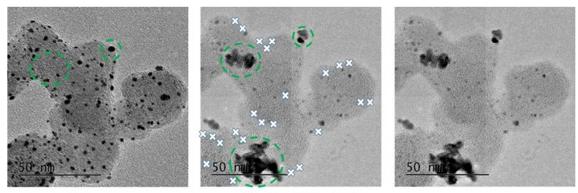
Supporting information

Accelerated stress-test of Pt/C nanoparticles in interface with an anion-exchange membrane – an identical-location transmission electron microscopy study

Clémence Lafforgue¹, Marian Chatenet^{1-2,*}, Laetitia Dubau¹, Dario R. Dekel³⁻⁴

¹ Univ. Grenoble Alpes, CNRS, Grenoble INP[#], LEPMI, 38000 Grenoble, France


² Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France

³ The Wolfson Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel

⁴ The Nancy & Stephan Grand Technion Energy Program (GTEP), Technion – Israel Institute of Technology, Haifa 3200003, Israel

[#] Institute of Engineering Univ. Grenoble Alpes

* Corresponding author: <u>Marian.Chatenet@grenoble-inp.fr</u>

Pristine

After 150 CV (0.1 - 1.23 V)

🕴 Missing nanoparticles

Change of nanoparticles shape (agglomeration)

Figure S1: Representative ILTEM micrographs of Pt/C nanoparticles before (Pristine) and after 150 CV cycles performed at $v = 100 \text{ mV s}^{-1}$ between 0.1 and 1.23 V vs. RHE in 0.1 M NaOH at T = 25°C. The markers are not comprehensive and just illustrate the main degradation mechanisms at stake during the potential cycling procedure.

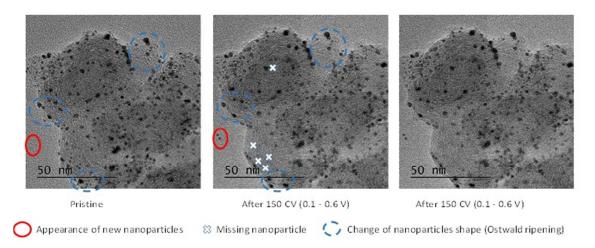


Figure S2: Representative ILTEM micrographs of Pt/C nanoparticles before (Pristine) and after 150 CV cycles performed at $v = 100 \text{ mV s}^{-1}$ between 0.1 and 0.6 V vs. RHE in 0.1 M NaOH at T = 25°C. The markers are not comprehensive and just illustrate the main degradation mechanisms at stake during the potential cycling procedure.

Figure S3: Representative ILTEM micrographs of Pt/C nanoparticles before (Pristine) and after 150 CV cycles performed at $v = 100 \text{ mV s}^{-1}$ between 0.6 and 1.23 V vs. RHE in 0.1 M NaOH at T = 25°C. The markers are not comprehensive and just illustrate the main degradation mechanisms at stake during the potential cycling procedure.

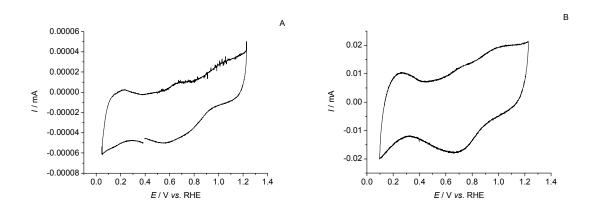


Figure S4: (A) typical electrochemical response of an ultra-microelectrode with cavity filled with 10 wt% Pt/C electrocatalyst in interface with an anion-exchange membrane. The measurement was performed in the dry cell under inert atmosphere at $v = 20 \text{ mV s}^{-1}$. (B) Example of a representative cycle (here the 150th) of the accelerated stress test performed on the gold TEM grid supporting the 10wt% Pt/C electrocatalyst for the ILTEM experiments. The measurement was performed in the dry cell under inert atmosphere at $v = 100 \text{ mV s}^{-1}$.

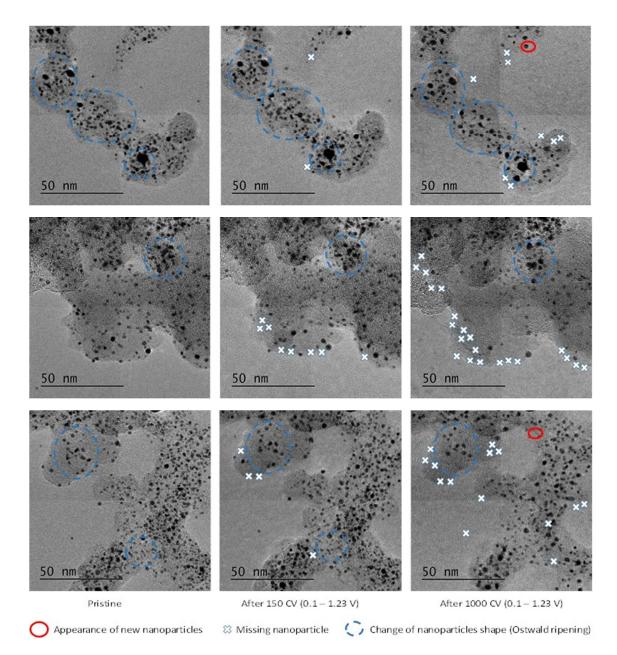
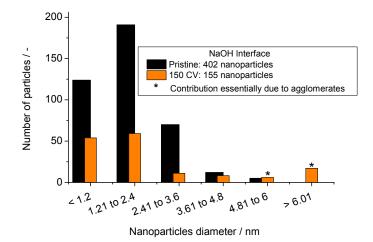
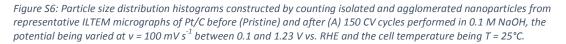




Figure S5: Representative ILTEM micrographs of Pt/C nanoparticles before (Pristine) and after 150 or 1000 CV cycles performed at $v = 100 \text{ mV s}^{-1}$ between 0.1 and 1.23 V vs. RHE in interface with an anion exchange membrane at $T = 25^{\circ}$ C. The markers are not comprehensive and just illustrate the main degradation mechanisms at stake during the potential cycling procedure.

