A Cu^{II}-nitrite That Exhibits Change of Nitrite Binding Mode and Formation of Cu^{II}-nitrosyl Prior to NO Evolution

Ram Chandra Maji^{a)}, Saikat Mishra^{a)}, Anirban Bhandari^{a)}, Ravindra Singh,^{b)} Marilyn M. Olmstead^{c)}, Apurba K. Patra*^{a)}

^{a)} Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713 209, India

^{b)} Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India

^{c)} Department of Chemistry, University of California, Davis, CA 95616, USA

Table of contents

1	Figure S1. FTIR spectrum of HL2 in KBr disk.		
2	Figure S2. ESI mass spectrum of HL2 taken in CH ₃ CN.		
3	Figure S3. ¹ H NMR spectrum of HL2 in CDCl ₃ .		
4	Figure S4. FTIR spectrum of [(L2)CuNO ₂], 2 in KBr disk.		
5	Figure S5. FTIR spectrum of [(L2)Cu(OAc)], 3 in KBr disk		
6	Figure S6. FTIR spectrum of $[Co(Cp)_2][(L2)Cu(CH_3CN)(NO_2)]$, 4 and crude product, $[n-Bu_4N][(L2)Cu(CH_3CN)(NO_2)]$ in KBr disk		
7	Figure S7. ¹ H NMR spectrum of $[Co(Cp)_2][(L2)Cu(CH_3CN)(NO_2)]$, 4 in CD ₃ CN.		
8	Figure S8. Electronic absorption spectra of 1, 2 and 3 in CH ₃ OH solvent.		
9	Figure S9. (A) Electronic absorption spectra of 1, 2 and 3 in CH ₃ CN solvent and (B) Electronic absorption spectra of (i) HL2, (ii) NaL2, (iii) NaL2+ $[Zn(H_2O)_6](ClO_4)_2$ and (iv) NaL2+ $[Zn(H_2O)_6](ClO_4)_2+[n-Bu_4N]NO_2$ in CH ₃ CN		
10	Table S1. Electronic absorption spectral data of the complexes 1-3 and the corresponding complexes of L1 ⁻ analogue.		
11	Figure S10. Electronic absorption spectral changes during titration a CH_3CN solution of 1 with a CH_3CN solution of $[n-Bu_4N]NO_2$.		
12	Figure S11. Cyclic voltammogram of 1 in CH ₃ CN.		
13	Figure S12. DFT-optimized structure, HOMO and LUMO of 2.		
14	Figure S13. DFT-optimized structure, HOMO and LUMO of $[(L2)Cu^{I}(\kappa^{2}-ONO)]^{-}(I)$.		
15	Figure S14. DFT-optimized structure, HOMO and LUMO of $[(L2)Cu^{I}(\kappa^{1}-NO_{2})]^{-}(II)$.		
16	Figure S15. DFT-optimized structure, HOMO and LUMO of $[(L2)Cu^{I}(\kappa^{1}-NO_{2})(CH_{3}CN)]^{-}$ (III).		
17	Figure S16. Experimental setup for standardization of $[NO(g)]$ in CH_3CN and the standardization plot of $NO(g)$.		
18	Figure S17. Electronic absorption spectra of [Co(TPP)] and [Co(TPP)NO]		
19	Figure S18. FTIR spectra of [Co(TPP)] and [Co(TPP)NO].		
20	Figure S19. Calculation of % of Cu(II) formed from disproportionation		
21	Figure S20. X-Band EPR spectra measured at 77 K in CH ₃ CN solution of reduced 2 , reduced 2 plus CH ₃ CO ₂ H showing axial/isotropic signals		
22	Figure S21. DFT-optimized structure, HOMO, HOMO-1, HOMO-2 and LUMO of singlet $[(L2)Cu^{II}(NO)]^+$, IV^{SS}		
23	Figure S22. DFT-optimized structure, HOMO and LUMO of of triplet $[(L2)Cu^{II}(NO)]^+$, IV ^{TS}		
24	Figure S23. Energy profile of IV ^{SS} , IV ^{TS} , V ^{SS} and V ^{TS}		

25	Figure S24. HOMO, HOMO-1, HOMO-2 and LUMO of singlet $[(L2)Cu^{II}(NO)(CH_3CN)]^+, V^{SS}$.		
26	Figure S25. DFT-optimized structure, HOMO and LUMO of of triplet $[(L2)Cu^{II}(NO)(CH_3CN)]^+, V^{TS}$		
27	Figure S26. DFT calculated FTIR spectrum of IV ^{SS}		
28	Figure S27. DFT calculated FTIR spectrum of IV ^{TS}		
29	Figure S28. DFT calculated FTIR spectrum of V ^{SS}		
30	Figure S29. DFT calculated FTIR spectrum of V ^{TS}		
31	Figure S30. DFT-optimized structure and HOMO of singlet and triplet of $[(L2)Cu^{II}(NO)(CH_3CN)]^+$, $V^{SS/TS}$ considering 6-311G(d,p) basis set for all atoms		
32	Figure S31. DFT calculated FTIR spectrum of V ^{SS} considering 6-311G(d,p) basis set for all atoms		
33	Figure S32. DFT calculated FTIR spectrum of V^{TS} considering 6-311G(d,p) basis set for all atoms		

Figure S1. FTIR spectrum of HL2 in KBr disk in the range 4000 cm⁻¹-400 cm⁻¹.

Figure S2. ESI mass spectra of HL2 taken in CH₃CN, peak at m/z = 197.07 corresponding to $\{HL2+H^+\}$.

Figure S3. ¹H NMR spectrum of HL2 in CDCl₃.

Figure S4. FTIR spectrum of [(L2)CuONO], 2 in KBr disk in the range 4000 cm⁻¹-400 cm⁻¹

Figure S5. FTIR spectrum of [(L2)Cu(OAc)], 3 in KBr disk in the range 2000 cm⁻¹-400 cm⁻¹.

Figure S6. FTIR spectrum of 4 (top) and [Bu₄N][(L2)Cu(CH₃CN)(NO₂)] (bottom) in KBr disk.

Figure S7. ¹H NMR spectrum of $[Co(Cp)_2][(L2)Cu^I(NO_2)(CH_3CN)]$ in CD₃CN.

Figure S8. Electronic absorption spectra of 1(Black), 2 (red), 3 (green) in CH₃OH solvent.

Figure S9. Electronic absorption spectra of (A) 1(Black), 2 (red), 3 (green) in CH₃CN solvent and of (B) L2 liagnd, NaL2, a mixture of NaL2 and $[Zn(H_2O)_6](ClO_4)_2$ and a mixture of NaL2 + $[Zn(H_2O)_6](ClO_4)_2$ + $[Bu_4N]NO_2$ confirming assignment of n-p* and p-p* transitions as mentioned in the manuscript

compound	$\lambda_{\rm max}$, nm (ϵ M ⁻¹ cm ⁻¹)	Ref.
1 : CH ₃ OH	262(12140), 270sh(11260), 300(9245), 315sh	This work
	(8660), 648(195)	
CH ₃ CN	245(15650), 265sh(13040), 311(10140), 620(165)	
2 : CH ₃ OH	262(10232), 270sh(9840), 293(7685), 355sh	This work
	(2735), 613(95).	
CH ₃ CN	245(16035), 265sh(12899), 303(10400), 365sh	
	(2477), 593 (125).	
3 : CH ₃ OH	262(11060), 270sh(10400), 298(9175), 627(155)	This work
-		
CH ₃ CN	245 (16980), 265 sh(14870), 302(11910),	
	610(120)	
[(L1)CuCl] _n : CH ₃ OH	258 (10400), 299 (5500), 310 (5590), 326 sh	Ref. 13
	(5426), 455 sh (81), 642 (103)	
[(L1)Cu(ONO)] : CH ₃ OH	257 (14480), 298 (8540), 310 (8280), 327 sh	Ref. 13
	(7730), 613 (157)	
[(L1)Cu(CH ₃ CO ₂)]: CH ₃ OH	259 (15420), 296 sh (8920), 310 sh (8500), 330	Ref. 13
	(7600), 627(143)	

Table S1. Electronic absorption spectral data of the complexes 1-3 and the corresponding complexes of $L1^{-}$ analogue measured at 298 K.

Figure S10. Electronic absorption spectral changes during transformation of[(L2)CuCl(H₂O)], **1** (black trace) \rightarrow **2** (red trace) when titrating a CH₃CN solution of **1** with a CH₃CN solution of (n-Bu₄N)NO₂.

Figure S11. Cyclic voltammogram of $[(L2)Cu(H_2O)Cl]$, **1** (orange) in CH₃CN containing (Bu₄N)ClO₄ as supporting electrolyte at 298 K at a Pt working electrode at a scan rate of 50 mV/s using SCE reference electrode.

Figure S12. (i) DFT-optimized structure (ii) HOMO (iii) LUMO of [(L2)Cu(ONO)], **2**. Atomic contribution of HOMO, Cu 7%, N_{NO2}^- 1%, O_{NO2}^- 3%, N_{amide} 48% O_{amide} 25%. Atomic contribution of LUMO Cu 51%, N_{NO2}^- 1%, O_{NO2}^- 7%, N_{amide} 9% O_{amide} 1%. NBO calculations shows that the copper atom in the complex has a d⁹ configuration, indicating its oxidation state is +2 [core] 4S(0.38)3d(9.44)4p(0.40). Energy of HOMO = -6.31 eV, LUMO = -3.31 eV.

Figure S13. (i) DFT-optimized structure (ii) HOMO (iii) LUMO of $[(L2)Cu^{I}(\kappa^{2}-ONO)]^{-}$, (I). Atomic contribution of HOMO, Cu 68%, N_{NO2}⁻ 1%, O_{NO2}⁻ 5%, N_{amide} 7% O_{amide} 2%. Atomic contribution of LUMO Cu 2%, N_{NO2}⁻ 0%, O_{NO2}⁻ 0%, N_{amide} 3%, O_{amide} 5%. NBO calculations shows that the copper atom in the complex has a d¹⁰ configuration, indicating its oxidation state as +1 [core] 4S(0.45)3d(9.81)4p(0.27). Energy of HOMO = -4.73 eV, LUMO= -1.07 eV.

Figure S14. (i) DFT-optimized structure (ii) HOMO (iii) LUMO of $[(L2)Cu^{I}(\kappa^{1}-NO_{2})]^{-}$, (II). Atomic contribution of HOMO Cu 57%, $N_{NO2}^{-}6\%$, $O_{NO2}^{-}11\%$, $N_{amide}5\%$ $O_{amide}1\%$. Atomic contribution of LUMO Cu 2%, $N_{NO2}^{-}1\%$, $O_{NO2}^{-}2\%$, $N_{amide}3\%$ $O_{amide}5\%$. NBO calculations shows that the copper atom in the complex has a d¹⁰ configuration, indicating its oxidation state is +1, [core] 4S(0.43)3d(9.83)4p(0.29). Energy of HOMO = -4.92 eV, LUMO = -1.12 eV.

Figure S15. (i) DFT-optimized structure (ii) HOMO (iii) LUMO of $[(L2)Cu^{1}(\kappa^{1}-NO_{2})(CH_{3}CN)]^{-}$, (III). Atomic contribution of HOMO Cu 51%, N_{NO2}^{-} 10%, O_{NO2}^{-} 11%, N_{amide} 11% O_{amide} 6%. Atomic contribution of LUMO Cu 1%, N_{NO2}^{-} 0%, O_{NO2}^{-} 0%, N_{amide} 3% O_{amide} 4%. NBO calculations shows that the copper atom in the complex has a d¹⁰ configuration, indicating its oxidation state is +1 [core] 4S(0.30)3d(9.80)4p(0.44). Energy of HOMO = -4.55 eV, LUMO = -0.97 eV.

Experimental setup for standardization of [NO(g)] in CH₃CN

Potentials are measured using same cell setup as kept for measurement of NO generation from the reduced sample of **2** in 15 mL CH₃CN. Pure NO(g) has been taken using a gas tight syringe. After adding NO(g) to the cell, the CV scans were started to collect until it reaches to a maximum then decreases (as shown below for the 54 ppm NO solution). The CV scan having maximum i_{pc} has been considered to get the calibration curve. It can be assumed that the NO(g) injected to the CH₃CN solvent is get absorbed and owing to this reason a linear calibration curve (Fig. S14) has been obtained. For our experiment with reduced **2** at the most 1 mL NO(g) will get liberated.

Cyclic voltammograms of 0.6 ml NO (54 ppm) dissolved in 15 mL CH₃CN solution containing $(Bu_4N)CIO_4$ as supporting electrolyte at 298 K at a platinum working electrode at a scan rate of 300 mV/s using SCE as reference electrode.

Figure S16. Standardization plot of NO(g)

Figure S17. Electronic absorption spectra of [Co(TPP)] (blue trace) and [Co(TPP)NO] (pink trace)

Figure S18. FTIR spectra of [Co(TPP)] (blue trace) and [Co(TPP)NO] (orange trace)

Figure S19. Spin quantification considering complex **2** as a standard (red and green traces are considered from Figure 7A). The [Area under the green trace]/[area under the red trace] multiplied by 100 = 5.5% i.e. the Cu(II) formed during electrolysis of CH₃CN solution of **2** via disproportionation.

Figure S20. X-Band EPR spectra measured at 77 K in CH₃CN solution: of reduced **2** (green), reduced **2** plus CH₃CO₂H (black trace) and then same solution keeping at 77 K after 5 minute intervals (pink, red and cyan trace) showing slight increase of signal intensity. Green trace of reduced species displays *isotropic* spectrum profile, whereas other traces obtained after CH₃CO₂H addition are *axial* in nature like the authentic **3** displays. Spectrometer settings: microwave frequency = 9.416 GHz, power = 10 mW, modulation frequency = 100 kHz; modulation amplitude = 5 G.

DFT optimized structure of IV^{SS}

Figure S21. HOMO, HOMO-1, HOMO-2 and LUMO of singlet $[(L2)Cu^{II}(NO)]^+$, IV^{SS} : Atomic contribution of HOMO Cu 5%, N_{NO} 7%, O_{NO} 6%, N_{amide} 44% O_{amide} 23%, atomic contribution of HOMO-1 Cu 5%, N_{NO} 9%, O_{NO} 8%, N_{amide} 24% O_{amide} 39%, atomic contribution of HOMO-2 Cu 11%, N_{NO} 7%, O_{NO} 7%, N_{amide} 9% O_{amide} 38%, atomic contribution of LUMO Cu 19%, N_{NO} 36%, O_{NO} 20%, N_{amide} 5% O_{amide} 1%.

Figure S22. (a) DFT-optimized structure, (b) HOMO and (c) LUMO of of triplet $[(L2)Cu^{II}(NO)]^+$, IV^{TS} : Atomic contribution of HOMO Cu 10%, N_{NO} 31%, O_{NO} 19%, N_{amide} 8% O_{amide} 9%. Atomic contribution of LUMO Cu 2%, N_{NO} 59%, O_{NO} 36%, N_{amide} 0% O_{amide} 0%.

Figure S23. Energy profile of IV^{SS} , IV^{TS} , V^{SS} and V^{TS}

Figure S24. HOMO, HOMO-1, HOMO-2 and LUMO of singlet $[(L2)Cu^{II}(NO)(CH_3CN)]^+$, V^{SS} : Atomic contribution of HOMO Cu 6%, N_{NO} 6%, O_{NO} 4%, N_{amide} 43% O_{amide} 24%, atomic contribution of HOMO-1 Cu 4%, N_{NO} 9%, O_{NO} 8%, N_{amide} 24% O_{amide} 39%, atomic contribution of HOMO-2 Cu 11%, N_{NO} 7%, O_{NO} 7%, N_{amide} 9% O_{amide} 36%, atomic contribution of LUMO Cu 21%, N_{NO} 34%, O_{NO} 19%, N_{amide} 5% O_{amide} 2%.

Figure S25. (i) DFT-optimized structure, (ii) HOMO and (iii) LUMO of triplet $[(L2)Cu^{II}(NO)(CH_3CN)]^+$, V^{TS} : Atomic contribution of HOMO Cu 2%, N_{NO} 36%, O_{NO} 59%, N_{amide} 1% O_{amide} 1%. Atomic contribution of LUMO Cu 1%, N_{NO} 36%, O_{NO} 62%, N_{amide} 0%.

Figure S26. Calculated IR spectrum of [(L2)Cu^{II}(NO)] model considering singlet state, IV^{SS}

Figure S27. Calculated IR spectrum of [(L2)Cu^{II}(NO)] model considering triplet state, IV^{TS}

Figure S28. Calculated IR spectrum of [(L2)Cu^{II}(CH₃CN)(NO)] model considering singlet state, V^{SS}

Figure S29. Calculated IR spectrum of $[(L2)Cu^{II}(CH_3CN)(NO)]$ model considering triplet state, V^{TS}

Figure S30. DFT-optimized structure of V^{SS} (top) and V^{TS} (bottom) and their HOMOs considering 6-311G(d,p) basis set for all atoms. Color code: C black, N blue, O red, S yellow, H pearl, Cu light orange. Atomic composition for HOMO (LUMO) in % of V^{SS}: 5(3) Cu, 5(58) N_{NO}, 4(35) O_{NO}, 42(0) N_{amide}, 30(0) O_{amide} and of V^{TS} is 1(0) Cu, 56(63) N_{NO}, 34(36) O_{NO}, 5(0) N_{amide}, 3(0) O_{amide}.

Figure S31. Calculated IR spectrum of $[(L2)Cu^{II}(CH_3CN)(NO)]$ model considering singlet state (V^{SS}) and 6-311G(d,p) basis set for all atoms.

Figure S32. Calculated IR spectrum of $[(L2)Cu^{II}(CH_3CN)(NO)]$ model considering triplet state (V^{TS}) and 6-311G(d,p) basis set for all atoms.