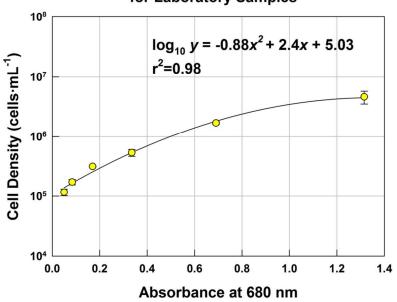
Supporting Information

Detection of cyanobacteria in eutrophic water using a portable electrocoagulator and NanoGene assay

¹ Eun-Hee Lee, ^{2,*} Beelee Chua, ^{1,*}Ahjeong Son

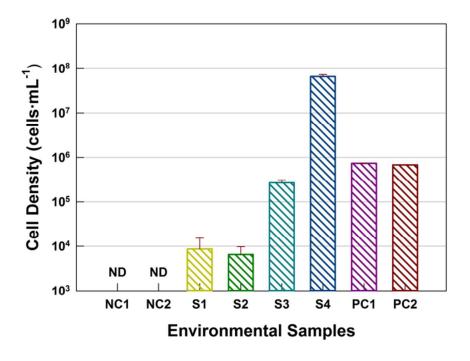
¹ Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
 ² School of Electrical Engineering, Korea University, Seoul, Republic of Korea

*Corresponding Author, Beelee Chua: Present address. 145 Anam-ro, Seongbuk-gu, Korea University, Seoul, 02841, Republic of Korea; E-mail. chuabeelee@gmail.com; Phone. +82 (2) 3290-4639
*Corresponding Author, Ahjeong Son: Present address. 52 Ewhayeodae-gil, Seodaemun-gu, Ewha Womans University, Seoul, 03760, Republic of Korea; E-mail. ahjeong.son@gmail.com; Phone. +82 (2) 3277-3339; Fax. +82 (2) 3277-3275


Summary

- Number of pages: 9
- Number of figures: 4
- Number of tables: 4

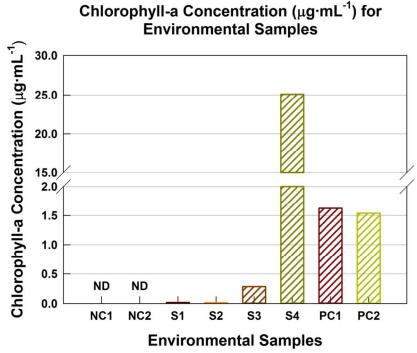
1. Calibration curve: Cell density versus absorbance for laboratory samples


Using a counting chamber and 100 μ L of laboratory sample, the number of *Microcystis aeruginosa* cells in one well was counted via light microscope. The number of wells and conversion factor (10) was multiplied to obtain the cell density (cells·mL⁻¹) in triplicates.

Cell density (cells·mL⁻¹) = cell numbers in 1 well × total numbers of well × 10 (conversion factor) The laboratory sample's absorbance (optical density) at 680 nm was also obtained via SpectraMax M2 spectrofluorometer.

Cell Density (cells·mL⁻¹) versus Absorbance at 680 nm for Laboratory Samples

Figure S1. Cell density (cells \cdot mL⁻¹) versus absorbance at 680 nm for laboratory samples.



Cell Density (cells·mL⁻¹) for Environmental Samples

Figure S2a. Cell density (cells \cdot mL⁻¹) for environmental samples.

2b. Chlorophyll-a concentration for environmental samples

Ten mL of environmental sample was first filtered by a glass fiber filter. The filtered environmental sample was then transferred to 50 mL centrifugal tube and 10 mL of 90% purity acetone was added. Chlorophyll-a was extracted via sonication for 20 min. After centrifugation at 2400 rpm, the supernatant was subjected to absorbance measurement by a SpectraMax M2 spectrofluorometer at 664 nm and 750 nm. The chlorophyll-a concentration ($\mu g \cdot mL^{-1}$) was calculated based on prior reference¹. The measurement was performed in duplicate.

Figure S2b. Chlorophyll-*a* concentration ($\mu g \cdot mL^{-1}$) for environmental samples.

3. Calibration curve for NanoGene assay

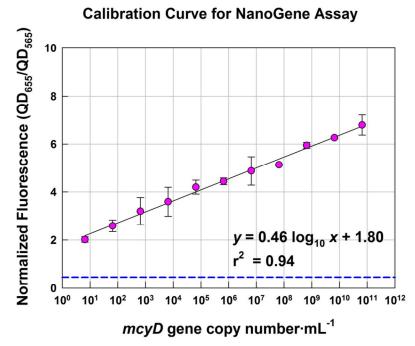


Figure S3. Calibration curve of NanoGene assay. Normalized fluorescence versus mcyD gene copy number. Dotted blue line represents the normalized fluorescence value of template (negative control) in absence of DNA for the NanoGene assay. Symbols and error bars indicate the mean and standard deviations of biological triplicates.

Sample	Location	Latitude/ Longitude	Water temperature (°C)	pН	DO (mg/L)	BOD (mg/L)	COD (mg/L)	SS (mg/L)	T-N (mg/L)	T-P (mg/L)
NC1	Seocho, Seoul	37.47/ 127.03	29.2	7.9	7.9	1.5	5.0	6.8	5.02	0.317
NC2	Anyang, Gyeonngi province	37.39/ 126.97	28.4	7.6	4.5	3.8	7.7	5.6	7.73	0.040
S 1	Gangdong, Seoul	37.54/ 127.11	28.2	7.9	8.3	2.0	4.7	5.5	2.37	0.036
S2	Seongdong, Seoul	37.53/ 127.03	29.1	8.1	6.7	0.8	3.6	3.4	2.44	0.031
S 3	Yongsan, Seoul	37.52/ 126.96	29.6	7.4	4.2	1.5	4.3	6.8	3.45	0.084
S4	Yeongdeungpo, Seoul	37.55/ 126.89	30	7.7	5.1	1.4	5.4	11.6	3.19	0.103

Table S1. Water quality data of environmental test samples.¹

1. DO represents dissolved oxygen; BOD indicates biochemical oxygen demand; COD represents chemical oxygen demand; SS refers to suspended solids; T-N represents total nitrogen; T-P indicates total phosphorus.

	Data	Statistical results
Figure 4a	Op duration (s)	<i>p</i> -value
	0	NA ^a
Pre-concentration	30	0.000142
efficiency (%)	60	0.0797
-	90	0.139
-	120	0.021
-	180	0.342
-	300	0.176
Figure 4b	Op duration (s)	<i>p</i> -value
-	0	NA
Dry cell weight	30	0.250
$(g-DCW \cdot L^{-1})$	60	0.152
-	90	0.435
-	120	0.374
-	180	1.000
-	300	1.000
Figure 4c	Cell density	<i>p</i> -value
-	1.7×10^{5}	0.02780
Pre-concentration	2.2×10^{5}	0.01610
efficiency (%)	3.2×10^{5}	0.91300
	8.6×10^{5}	0.11200
	2.5×10^{6}	0.00019
	4.1×10^{6}	0.00207
Figure 4d	Cell density	<i>p</i> -value
_	1.7×10^{5}	0.795
Dry cell weight	2.2×10^{5}	0.435
$(g-DCW \cdot L^{-1})$	3.2×10^{5}	0.519
	8.6×10^{5}	0.422
	2.5×10^{6}	0.089
	4.1×10^{6}	0.400
Figure 4e	Cell density	<i>p</i> -value
-	3.2×10^{5}	0.622
Normalized	8.6×10^{5}	0.116
fluorescence	2.5×10^{6}	0.400
Figure 4f	Cell density	<i>p</i> -value
-	3.2×10^{5}	0.597
<i>mcyD</i> gene copy	8.6×10^{5}	0.172
number · mL ⁻¹	2.5×10^{6}	0.380

Table S2. Statistical analysis (t-test) between electrocoagulation and centrifugation with reference to Figure 4.

^aNA stands for not applicable.

	Data	Statistical results
Figure 6a & 6b	Sample	<i>p</i> -value
	NC1	NA ^a
Pre-concentration	NC2	NA
efficiency (%)	S1	NA
	S2	NA
	S3	0.0000402
	S4	0.248
	PC1	0.863
	PC2	0.700
Figure 6c & 6d	Sample	<i>p</i> -value
	NC1	NA
Dry cell weight	NC2	NA
$(g-DCW \cdot L^{-1})$	S1	NA
	S2	NA
	S3	0.000562
	S4	0.048
	PC1	0.270
	PC2	0.330

Table S3. Statistical analysis (t-test) between electrocoagulation and centrifugation with reference to Figure 6.

^a NA stands for not applicable.

Table S4. Statistical analysis (t-test) of zeta potential before (raw sample) and after treatments of electrocoagulation and centrifugation with reference to Table 2.

	Data	Statistical results (p-value)	Statistical results (p-value)
Table 2	Sample	Electrocoagulation	Centrifugation
Zeta potential	NC1	NA ^a	NA
(mV)	NC2	NA	NA
	S1	NA	NA
	S2	NA	NA
	S3	0.008	0.333
	S4	0.146	0.117
	PC1	0.00029	0.00695
	PC2	0.00436	0.00144

^a NA stands for not applicable.

References

- 1. Standard methods for examination of water and wastewater, 1998, 20th edition, American Public Health Association, Washington, D.C.
- 2. Water information system, Ministry of environment in Korea, http://water.nier.go.kr/ (accessed date March 2016)