Supporting information

Dynamic changes of intracellular monomer levels regulate block sequence of polyhydroxyalkanoates in engineered Escherichia coli

Ken'ichiro Matsumoto,* Chiaki Hori, Ryunosuke Fujii, Masahiro Takaya, Takashi Ooba, Toshihiko Ooi, Takuya Isono, Toshifumi Satoh and Seiichi Taguchi

Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, JAPAN

Table of contents

Plasmid construction

Table S1. P(2HB-co-3HB) production in recombinant E. coli expressing PhaC1 $1_{\mathrm{Ps}} \mathrm{STQK}$.
Figure S1. ${ }^{1} \mathrm{H}$ NMR of the polyesters synthesized in E. coli.
Figure S2. ${ }^{1} \mathrm{H}$ NMR analysis of solvent-fractionated samples of $\mathrm{P}(2 \mathrm{HB}-b-3 \mathrm{HB})$ and blend of $\mathrm{P}(2 \mathrm{HB})$ and $\mathrm{P}(3 \mathrm{HB})$.
Figure S3. DSC thermograms of polymers composed of 2 HB and 3 HB .
Figure S4. Reaction of $\mathrm{PhaC1}_{\mathrm{PS}_{S}} \mathrm{STQK}$ with $2 \mathrm{HB}-\mathrm{CoA}$ and $3 \mathrm{HB}-\mathrm{CoA}$.

Plasmid construction. The phb operon promoter region of R. eutropha was amplified by PCR using a pair of primers; AAGGTACCCGGGCAAGTACCTTGCCGACAT and TCTCTCGAGTCACTATTCGAACCGGCTCCG. The KpnI/XhoI fragment was inserted into the $K p n \mathrm{I} / X h o \mathrm{I}$ sites of pBluescript KS^{+}to yield $\mathrm{pBSP}_{\mathrm{Re}}$. The propionyl-CoA transferase (pct) gene from Megasphaera elsdenii was amplified from pTV118NpctC1STQKAB using a pair of primers; AGATCTAGGAGGTAAACAATGAGAAAAGTAGAAATCA and GAGCTCTGCAGGTTATTTTTTTCAGTC. The BglII/SacI fragment was inserted into the BamHI/SacI sites of $\mathrm{pBSP}_{\mathrm{Re}}$ to yield $\mathrm{pBSP}_{\mathrm{Re}} \mathrm{pct}$. The chimeric PHA synthase gene, which is composed of PhaCs from Aeromonas caviae and Ralstonia eutropha, designated as $\mathrm{PhaC}_{\mathrm{AR}}$, was amplified from pGEMC $\mathrm{AcRel}^{2} \mathrm{AB}^{23}$ using a pair of primers; CGGTTCGAATAGTGACTCGAGCCGGTTCGAATCTAGAAAT and CGATACCGTCGACCTCGACAATGGAAACGGGAGGGAAC. The amplified fragment was inserted into the XhoI site of $\mathrm{pBSP}_{\text {Re }}$ pct using an In-Fusion dry-down PCR cloning kit (Clontech) to yield $\mathrm{pBSP}_{\mathrm{Re}}$ phaC $\mathrm{AR}_{\mathrm{AR}} \mathrm{pct}$.

Table S1. $\mathrm{P}\left(2 \mathrm{HB}-\right.$ co-3HB) production in recombinant E. coli expressing $\mathrm{PhaC1}_{\mathrm{Ps}} \mathrm{STQK}$.

	Sodium $3 H B$ PhaC $(\mathrm{g} / \mathrm{L})$	Sodium 2HB $(\mathrm{g} / \mathrm{L})$	Cell dry weight $(\mathrm{g} / \mathrm{L})$	Polymer production $(\mathrm{g} / \mathrm{L})$	2HB fraction $(\mathrm{mol} \%)$	M_{w} $\left(\times 10^{-4}\right)$	PDI $^{\text {a }}$
STQK	5	5	2.2 ± 0.24	0.11 ± 0.01	51.5 ± 3.6	5.9	1.6
STQK	5	10	0.66 ± 0.23	0.12 ± 0.01	88.4 ± 0.5	5.7	2.2

${ }^{\text {a }}$ polydispersity index
(a) $\mathrm{P}(2 \mathrm{HB}-b-3 \mathrm{HB})$ at 12 h

$3 \mathrm{HB}(3)$
18

(b) $\mathrm{P}(2 \mathrm{HB}-b-3 \mathrm{HB})$ at 18 h

(c) $\mathrm{P}(2 \mathrm{HB}-b-3 \mathrm{HB})$ at 24 h

(d) $\mathrm{P}(2 \mathrm{HB}-\mathrm{ran}-3 \mathrm{HB})$

(e) $\mathrm{P}(2 \mathrm{HB})$

Figure S1. ${ }^{1} \mathrm{H}$ NMR of polyesters synthesized in E. coli. $\mathrm{P}(2 \mathrm{HB}-b-3 \mathrm{HB})$ at 12 h (a), 18 h (b) and 24 h (c), $\mathrm{P}(2 \mathrm{HB}-$ ran- 3 HB) (d), $\mathrm{P}(2 \mathrm{HB})$ (e) and $\mathrm{P}(3 \mathrm{HB})$ (f).
(a) $\mathrm{P}(2 \mathrm{HB}-b-3 \mathrm{HB})$ before fractionation

(b) THF-soluble fraction of $\mathrm{P}(2 \mathrm{HB}-b-3 \mathrm{HB})$

(c) THF-insoluble fraction of $\mathrm{P}(2 \mathrm{HB}-b-3 \mathrm{HB})$

(d) a blend of $\mathrm{P}(2 \mathrm{HB})$ and $\mathrm{P}(3 \mathrm{HB})$

(e) THF-soluble fraction of the blend

(f) THF-insoluble fraction of the blend

Figure S2. ${ }^{1} \mathrm{H}$ NMR analysis of solvent-fractionated samples of $\mathrm{P}(2 \mathrm{HB}-b-3 \mathrm{HB})$ and blend of $\mathrm{P}(2 \mathrm{HB})$ and $\mathrm{P}(3 \mathrm{HB})$. (a) $\mathrm{P}(2 \mathrm{HB}-b-3 \mathrm{HB})$ before fractionation, (b) tetrahydrofuran (THF)-soluble fraction of $\mathrm{P}(2 \mathrm{HB}-b-3 \mathrm{HB})$, (c) THF-insoluble fraction of $\mathrm{P}(2 \mathrm{HB}-b-3 \mathrm{HB})$, (d) a blend of $\mathrm{P}(2 \mathrm{HB})$ and $\mathrm{P}(3 \mathrm{HB})$. (e) THF-soluble fraction of the blend, and (f) THF-insoluble fraction of the blend.

Figure S3. DSC thermograms of the polymers composed of 2HB and 3HB. (a) $\mathrm{P}(87$ $\mathrm{mol} \% 2 \mathrm{HB}-b-3 \mathrm{HB})$, (b) a $85: 15$ blend of $\mathrm{P}(2 \mathrm{HB})$ and $\mathrm{P}(3 \mathrm{HB})$, and (c) $\mathrm{P}(85 \mathrm{~mol} \%$ $2 \mathrm{HB}-b-3 \mathrm{HB}$). The samples were melted at $200^{\circ} \mathrm{C}$ for 3 min , rapidly cooled to $70^{\circ} \mathrm{C}$ and annealed at $70{ }^{\circ} \mathrm{C}$ for 6 h for promoting crystallization. The sample was cooled to $-70^{\circ} \mathrm{C}$ and heated to $200{ }^{\circ} \mathrm{C}$ at heating rate of $10{ }^{\circ} \mathrm{C} / \mathrm{min}$. The thermogram was reported during the heating scan.

(b)

(c)

Figure S4. Reaction of $\mathrm{PhaC1}_{\mathrm{Ps}} \mathrm{STQK}$ with $2 \mathrm{HB}-\mathrm{CoA}$ and $3 \mathrm{HB}-\mathrm{CoA}$. (a) $3 \mathrm{HB}-\mathrm{CoA}$ was used as a substrate, (b) $2 \mathrm{HB}-\mathrm{CoA}$ was used as a substrate and (c) $2 \mathrm{HB}-\mathrm{CoA}$ and 3HB-CoA were used as substrates. Square: 2HB-CoA, and diamond: 3HB-CoA.

