Highly Efficient Oxidation of Ethyl Lactate to

Ethyl Pyruvate Catalysed by TS-1 Under Mild

Conditions

Tianliang Lu^{a,b}, Junpeng Zou^a, Yuzhong Zhan^a, Xiaomei Yang^b, Yiqiang Wen^b,

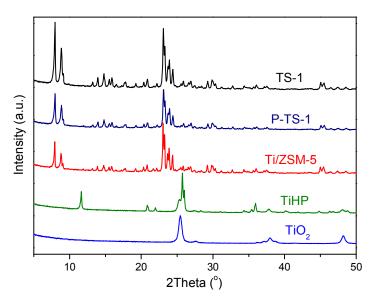
Xiangyu Wang^b, Lipeng Zhou^{b,}*, Jie Xu^c

^a School of Chemical Engineering and Energy, Zhengzhou University, 100 Kexue

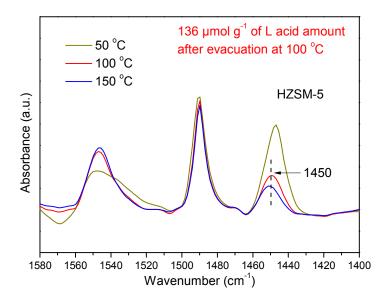
Road, Zhengzhou 450001, People's Republic of China

^b College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Kexue

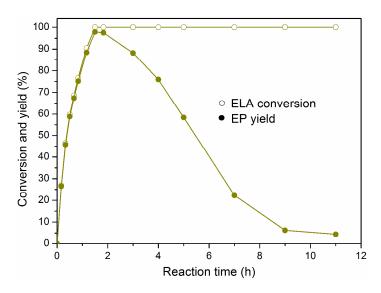
Road, Zhengzhou 450001, People's Republic of China

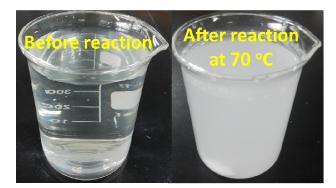

^c State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy,

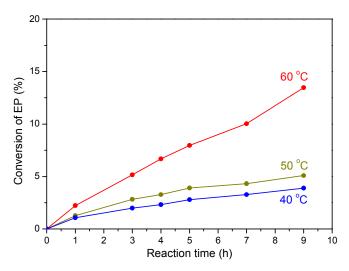
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan

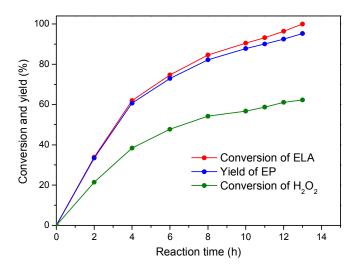

Road, Dalian 116023, People's Republic of China

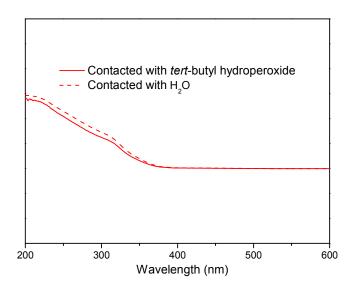
* Corresponding author. Tel.: +86 371 67781780

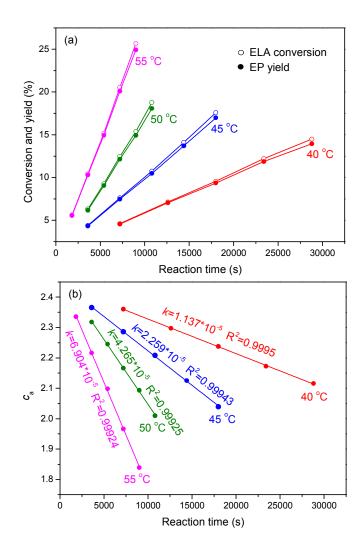

E-mail addresses: zhoulipeng@zzu.edu.cn


Figure S1. XRD patterns of TiO₂, TS-1, Ti/ZSM-5, TiHP and P-TS-1.


Figure S2. FTIR spectra of H-ZSM-5 after pyridine adsorption and evacuation at 50, 100, and 150 $^{\circ}$ C for 30 min.


Figure S3. Time course of conversion of ELA over TS-1 at 70 $^{\circ}$ C. Reaction conditions: 10 mL of ELA, 25 mL of 30% H_2O_2 (molar ratio of H_2O_2 to ELA = 2.80), 300 mg of TS-1.


Figure S4. Observation of CO₂ in decomposition of EP: clear Ca(OH)₂ aqueous solution before reaction and formation of CaCO₃ solid after reaction at 70 °C for 11 h.


Figure S5. Time course of EP decompostion over TS-1 at different temperature. Reaction conditions: 10 mL of EP, 25 mL of $30\% \text{ H}_2\text{O}_2$ (molar ratio of H_2O_2 to ELA = 2.8), 300 mg of catalyst.

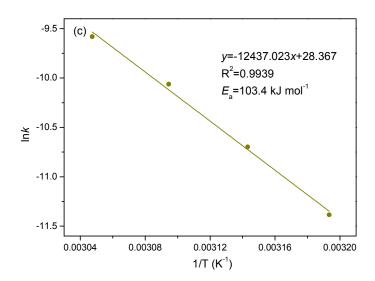


Figure S6. Conversion of H_2O_2 in the oxidation of ELA to EP over TS-1. Reaction conditions: 10 mL of ELA, 15 mL of 30% H_2O_2 (molar ratio of H_2O_2 to ELA = 1.68), 300 mg of catalyst, 50 °C.

Figure S7. UV-vis spectra of TS-1 interacted with H_2O or *tert*-butyl hydroperoxide aqueous solution.

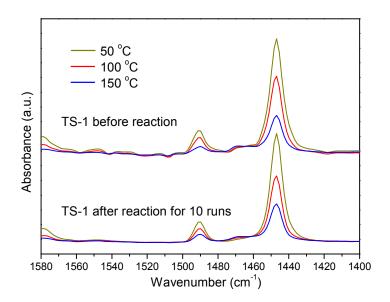


Figure S8. Time courses (a), zero-order rate constants (b) and Arrhenius plot (c) for the conversion of ELA over TS-1. Reaction conditions: 10 mL of ELA, 25 mL of 30% $\rm H_2O_2$, 100 mg of TS-1.

Figure S9. XRD patterns of TS-1 after reaction for 10 runs.

Figure S10. FTIR spectra of the fresh TS-1 and the used TS-1 after pyridine adsorption and evacuation at 50, 100 and 150 °C for 30 min.

Table S1. Catalytic Performance of TS-1 on Conversion of ELA to EP.

Tuble 511 Cutting the 1 cited mander of 15 1 on Conversion of Election Election						
entry	additive	oxidant	conversion	yield of		
			of ELA	EP (%)		
			(%)			
1	Hydroquinone (0.2 g)	H_2O_2	100	97.5		
2	No additive	H_2O_2	100	97.2		
3	No additive	tert-Butyl hydroperoxide	17.3	0		
4^b	No additive	H_2O_2	13.9	11.5		

^a Reaction conditions: 10 mL of ELA, 25 mL of 30% oxidant, 0.3 g of TS-1, 50 °C, 11 h.

TS-1 was treated by Na₂CO₃ aqueous (0.5 mol L⁻¹) with liquid/solid = 50 mL g⁻¹ at 25 °C for 24 h.

Table S2. Textural Parameters of the TS-1 before and after reaction

sample	$S_{\rm BET}$ (m ² g ⁻¹)	total pore volume (mL g ⁻¹)	$S_{\rm External}^{a} ({\rm m}^2 {\rm g}^{-1})$	mesopore volume ^{a} (mL g ^{-1})
TS-1 before reaction	380	0.27	45	0.10
TS-1 after reaction for 10 runs	374	0.30	68	0.14

 $^{^{}a}$ $S_{\text{External}} = S_{\text{BET}} - S_{\text{Micropore}}$; mesopore volume = total pore volume - micropore volume, where the micropore surface area and volume were determined by the *t*-plot method at a relative pressure of 0.05-0.70.