Reversible Phase Transition with Ultra Large Dielectric Relaxation Behaviors in Succinimide - Lithium (I) Hybrids

Yun-Zhi Tang, ^{†*} Bin Wang, [†] Hai-Tao Zhou, [†] Shao-Peng Chen, [†] Yu-Hui Tan, [†] Chang-Feng Wang, [†] Chang-Shan Yang, [†] He-Rui Wen[†]

[†] School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology Ganzhou 341000, P. R. China

Supporting materials

Figure S1 the colorless block crystal of compound 1

Figure S2 IR spectra of compound 1 at room temperature

Figure S3 Thermo gravimetric (TG) and Differential Thermal Analysis (DTA) curves of compound **1**

Calculation of ΔS and N

According to the Boltzmann equation, $\Delta S = nR \ln(N)$, where ΔS is the entropy change extracted from the *Cp* data, *n* is the number of guest molecules per mole (n = 1, here), *R* is the gas constant, and *N* is the number of possible orientations for the disordered system. The calculations of ΔS and *N* values on the heating process of **1** are as follows

Calculation of ΔS and N for the cooling cycle in Compound1

$$\Delta S = \int_{T_1}^{T_2} \frac{Q}{T} dT$$

$$\approx \frac{\Delta H}{T_c}$$

$$= \frac{1.451 J \cdot g^{-1} \times 304.5 g \cdot mol^{-1}}{227.74 K}$$

$$= 1.94 J \cdot mol^{-1} \cdot K^{-1}$$

$$\Delta S = R \ln N$$

$$N = \exp\left(\frac{\Delta S}{R}\right) = \exp\left(\frac{1.94 J \cdot mol^{-1} \cdot K^{-1}}{8.314 J \cdot mol^{-1} \cdot K^{-1}}\right)$$

$$= 1.26$$

Calculation of ΔS and N for the heating cycle in Compound 1

$$\Delta S = \int_{T_1}^{T_2} \frac{Q}{T} dT$$

$$\approx \frac{\Delta H}{T_c}$$

$$= \frac{0.9785 \ J \cdot g^{-1} \times 304.5 \ g \cdot mol^{-1}}{228.01 \ K}$$

$$= 1.31 \ J \cdot mol^{-1} \cdot K^{-1}$$

$$\Delta S = R \ln N$$

$$N = \exp\left(\frac{\Delta S}{R}\right) = \exp\left(\frac{1.31 \ J \cdot mol^{-1} \cdot K^{-1}}{8.314 \ J \cdot mol^{-1} \cdot K^{-1}}\right)$$

$$= 1.17$$

Figure S4 the unit cell unit cell length and β angles for (a) **1-LTP** and (b) **1-RTP** According to the cosine law $a^2=b^2+c^2-2bccosA$ and define of cosine

In 1-LTP (figure S4a),

oc'=oc×cos∠coc'=oc×cos∠21.487°=21.306 Å×cos∠21.487°=19.825 Å

In 1-RTP (figure S4b),

$$ac=(oa^2+oc^2)^{\frac{1}{2}}=(7.8674^2+20.046^2)^{\frac{1}{2}}$$
Å=21.534 Å

thus, we can obtain

 $c_{1-\text{LTP}}$ (21.306 Å) correspond to $a_{1-\text{RTP}}$ - $c_{1-\text{RTP}}$ (21.534 Å)

 c_{1-RTP} (20.046 Å) correspond to o_{1-LTP} c_{1-LTP} '(19.825 Å)

Table S1 Selected bond lengths (Å	() and angles for 1-RTP and 1-LTP
-----------------------------------	-----------------------------------

1-RTP			
Bond	Length/Å	Bond Angles	Angle/°
O1-Li1	1.943(3)	$O1-Li1-O1^2$	118.65(17)
		$O1^3$ -Li1- $O1^4$	118.65(17)
		O1-Li1-O1 ⁴	105.08(8)
		$O1^{3}$ -Li1- $O1^{2}$	105.08(8)
		O1 ³ -Li1-O1	105.08(8)
		$O1^4$ -Li1- $O1^2$	105.08(8)

Asymmetrical codes:¹-X,1/2-Y,+Z; ²-1/4-Y,-1/4+X,1/4-Z; ³-X,-1/2-Y,+Z; ⁴1/4+Y,-1/4-X,1/4-Z;

1-LTP

Bond	Length/Å	Bond	Angle/°
O15-Li1	1.990(13)	O13-Li1-O19	111.5(6)

O16-Li2 ¹	1.910(14)	O13-Li1-O15	115.0(6)
$O20-Li2^3$	1.909(14)	O13-Li1-O17	104.4(6)
O17-Li1	1.925(13)	O19-Li1-O15	101.3(6)
O19-Li1	1.965(13)	O17-Li1-O19	115.7(6)
O13-Li1	1.916(13)	O17-Li1-O15	109.4(6)
$O18-Li2^2$	1.928(14)	O18 ⁵ -Li2-O14	108.7(7)
014-Li2	1.941(15)	O16 ⁴ -Li2–O14	115.8(8)
		O16 ⁴ -Li2-O18 ⁵	103.5(6)
		O20 ⁶ -Li2-O16 ⁴	109.9(7)
		O20 ⁶ -Li2-O14	103.1(6)
		O20 ⁶ -Li2-O18 ⁵	116.4(8)

Asymmetrical codes: ¹+X,1+Y,+Z; ²1/2+X,1/2+Y,+Z; ³-1/2+X,1/2+Y,+Z; ⁴+X,-1+Y,+Z; ⁵-1/2+X,-1/2+Y,+Z; ⁶1/2+X,-1/2+Y,+Z

Figure S5 the three dimensional packing structure assembled by hydrogen bond in **1-RTP**

Figure S6 the three-dimensional packing structure assembled by hydrogen bond in

Figure S7 the dihedral angle (78°) between the neighbor pyrrolidine planes in grid C

in 1-LTP

Figure S8 the real part (ε ') of the dielectric constant dependence on temperature

at different frequency