl₂, 298 K): [5b·4-TolCCH]⁺[BAr^F₄]⁻ *Figure S125* Expanded ¹H NMR (500 MHz, CD₂Cl₂, 298 K): Aromatic region of [**5b**·4-TolCCH]⁺[BAr^F₄]⁻ $\textbf{\textit{Figure S126}} \ \, \text{Expanded 1H NMR (500 MHz, $CD_{2}CI_{2}$, 298 K)$: Aliphatic region of $[\textbf{5b}\cdot 4-\text{ToICCH}]^{+}[BAr^{F}_{\ 4}]^{-}$ and $(\textbf{500 MHz}, \textbf{CD}_{2}CI_{2}, \textbf{CO}_{2}CI_{2}, \textbf{CO}_{2}$ **Figure S127** $^{13}\text{C}\{^1\text{H}\}$ NMR (126 MHz, CD_2Cl_2 , 298 K): $[\mathbf{5b}\cdot 4\text{-ToICCH}]^{\dagger}[\text{BAr}^F_{4}]^{-}$ Figure \$128 ¹¹B{¹H} NMR (161 MHz, CD₂Cl₂, 298 K): [5b·4-TolCCH]⁺[BAr^F₄]⁻ **Figure S129** ¹⁹ $F\{^1H\}$ NMR (471 MHz, CD_2Cl_2 , 298 K): [**5b**·4-TolCCH]⁺[BAr^F₄]⁻ **Figure S131** ¹H NMR (500 MHz, CD₂Cl₂, 298 K): DmpSSn*n*Bu₃ Figure S132 13
C $\{^1$ H $\}$ NMR (126 MHz, CD $_2$ CI $_2$, 298 K): DmpSSnnBu $_3$ Figure \$133 119 Sn{1H} NMR (186 MHz, CD₂Cl₂, 298 K): DmpSSnnBu₃ Figure S134 ¹H NMR (500 MHz, CD₂Cl₂, 298 K): Scrambling experiment of nBu₃SnD (2a- d_1) and Et₃SnH (2b) in the presence of catalyst [5b]⁺[BAr^F₄]⁻ (* = Et₂O) Figure S135 2 H NMR (77 MHz, CD₂Cl₂, 298 K): Scrambling experiment of nBu₃SnD (2a- d_1) and Et₃SnH (2b) in the presence of catalyst [5b] † [BAr $^{F}_{4}$] $^{-}$ Figure S136 ¹¹⁹Sn{¹H} NMR (186 MHz, CD₂Cl₂, 298 K): Scrambling experiment of nBu₃SnD (2a- d_1) and Et₃SnH (2b) in the presence of catalyst [5b][†][BAr^F₄]⁻ **Figure S137** ¹H NMR (500 MHz, CD_2CI_2 , 298 K): Competition experiment: a) Premixing of [**5b**] ⁺[BAr^F₄] with phenyl acetylene (**1a**) and subsequent addition of nBu_3SnH (**2a**) **Figure S138** ¹H NMR (500 MHz, CD_2CI_2 , 298 K): Competition experiment: b) Premixing of [**5b**] [†][BAr^F₄] with nBu₃SnH (**2a**) and subsequent addition of phenyl acetylene (**1a**) ## 10 References - [S1] van der Kerk, G. J. M.; Noltes, J. G.; Luijten, J. G. A. J. Appl. Chem. 1957, 7, 366–369. - [S2] (a) For a synthesis of NaBAr^F₄, see: Nishida, H.; Takada, N.; Yoshimura, M.; Sonoda, T.; Kobayashi, H. *Bull. Chem. Soc. Jpn.* **1984**, *57*, 2600–2604. (b) For a synthesis of di-μ-chloridobis[chlorido(η⁶-p-cymol)ruthenium(II)], see: Bennett, M. A.; Smith, A. K. *J. Chem. Soc., Dalton Trans.* **1974**, 233–241. (c) For a synthesis of the thiolate ligand, see: Ellison, J. J.; Ruhlandt-Senge, K.; Power, P. P.; *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 1178–1180. For the synthesis of ruthenium(II) thiolate complexes, see: (d) Ohki, Y.; Takikawa, Y.; Sadohara, H.; Kesenheimer, C.; Engendahl, B.; Kapatina, E.; Tatsumi, K. *Chem.–Asian J.* **2008**, *3*, 1625–1635. (e) Stahl, T.; Müther, K.; Ohki, Y.; Tatsumi, K.; Oestreich, M. *J. Am. Chem. Soc.* **2013**, *135*, 10978–10981. (f) Hermeke, J.; Klare, H. F. T.; Oestreich, M. *Chem.–Eur. J.* **2014**, *20*, 9250–9254. (g) Forster, F.; Metsänen, T. T.; Irran, E.; Hrobárik, P.; Oestreich, M. *J. Am. Chem. Soc.* **2017**, *139*, 16334–16342. - [S3] Harris, R. K.; Becker, E. D.; Cabral de Menezes, S. M.; Goodfellow, R.; Granger, P. Pure Appl. Chem. 2001, 73, 1795–1818. - [S4] (a) Shirakawa, E.; Morita, R.; Tsuchimoto, T.; Kawakami, Y. J. Am. Chem. Soc. 2004, 126, 13614–13615. (b) Kiyokawa, K.; Tachikake, N.; Yasuda, M.; Baba, A. Angew. Chem., Int. Ed. 2011, 50, 10393–10396. (c) Suzuki, I.; Esumi, N.; Yasuda, M.; Baba, A. Chem. Lett. 2015, 44, 38–40. - [S5] Wrackmeyer, B. J. Organomet. Chem. 1978, 145, 183–188. - [S6] DelPozo, J.; Carrasco, D.; Pérez-Temprano, M. H.; García-Melchor, M.; Álvarez, R.; Casares, J. A.; Espinet, P. Angew. Chem., Int. Ed. 2013, 52, 2189–2193. - [S7] Ricci, A.; Angelucci, F.; Bassetti, M.; Lo Sterzo, C. J. Am. Chem. Soc. 2002, 124, 1060– 1071. - [S8] Meana, I.; Albéniz, A. C.; Espinet, P. Adv. Synth. Catal. 2010, 352, 2887–2891. - [S9] Hatakeyama, S.; Shibahara, S.; Fujino, M.; Tashiro, Y.; Okamoto, N.; Esumi, T.; Takahashi, K.; Ishihara, J. *Synthesis* **2009**, 2935–2953. - [S10] Kinashi, N.; Sakaguchi, K.; Katsumura, S.; Shinada, T. *Tetrahedron Lett.* **2016**, *57*, 129–132. - [S11] Zhang, H. X.; Guibé, F.; Balavoine, G. J. Org. Chem. 1990, 55, 1857–1867.