Supporting information

Dynamic changes of intracellular monomer levels regulate block sequence of polyhydroxyalkanoates in engineered *Escherichia coli*

Ken'ichiro Matsumoto,* Chiaki Hori, Ryunosuke Fujii, Masahiro Takaya, Takashi Ooba, Toshihiko Ooi, Takuya Isono, Toshifumi Satoh and Seiichi Taguchi

Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8,

Kita-ku, Sapporo 060-8628, JAPAN

Table of contents

Plasmid construction

Table S1. P(2HB-co-3HB) production in recombinant *E. coli* expressing PhaC1_{Ps}STQK.

Figure S1. ¹H NMR of the polyesters synthesized in *E. coli*.

Figure S2. ¹H NMR analysis of solvent-fractionated samples of P(2HB-*b*-3HB) and blend of P(2HB) and P(3HB).

Figure S3. DSC thermograms of polymers composed of 2HB and 3HB.

Figure S4. Reaction of PhaC1_{Ps}STQK with 2HB-CoA and 3HB-CoA.

Plasmid construction. The phb operon promoter region of R. eutropha was **PCR** amplified by using pair of primers; AAGGTACCCGGGCAAGTACCTTGCCGACAT and TCTCTCGAGTCACTATTCGAACCGGCTCCG. The KpnI/XhoI fragment inserted into the KpnI/XhoI sites of pBluescript KS⁺ to yield pBSP_{Re}. propionyl-CoA transferase (pct) gene from Megasphaera elsdenii was amplified from pTV118NpctC1STQKAB using pair of primers; AGATCTAGGAGGTAAACAATGAGAAAAGTAGAAATCA and GAGCTCTGCAGGTTATTTTTCAGTC. The BglII/SacI fragment was inserted into the BamHI/SacI sites of pBSP_{Re} to yield pBSP_{Re}pct. The chimeric PHA synthase gene, which is composed of PhaCs from Aeromonas caviae and Ralstonia eutropha, designated as PhaCAR, was amplified from pGEMCAcRe12AB23 using a pair of primers; CGGTTCGAATAGTGACTCGAGCCGGTTCGAATCTAGAAAT and CGATACCGTCGACCTCGACAATGGAAACGGGAGGAAC. The amplified fragment was inserted into the XhoI site of pBSP_{Re}pct using an In-Fusion dry-down PCR cloning kit (Clontech) to yield pBSP_{Re}phaC_{AR}pct.

Table S1. P(2HB-co-3HB) production in recombinant *E. coli* expressing PhaC1_{Ps}STQK.

PhaC	Sodium 3HB (g/L)	Sodium 2HB (g/L)	Cell dry weight (g/L)	Polymer production (g/L)	2HB fraction (mol%)	<i>M</i> _w (×10 ⁻⁴)	PDI ^a
STQK	5	5	2.2±0.24	0.11±0.01	51.5±3.6	5.9	1.6
STQK	5	10	0.66±0.23	0.12±0.01	88.4±0.5	5.7	2.2

^apolydispersity index

(a) P(2HB-b-3HB) at 12 h

(b) P(2HB-b-3HB) at 18 h

(c) P(2HB-b-3HB) at 24 h

(d) P(2HB-ran-3HB)

Figure S1. ¹H NMR of polyesters synthesized in *E. coli*. P(2HB-*b*-3HB) at 12 h (a), 18 h (b) and 24 h (c), P(2HB-*ran*-3HB) (d), P(2HB) (e) and P(3HB) (f).

(a) P(2HB-b-3HB) before fractionation

(b) THF-soluble fraction of P(2HB-b-3HB)

(c) THF-insoluble fraction of P(2HB-b-3HB)

(d) a blend of P(2HB) and P(3HB)

(e) THF-soluble fraction of the blend

(f) THF-insoluble fraction of the blend

Figure S2. ¹H NMR analysis of solvent-fractionated samples of P(2HB-*b*-3HB) and blend of P(2HB) and P(3HB). (a) P(2HB-*b*-3HB) before fractionation, (b) tetrahydrofuran (THF)-soluble fraction of P(2HB-*b*-3HB), (c) THF-insoluble fraction of P(2HB-*b*-3HB), (d) a blend of P(2HB) and P(3HB). (e) THF-soluble fraction of the blend, and (f) THF-insoluble fraction of the blend.

Figure S3. DSC thermograms of the polymers composed of 2HB and 3HB. (a) P(87 mol% 2HB-*b*-3HB), (b) a 85:15 blend of P(2HB) and P(3HB), and (c) P(85 mol% 2HB-*b*-3HB). The samples were melted at 200 °C for 3 min, rapidly cooled to 70 °C and annealed at 70 °C for 6 h for promoting crystallization. The sample was cooled to -70 °C and heated to 200 °C at heating rate of 10 °C/min. The thermogram was reported during the heating scan.

Figure S4. Reaction of PhaC1_{Ps}STQK with 2HB-CoA and 3HB-CoA. (a) 3HB-CoA was used as a substrate, (b) 2HB-CoA was used as a substrate and (c) 2HB-CoA and 3HB-CoA were used as substrates. Square: 2HB-CoA, and diamond: 3HB-CoA.