Ligand Exchange Reaction for Controlling the Conformation of Platinum-Containing Polymers

Yu Miyagi, ${ }^{\dagger}$ Takahiro Ishida, ${ }^{\dagger}$ Manabu Marumoto, ${ }^{\dagger}$ Natsuhiro Sano, ${ }^{\dagger}$ Tatsuo Yajima, ${ }^{\dagger}$ Fumio Sanda,${ }^{*}{ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
${ }^{\dagger}$ R\&D Division, Nippon Chemical Industrial Co., LTD., 9-11-1 Kameido, Koto-ku, Tokyo 136-8515

Table of Contents

Experimental Procedures
 \qquad

References
 -5

Figure S1. ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectroscopic change of a mixture of compound 1 and dppe over a period of $0-24$ hours measured in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$.

Figure S2. ${ }^{31} \mathrm{P}$ NMR (162 MHz) spectroscopic change of a mixture of compound $\mathbf{1}$ and dppe over a period of $0-24$ hours measured in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$.

Figure S3. First-order plot of the transformation from $\mathbf{3}_{\text {dimer }}$ into $\mathbf{3}$ in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $45^{\circ} \mathrm{C}$.

Figure S4. First-order plot of the transformation of $\mathbf{3}_{\text {dimer }}$ into $\mathbf{3}$ in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$.

Figure S5. First-order plot of the transformation of $\mathbf{3}_{\text {dimer }}$ into $\mathbf{3}$ in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $55^{\circ} \mathrm{C}$.

Figure S6. First-order plot of the transformation of $\mathbf{3}_{\text {dimer }}$ into $\mathbf{3}$ in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $75^{\circ} \mathrm{C}$.

Figure S7. Arrhenius plot of the transformation from $\mathbf{3}_{\text {dimer }}$ into $\mathbf{3}$ in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$. Rate constants k were evaluated from the slopes of the first-order plots.

Figure S8. ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectroscopic change of a mixture of compound $\mathbf{1}$ and dppb over a period of $0-24$ hours measured in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$.

Figure S9. ${ }^{31} \mathrm{P}$ NMR (162 MHz) spectroscopic change of a mixture of compound $\mathbf{1}$ and dppb over a period of $0-24$ hours measured in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$.

Figure S10. SEC charts (eluent: CHCl_{3}, detector: RI) of a mixture of compound $\mathbf{1}$ and dppb in $\mathrm{CHCl}_{3}(c=10 \mathrm{mM})$ over a period of $0-24$ hours at $25^{\circ} \mathrm{C}$.

Figure S11. IR spectra of a mixture of compound 1 and dppb in $\mathrm{CHCl}_{3}(c=10 \mathrm{mM})$ over a period of 10 min and 48 hours at $25^{\circ} \mathrm{C}$.

Figure S12. ${ }^{31} \mathrm{P}$ NMR (162 and 240 MHz) spectra of polymers $\mathbf{1}^{\prime}, \mathbf{2}^{\prime}, \mathbf{3}^{\prime}$ and $\mathbf{4}^{\prime}$ measured in
$\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}\left(20^{\circ} \mathrm{C}\right)$.
Figure S13. CD and UV-vis spectra of polymer 1' measured in various solvents ($c=0.02 \mathrm{mM}$, $20^{\circ} \mathrm{C}$).

Figure S14. CD and UV-vis spectra of polymer 2' measured in various solvents ($c=0.02 \mathrm{mM}$, $20^{\circ} \mathrm{C}$).

Figure S15. CD and UV-vis spectra of polymer $\mathbf{3}^{\prime}$ measured in various solvents ($c=0.02 \mathrm{mM}$, $20^{\circ} \mathrm{C}$).

Figure S16. CD and UV-vis spectra of polymer $\mathbf{4}^{\prime}$ measured in various solvents ($\mathrm{c}=0.02 \mathrm{mM}$, $20^{\circ} \mathrm{C}$).

Figure S17. Tilt view of a 12-mer model for polymer 2'. The geometries were optimized by the DFT method [B3LYP/6-31G* (C, H, N, O, P)-LANL2DZ (Pt)].
Table S1: $\lambda_{\max }$ and hydrodynamic diameters of polymer 4^{\prime}.

CIF files of $\mathbf{1}, \mathbf{2}, \mathbf{3}_{\text {dimer }}$ and $\mathbf{3}$
mol2 files of $\mathbf{2}^{\prime}$ and $\mathbf{3}^{\prime}$

Experimental Procedures

Measurements. ${ }^{1} \mathrm{H}(400 \mathrm{MHz}),{ }^{13} \mathrm{C}(100 \mathrm{MHz})$ and ${ }^{31} \mathrm{P}(162$ and 240 MHz$)$ NMR were recorded on a JEOL ECA-400, a JEOL ECS-400 and a JEOL ECS-600. IR spectra were measured on a JASCO FT/IR-4100 spectrophotometer. Melting points (mp) were measured on a Yanaco micro melting point apparatus. Number-average molecular weight $\left(M_{\mathrm{n}}\right)$ and dispersity (Ξ) values of model compounds were determined by SEC (Shodex columns K803, K804, K805) eluted with CHCl_{3} as the eluent at $40{ }^{\circ} \mathrm{C}$ calibrated with polystyrene standards. M_{n} and $Đ$ values of polymers were determined by SEC (TSK gel $\alpha-3000$) using a solution of $\operatorname{LiBr}(10 \mathrm{mM})$ in N, N-dimethylformamide (DMF) as the eluent at $40^{\circ} \mathrm{C}$ calibrated with polystyrene standards. CD and UV-vis absorption spectra were recorded on a JASCO J-820 spectropolarimeter. DLS measurements were performed using a Malvern Instruments Zetasizer Nano ZSP at $20{ }^{\circ} \mathrm{C}$. The measured autocorrelation function was analyzed using the cumulant method. The Z-average values of the polymers were calculated from the Stokes-Einstein equations. The X-ray experiments were carried out with a Rigaku RAXIS imaging plate area detector with graphite-monochromated $\mathrm{MoK} \alpha$ radiation $(\lambda=0.71070 \AA$). The crystal was mounted on a nylon loop at $-150{ }^{\circ} \mathrm{C}$. To determine the cell constant and orientation matrix, three oscillation photographs were taken for each frame with an oscillation angle of 3° and exposure time of 30 s . Intensity data were corrected from the oscillation photographs, and the reflection data were corrected for Lorentz and polarization effects. The structures were solved by the direct method. ${ }^{1}$ Non-hydrogen atoms were refined anisotropically by a full-matrix least-squares calculation. Hydrogen atoms were found from the difference Fourier map and isotropically refined. All calculations were performed using the CrystalStructure ${ }^{2}$ and Crystals ${ }^{3}$ crystallographic software packages.

Materials. Reagents, including di-tert-butyl dicarbonate [(Boc) $)_{2} \mathrm{O}$, TOKUYAMA], 4-(4,6-dimethoxy-1,3,5-triazine-2-yl)-4-methylmorpholinium chloride (TRIAZIMOCH, TOKUYAMA), anhydrous THF (Wako, water max. 0.001%), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (Aldrich, assay 99.9\%) and CuI (Wako, 99.5\%), were used as received. $3^{\prime}, 5^{\prime}$-Diiodo-4'-hydroxy- N - α-tert-butoxycarbonyl-D-phenylglycine hexylamide 4 and dichlorobis(triphenylphosphine)platinum ${ }^{5}$ were synthesized according to the literature. 1-Ethynyl-4-[2-(trimethylsilyl)ethynyl]benzene was synthesized from 1-bromo-4-iodobenzene in a manner similar to the synthesis of 1-ethynyl-3-[2-(trimethylsilyl)ethynyl]benzene. ${ }^{6}$

Synthesis of Bis\{4-ethynylphenylethynyl\}bis(triphenylphosphine)platinum (1).

1-Ethynyl-4-[2-(trimethylsilyl)ethynyl]benzene
(0.99
g, $\quad 5.0$
mmol), dichlorobis(triphenylphosphine) platinum ($1.973 \mathrm{~g}, 2.5 \mathrm{mmol}$) and $\mathrm{CuI}(0.095 \mathrm{~g}, 0.5 \mathrm{mmol})$ were dissolved in $\mathrm{Et}_{2} \mathrm{NH}(70 \mathrm{~mL})$ under argon at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred with refluxing at $65^{\circ} \mathrm{C}$ for 8 h . The mixture was filtered, and the filtrate was concentrated to obtain a yellow solid. The residual mass was purified by silica gel column chromatography eluted with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad=\quad 1 / 0-1 / 1 \quad(\mathrm{v} / \mathrm{v}) \quad$ to \quad obtain bis \{4-[2-(trimethylsilyl)ethynyl]phenylethynyl\}bis(triphenylphosphine)platinum as a white solid. A KOH ($1.224 \mathrm{~g}, 22 \mathrm{mmol}$) solution in water (11 mL) was added to a solution of bis \{4-[2-(trimethylsilyl)ethynyl]phenylethynyl\}bis(triphenylphosphine)platinum (2.430 g, 2.2 $\mathrm{mmol})$ in $\mathrm{THF} / \mathrm{methanol}(218 \mathrm{~mL} / 174 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 4 h . The mixture was filtered, and the filtrate was concentrated to obtain a yellow liquid. The residual mass was purified by silica gel column chromatography eluted with CHCl_{3} to obtain 1 as a brown solid in 74% yield. No mp was observed up to $250^{\circ} \mathrm{C}$. IR (KBr): 3281, 3057, 2958, 2918, 2102, 1597, 1501, 1491, 1482, 1435, 1377, 1216, 1186, 1099, 1028, 999, 839, 741, 707, 693, 547, 524, $515 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $3.01[\mathrm{~s}, 2 \mathrm{H},-\mathrm{C} \equiv \mathrm{C}-H], 6.20-6.22(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.02-7.05$ (d, $J=6.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar})$, 7.33-7.42 (m, 18H, P-Ar), 7.77-7.81 (m, 12H, P-Ar). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 77.2,84.4$, 113.3, $114.7[-C \equiv C-H,-C \equiv C-], 117.8,128.0,130.4,130.8,131.0,131.3,131.6,135.1$ [Ar, $\mathrm{P}-$ Ar]. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.3\left[J_{(\mathrm{Pt}-\mathrm{P})}=2663 \mathrm{~Hz},-\mathrm{PPh}_{3}\right]$. Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{40} \mathrm{P}_{2} \mathrm{Pt}$: C, 69.34; H, 4.16. Found: C, 69.51 ; H, 4.52.

Synthesis of Polymer 1'. The polymerization was carried out in a glass tube equipped with a three-way stopcock under argon. A solution of $\mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(5.7 \mathrm{mg}, 5 \mu \mathrm{~mol})$ in THF $(0.8 \mathrm{~mL})$ and a solution of $\mathrm{CuI}(0.95 \mathrm{mg}, 5 \mu \mathrm{~mol})$ in $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL})$ were added to a mixture of monomers $3^{\prime}, 5^{\prime}$-diiodo-4'-hydroxy- N - α-tert-butoxycarbonyl-D-phenylglycine hexylamide ($30.1 \mathrm{mg}, 0.05$ $\mathrm{mmol})$ and $1(48.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ under argon, and the resulting solution was kept at $60^{\circ} \mathrm{C}$ for 24 h . Then, the reaction mixture was poured into a large volume of hexane to precipitate a polymeric mass. It was separated by filtration using a membrane filter (ADVANTEC H100A047A), and dried under reduced pressure to obtain $\mathbf{1}^{\prime}$. Yield: quantitative. $M_{\mathrm{n}}=15,000, ~ D$ $=1.9$. The product was further purified by preparative high-performance liquid chromatography
in order to remove Pd and Cu residues. IR (KBr): 3413, 3053, 2955, 2926, 2673, 2199, 2102, $1711,1672,1593,1560,1482,1435,1391,1366,1228,1161,1120,1098,1071,1028,998,912$, $839,796,746,723,707,692,618,542,523,514 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.63-0.94$ (br, $\left.3 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), 1.00-1.81\left[\mathrm{br}, 17 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.00-3.40[\mathrm{br}, 2 \mathrm{H},-$ $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right], 5.00-5.20(\mathrm{br}, 1 \mathrm{H}, \mathrm{NHCO}), 5.52-6.50\left(\mathrm{br}, 3 \mathrm{H}, \mathrm{C}^{*} H, \mathrm{OCONH}, \mathrm{OH}\right), 6.80-8.00$ (br, $40 \mathrm{H}, \mathrm{Ar}, \mathrm{PAr}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.3\left[J_{(\mathrm{Pt}-\mathrm{P})}=2684 \mathrm{~Hz},-\mathrm{PPh}_{3}\right]$.

Ligand Exchange Reactions. The ligand exchange reactions were carried out in a Schlenk flask under argon. In a typical experiment, a solution of a diphosphine ($10 \mu \mathrm{~mol}$) in $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}(0.1$ mL) was added to a solution of compound $\mathbf{1}$ or polymer $\mathbf{1}^{\prime}(12.6 \mathrm{mg}, 10 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ $(0.9 \mathrm{~mL})$ under argon, and the resulting solution was kept at room temperature for 24 h . Then, the reaction mixture was poured into a large volume of hexane to precipitate a polymeric mass. It was separated by filtration using a membrane filter (ADVANTEC H100A047A), and dried under reduced pressure to obtain the polymers.

Spectroscopic Data of the Products of Ligand Exchange Reactions of 1 with dppe, dppp and

 dppb. 2: IR (KBr): 3278, 3050, 2952, 2918, 2846, 2102, 1597, 1491, 1475, 1432, 1306, 1216, $1171,1157,1103,1068,1026,998,879,838,741,693,616,547,533,511 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}\right): \delta 2.35-2.53\left[\mathrm{br}, 4 \mathrm{H},-\mathrm{PPh}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}_{2} \mathrm{P}-\right], 3.12[\mathrm{~s}, 2 \mathrm{H},-\mathrm{C} \equiv \mathrm{C}-H], 6.96-6.98$ (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.24-7.26$ (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.28-7.52$ (m, 16H, P-Ar), 7.79-7.92 $(\mathrm{m}, 4 \mathrm{H}, \mathrm{P}-\mathrm{Ar}) .{ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}\right): \delta 42.6 \quad\left[J_{(\mathrm{Pt}-\mathrm{P})}=2316 \mathrm{~Hz},-\right.$ $P \mathrm{Ph}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}_{2} P-$]. 3: IR (KBr): 3282, 3231, 3050, 2952, 2918, 2100, 1597, 1500, 1491, 1434, $1308,1217,1158,1101,1069,1026,998,970,837,791,742,693,664,546,515 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$): $\delta 2.42-2.58\left[\mathrm{br}, 6 \mathrm{H},-\mathrm{PPh}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ph}_{2} \mathrm{P}-\right], 3.11[\mathrm{~s}, 2 \mathrm{H},-\mathrm{C} \equiv \mathrm{C}-H]$, 6.99-7.01 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.12-7.23$ (m, 12H, P-Ar, Ar), 7.25-7.38 (m, 8H, P-Ar), 7.667.75 (m, 4H, P-Ar). ${ }^{31} \mathrm{P}$ NMR ($240 \mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$): $\delta-6.04\left[J_{(\mathrm{Pt-P})}=2212 \mathrm{~Hz},-\right.$ $P \mathrm{Ph}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ph}_{2} P-$]. $\mathbf{3}_{\text {dimer: }}$ IR (KBr): 3284, 3050, 2959, 2920, 2099, 1597, 1500, 1491, 1435, $1308,1215,1170,1100,1070,1026,998,955,838,741,692,618,546,512 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}\right): \delta 2.80-3.02\left[\mathrm{br}, 12 \mathrm{H},-\mathrm{PPh}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ph}_{2} \mathrm{P}-\right], 3.08[\mathrm{~s}, 4 \mathrm{H},-\mathrm{C} \equiv \mathrm{C}-H], 6.39-$ 6.46 (d, $J=8.4 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ar}$), 6.97-7.04 (d, $J=8.4 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ar}), 7.16-7.22$ (m, 16H, P-Ar), 7.277.42 ($\mathrm{m}, 16 \mathrm{H}, \mathrm{P}-\mathrm{Ar}$), $7.60-7.68$ (br, $8 \mathrm{H}, \mathrm{P}-\mathrm{Ar}$). ${ }^{31} \mathrm{P}$ NMR ($240 \mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$): $\delta 11.8$ $\left[J_{(\mathrm{Pt}-\mathrm{P})}=2594 \mathrm{~Hz},-\mathrm{PPh}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ph}_{2} P-\right] . \mathbf{4}_{\text {dimer: }}$ IR (KBr): 3283, 3049, 2923, 2098, 1597, 1500,$1476,1434,1308,1214,1179,1100,1069,1025,998,836,741,693,546,513 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$): $\delta 2.18,2.89\left[\mathrm{br}, 16 \mathrm{H},-\mathrm{PPh}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Ph}_{2} \mathrm{P}-\right], 3.11[\mathrm{~s}, 4 \mathrm{H},-\mathrm{C} \equiv \mathrm{C}-H]$, $6.52-6.54(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ar}), 7.11-7.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{Ar}), 7.14-7.42(\mathrm{~m}, 32 \mathrm{H}, \mathrm{P}-\mathrm{Ar})$, $7.67-7.80(\mathrm{~m}, 8 \mathrm{H}, \mathrm{P}-\mathrm{Ar}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$): $\delta 9.79\left[J_{(\mathrm{Pt}-\mathrm{P})}=2555 \mathrm{~Hz},-\right.$ $P \mathrm{Ph}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Ph}_{2} P-$]. 4': IR (KBr): 3282, 3050, 2923, 2098, 1596, 1477, 1434, 1308, 1261, 1199, $1119,1100,1026,997,836,742,721,692,540 \mathrm{~cm}^{-1}$.

Spectroscopic Data of the Polymers Obtained by the Ligand Exchange Reactions of 1' with

 dppe, dppp and dppb. 2': IR (KBr): 3422, 3289, 3053, 2958, 2927, 2851, 2205, 2107, 1735, $1701,1685,1671,1648,1596,1570,1560,1540,1522,1484,1466,1436,1406,1365,1228$, $1162,1105,1028,999,913,839,750,705,692,533 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$): δ $0.60-0.90\left(\mathrm{br}, 3 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), 1.00-1.60\left[\mathrm{br}, 17 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.90-3.30$ [br, 6H, $-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3},-\mathrm{PPh}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}_{2} \mathrm{P}-$], 5.00-5.90 (br, 3H, C* $H, \mathrm{OCONH}, \mathrm{OH}$), 6.608.20 (br, 30H, Ar, $\left.-\mathrm{PPh}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}_{2} \mathrm{P}-\right) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$): $\delta 42.6\left[J_{(\mathrm{Pt}-\mathrm{P})}=2316\right.$ $\left.\mathrm{Hz},-\mathrm{PPh}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}_{2} P-\right]$. 3': IR (KBr): 3414, 3295, 3053, 2952, 2927, 2857, 2205, 2100, 1707, $1671,1595,1560,1484,1435,1406,1391,1366,1231,1161,1100,1028,999,972,913,838$, 792, 743, 693, $513 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$): $\delta 0.70-0.90$ (br, $3 \mathrm{H},-$ $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right)$, 1.00-1.80 [br, $\left.17 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.80-3.70 \quad[\mathrm{br}, 8 \mathrm{H},-$ $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3},-\mathrm{PPh}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ph}_{2} \mathrm{P}-\right], 5.00-5.95$ (br, $\left.3 \mathrm{H}, \mathrm{C}^{*} H, \mathrm{OCONH}, \mathrm{OH}\right), 6.80-8.00(\mathrm{br}, 30 \mathrm{H}$, $\left.\mathrm{Ar},-\mathrm{PPh} h_{2}\left(\mathrm{CH}_{2}\right)_{3} P h_{2} \mathrm{P}-\right) .{ }^{31} \mathrm{P}$ NMR ($240 \mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$): $\delta 12.2\left[J_{(\mathrm{Pt}-\mathrm{P})}=2547 \mathrm{~Hz},-\right.$ $P \mathrm{Ph}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ph}_{2} P-$]. 4': IR (KBr): 3422, 3300, 3053, 2928, 2857, 2205, 2100, 1701, 1676, 1595, $1570,1560,1540,1522,1484,1435,1406,1366,1229,1167,1101,1028,838,741,693,520$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{2} \mathrm{CDCl}_{2}$): $\delta 0.70-0.85$ (br, $\left.3 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right), 0.90-1.80[\mathrm{br}$, $\left.17 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.40-3.35\left[\mathrm{br}, 10 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3},-\mathrm{PPh}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Ph}_{2} \mathrm{P}-\right]$, 5.00-5.95 (br, 3H, C* H, OCONH, OH), 6.30-8.10 (br, 30H, Ar, -PPh $\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Ph}_{2} \mathrm{P}-$).Computation. All calculations were performed with the GAUSSIAN 09 program, ${ }^{7}$ EM64L-G09 Rev E. 01 , running on the supercomputer system, Academic Center for Computing and Media Studies, Kyoto University. The HOMO-LUMO energy levels were calculated by the DFT method with the B3LYP functional ${ }^{8}$ in conjunction with the LANL2DZ ${ }^{9-12}$ basis set for Pt and the $6-31 \mathrm{G}^{*}$ basis set for the other elements.

References

(1) Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; Giacovazzo, C.; Mallamo, M.; Mazzone, A.; Polidori, G.; Spagna, R. SIR2011: A New Package for Crystal Structure Determination and Refinement. J. Appl. Cryst., 2012, 45, 357-361.
(2) Crystal Structure Analysis Package, Rigaku Corporation, Tokyo 196-8666, Japan, 20002016.
(3) Sheldrick, G. M. A Short History of SHELX. Acta Cryst. 2008, A64, 112-122.
(4) Liu, R.; Shiotsuki, M.; Masuda, T.; Sanda, F. Synthesis and Chiroptical Properties of Hydroxyphenylglycine-Based $\quad \operatorname{Poly}(m$-phenyleneethynylene- p-phenyleneethynylene)s. Macromolecules 2009, 42, 6115-6122.
(5) Miyaura, N.; Suzuki, A. Domino Diels-Alder Reaction: 3,3a,3b,4,6a,7a-Hexahydro-3,4,7-Metheno-7H-Cyclopenta[a]pentalene-7,8-Dicarboxylic Acid. Org. Synth. Coll. 1993, 8, 532-534.
(6) Miyagi, Y.; Shibutani, Y.; Otaki, Y.; Sanda, F. Synthesis of Platinum-Containing Poly(phenyleneethynylene)s Having Various Chromophores: Aggregation and Optical Properties. Polym. Chem. 2016, 7, 1070-1078.
(7) Frisch, M. J.; Trucks, G. W.; Schlegel,H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith,T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision E.01, Gaussian, Inc.: Wallingford CT, 2013.
(8) Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785-789.
(9) Dunning, T. H., Jr.; Hay, P. J. In Modern Theoretical Chemistry; Schaefer, H. F., III, Ed.;

Plenum: New York, 1976, Vol. 3, pp 1-28.
(10) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270-283.
(11) Wadt, W. R.; Hay, P. J. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. J. Chem. Phys. 1985, 82, 284-298.
(12) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985, 82, 299 -310.

Figure S1. ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectroscopic change of a mixture of compound $\mathbf{1}$ and dppe over a period of $0-24$ hours measured in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$.

Figure S2. ${ }^{31}$ P NMR (162 MHz) spectroscopic change of a mixture of compound $\mathbf{1}$ and dppe over a period of $0-24$ hours measured in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$.

Figure S3. First-order plot of the transformation from $\mathbf{3}_{\text {dimer }}$ into $\mathbf{3}$ in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $45^{\circ} \mathrm{C}$.

Figure S4. First-order plot of the transformation of $\mathbf{3}_{\text {dimer }}$ into $\mathbf{3}$ in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$.

Figure S5. First-order plot of the transformation of $\mathbf{3}_{\text {dimer }}$ into $\mathbf{3}$ in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $55^{\circ} \mathrm{C}$.

Figure S6. First-order plot of the transformation of $\mathbf{3}_{\text {dimer }}$ into $\mathbf{3}$ in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $75^{\circ} \mathrm{C}$.

Figure S7. Arrhenius plot of the transformation from $\mathbf{3}_{\text {dimer }}$ into $\mathbf{3}$ in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$. Rate constants k were evaluated from the slopes of the first-order plots.

Figure S8. ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectroscopic change of a mixture of compound $\mathbf{1}$ and dppb over a period of $0-24$ hours measured in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$.

Figure S9. ${ }^{31} \mathrm{P}$ NMR (162 MHz) spectroscopic change of a mixture of compound $\mathbf{1}$ and dppb over a period of $0-24$ hours measured in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}(c=10 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$.

Figure S10. SEC charts (eluent: CHCl_{3}, detector: RI) of a mixture of compound $\mathbf{1}$ and dppb in $\mathrm{CHCl}_{3}(c=10 \mathrm{mM})$ over a period of $0-24$ hours at $25^{\circ} \mathrm{C}$.

After 48 h

Figure S11. IR spectra of a mixture of compound 1 and dppb in $\mathrm{CHCl}_{3}(c=10 \mathrm{mM})$ over a period of 10 min and 48 hours at $25^{\circ} \mathrm{C}$.
polymer 4'

240 MHz

$$
J_{(\mathrm{Pt}-\mathrm{P})}=2316 \mathrm{~Hz}
$$

162 MHz
polymer 1'
δ (ppm)

$$
J_{(\mathrm{Pt}-\mathrm{P})}=2684 \mathrm{~Hz}
$$

162 MHz

Figure S12. ${ }^{31} \mathrm{P}$ NMR (162 and 240 MHz) spectra of polymers $\mathbf{1}^{\prime}, \mathbf{2}^{\prime}, \mathbf{3}^{\prime}$ and $\mathbf{4}^{\prime}$ measured in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}\left(20^{\circ} \mathrm{C}\right)$.

Figure S13. CD and UV-vis spectra of polymer $\mathbf{1}^{\prime}$ measured in various solvents $(c=0.02 \mathrm{mM}$, $20^{\circ} \mathrm{C}$).

Figure S14. CD and UV-vis spectra of polymer $\mathbf{2}^{\prime}$ measured in various solvents $(c=0.02 \mathrm{mM}$, $20^{\circ} \mathrm{C}$).

Figure S15. CD and UV-vis spectra of polymer $\mathbf{3}^{\prime}$ measured in various solvents ($c=0.02 \mathrm{mM}$, $20^{\circ} \mathrm{C}$).

Figure S16. CD and UV-vis spectra of polymer $\mathbf{4}^{\prime}$ measured in various solvents $(c=0.02 \mathrm{mM}$, $20^{\circ} \mathrm{C}$.

Figure S17. Tilt view of a 12-mer model for polymer 2'. The geometries were optimized by the DFT method [B3LYP/6-31G* (C, H, N, O, P)-LANL2DZ (Pt)].

Table S1. $\lambda_{\max }$ and Hydrodynamic Diameters of Polymer 4^{\prime}

		hydrodynamic diameter ${ }^{b}(\mathrm{~nm})$				
polymer	$\lambda_{\text {max }}{ }^{a}$	$\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$	$\mathrm{CHCl}_{2} \mathrm{CHCl}_{2} /$	$\mathrm{CHCl}_{2} \mathrm{CHCl}_{2} /$	$\mathrm{CHCl}_{2} \mathrm{CHCl}_{2} /$	$\mathrm{CHCl}_{2} \mathrm{CHCl}_{2} /$
	(nm)		$\mathrm{MeOH}=1 / 9$	hexane $=1 / 9$	toluene $=1 / 9$	DMF $=1 / 9$
$\mathbf{4}^{\prime}$	370	28	$-^{c}$	1200	3000	20

${ }^{a}$ Measured in $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}(c=0.02 \mathrm{mM})$ at $20{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Measured by DLS $(c=0.02 \mathrm{mM})$ at $25^{\circ} \mathrm{C}$. ${ }^{c}$ Could not be determined.

