Supporting Information

Matched Coupling of Propargylic Carbonates with Cyclopropanols

Penglin Wu, ${ }^{a}$ Minqiang Jia, ${ }^{\mathrm{a}, *}$ Weilong Lin, ${ }^{\mathrm{b}}$ Shengming Ma ${ }^{\mathrm{a}, \mathrm{b}, *}$
${ }^{\text {a }}$ Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
${ }^{b}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China

Fax: (+86)21-64167510 E-mail: masm@sioc.ac.cn

General information	S2
Scheme S1	S2
Experimental details and analytical data	S3-S36
References	S37

General Information. NMR spectra were taken with an Agilent-400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}$ NMR and 100 MHz for ${ }^{13} \mathrm{C}$ NMR). Chemical shifts were recorded in ppm in relative to the TMS in CDCl_{3} and coupling constants were reported in Hz . All reactions were carried out in flame-dried Schlenk tubes. $\mathrm{Pd}(\mathrm{dba})_{2}$ was purchased from J\&K Chemicals; Xphos was purchased from Meryer (Shanghai) Chemical Technology Co., Ltd. Toluene was dried over sodium wire with benzophenone as the indicator and distilled freshly before use. All the temperatures are referred to the oil baths, acetone/dry ice bath, or ice/water bath used. NMR yields and recovery of starting material were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the related reaction mixtures using dibromomethane as the internal standard. Cyclopropanols 1a-1c, ${ }^{1 \text { a }}$
 procedures. Propargylic carbonates $\mathbf{2 a - 2 e},{ }^{2 \mathrm{~b}}(R)-\mathbf{2 e},{ }^{2 \mathrm{~b}} \mathbf{2 h} \mathbf{- 2 l},{ }^{2 \mathrm{~b}}(\boldsymbol{R}) \mathbf{- 2 g},{ }^{2 \mathrm{~b}, 2 \mathrm{~d}}(\boldsymbol{R}) \mathbf{- 2 m},{ }^{2 \mathrm{~b}, 2 \mathrm{~d}}$ and propargylic acetate $\mathbf{1 0} \mathbf{a}^{3}$ were synthesized from propargylic alcohols ${ }^{4}$ according to the reported procedures.

Scheme S1. Gram-scale synthesis and transformations of 3db

Reaction conditions: ${ }^{a} \mathrm{NaBH}_{4}$ (1.5 equiv), MeOH, $0{ }^{\circ} \mathrm{C}$, then $\mathrm{rt}, 2 \mathrm{~h} ;{ }^{b} \mathrm{EtMgCl}$ (2 equiv), THF, $0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h} ;{ }^{c}$) phenylacetylene (2 equiv), n-BuLi (1.6 equiv), THF, $-78{ }^{\circ} \mathrm{C}$, then rt 30 min ; 2) 3db in THF, $-78{ }^{\circ} \mathrm{C}$, then $\mathrm{rt}, 3 \mathrm{~h} ;{ }^{d} \mathrm{PMPNH}_{2}$ (2 equiv), $\mathrm{NaBH}_{3} \mathrm{CN}$ (3 equiv), AcOH (1.75 equiv), $\mathrm{MeOH}, \mathrm{rt}, 28 \mathrm{~h} .{ }^{e} 1$) NaBH_{4} (1.5 equiv), $\mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$, then $\mathrm{rt}, 1 \mathrm{~h}$, workup; 2) $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(3 \mathrm{~mol} \%$), $\mathrm{DCM}, \mathrm{rt}, 15 \mathrm{~h}$.

Experimental details and analytical data

I. Synthesis of propargylic carbonates $2 \mathrm{f}, \mathbf{2 g},(\boldsymbol{R})-\mathbf{2 g}$, and (R)-2m ${ }^{2 \mathrm{~b}, 2 \mathrm{~d}}$
(1) Synthesis of 3-(4-acetylphenyl)-1-phenylprop-2-ynyl methyl carbonate (2f) ${ }^{2 b, 2 \mathrm{~d}}$ (wpl-1-75)

To a three-necked flask were added 3-(4-acetylphenyl)-1-phenylprop-2-yn-1-ol ${ }^{2 \mathrm{~d}}$ $(1.52 \mathrm{~g}, 6.0 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and DMAP ($\left.0.1470 \mathrm{~g}, 1.2 \mathrm{mmol}\right)$. After being cooled to $0{ }^{\circ} \mathrm{C}$ with stirring, pyridine ($2.0 \mathrm{~mL}, \mathrm{~d}=0.983 \mathrm{~g} / \mathrm{mL}, 1.966 \mathrm{~g}, 24.9 \mathrm{mmol}$) and methyl chloroformate ($1.85 \mathrm{~mL}, \mathrm{~d}=1.223 \mathrm{~g} / \mathrm{mL}, 2.2626 \mathrm{~g}, 24.0 \mathrm{mmol}$) were added sequentially. The resulting mixture was naturally warmed up to room temperature, stirred overnight (18 h), and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. This $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed sequentially with water $(40 \mathrm{~mL}), 1 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})(30 \mathrm{~mL} \times 3)$, a solution of $\mathrm{NaCl}(\mathrm{aq})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography on silica gel [eluent: petroleum ether/ethyl acetate $=40 / 1(0.4 \mathrm{~L})$ to 20/1] to afford $\mathbf{2 f}(1.5919 \mathrm{~g}, 85 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.61(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}$), 7.56 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.47-7.36 (m, $3 \mathrm{H}, \mathrm{ArH}), 6.54$ (s, $1 \mathrm{H}, \mathrm{CH}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=197.3$, 154.8, 136.7, 136.1, 132.0, 129.4, 128.8, 128.2, 127.8, 126.7, 88.0, 87.0, 70.0, 55.2, 26.6; IR (neat, cm^{-1}): $v=2229,1749,1684,1602,1557,1496,1440,1403,1243,1046 ; \mathrm{MS}$ (70 eV, EI) $m / z(\%): 308\left(\mathrm{M}^{+}, 47.24\right), 189$ (100); HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]$: 308.1049, found: 308.1055.
(2) Synthesis of 3-(2-chlorophenyl)-1-phenylprop-2-ynyl methyl carbonate (2g) ${ }^{2 b}$ (jmq4-43)

To a three-necked flask were added 3-(2-chlorophenyl)-1-phenylprop-2-yn-1-ol ${ }^{5}$ ($2.30 \mathrm{~g}, 9.5 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. After being cooled with an ice/water bath with stirring, DMAP ($0.2340 \mathrm{~g}, 1.9 \mathrm{mmol}$) and pyridine ($3.05 \mathrm{~mL}, \mathrm{~d}=0.983 \mathrm{~g} / \mathrm{mL}$, $2.998 \mathrm{~g}, 37.9 \mathrm{mmol}$) were added sequentially. Then methyl chloroformate ($2.9 \mathrm{~mL}, \mathrm{~d}$ $=1.223 \mathrm{~g} / \mathrm{mL}, 3.5467 \mathrm{~g}, 37.9 \mathrm{mmol}$) was added slowly. After the addition, the resulting mixture was warmed up naturally to room temperature and stirred overnight (17 h). The resulting mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed with water (20 mL), $1 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})(20 \mathrm{~mL} \times 3)$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography on silica gel [eluent: petroleum ether/ethyl acetate $=30 / 1(1.6 \mathrm{~L})$] to afford $\mathbf{2 g}(2.6703 \mathrm{~g}, 94 \%)$ as an oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.66(\mathrm{dd}, J=8.0$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.51 (dd, $J=7.4 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.47-7.35 (m, $4 \mathrm{H}, \mathrm{ArH}$), 7.32-7.27 (m, $1 \mathrm{H}, \mathrm{ArH}$), 7.25-7.16 (m, $1 \mathrm{H}, \mathrm{ArH}$), 6.58 (s, $1 \mathrm{H}, \mathrm{CH}$), $3.83(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=154.9,136.4,136.1,133.6,129.9,129.29$, 129.27, 128.7, 128.0, 126.4, 121.9, 89.8, 84.7, 70.1, 55.1; IR (neat, cm^{-1}): 1746, 1474, 1439, 1249, 1193; MS (70 eV, EI) m/z (\%): $302\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 8.40\right], 300\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right)\right.$, 23.33], 189 (100); HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{13}{ }^{35} \mathrm{ClO}_{3}\left(\mathrm{M}^{+}\right): 300.0553$, Found: 300.0549 .
(3) Synthesis of (R)-3-(2-chlorophenyl)-1-phenylprop-2-ynyl methyl carbonate ((R)-2g) (jmq4-31)

To a three-necked flask were added (R)-3-(2-chlorophenyl)-1-phenylprop-2-ynol ${ }^{6 \mathrm{a}}$ ($2.20 \mathrm{~g}, 9.06 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$. After being cooled with an ice/water bath, DMAP ($0.2215 \mathrm{~g}, 1.8 \mathrm{mmol}$) and pyridine $(2.9 \mathrm{~mL}, \mathrm{~d}=0.983 \mathrm{~g} / \mathrm{mL}, 2.8507 \mathrm{~g}, 36.0$ $\mathrm{mmol})$ were added sequentially with stirring. Then methyl chloroformate ($2.8 \mathrm{~mL}, \mathrm{~d}=$
$1.223 \mathrm{~g} / \mathrm{mL}, 3.4244 \mathrm{~g}, 36.2 \mathrm{mmol}$) was added slowly. The resulting mixture was naturally warmed up to room temperature and stirred for 10 h . The resulting mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and this $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed with water (20 mL), $1 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})(20 \mathrm{~mL} \times 3)$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography on silica gel [eluent: petroleum ether/ethyl acetate $=100 / 1(0.4 \mathrm{~L})$ to $40 / 1(1.2 \mathrm{~L})$] to afford $(R)-\mathbf{2 g}$ ($2.1368 \mathrm{~g}, 79 \%$) as an oil: $98.5 / 1.5$ er (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\operatorname{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=6.1 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=$ $7.4 \mathrm{~min}) ;[\alpha]_{\mathrm{D}}{ }^{20}=+55.6\left(\mathrm{c}=1.08, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.66(\mathrm{dd}$, $J=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.51(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.47-7.35(\mathrm{~m}, 4 \mathrm{H}$, ArH), 7.32-7.17 (m, $2 \mathrm{H}, \mathrm{ArH}$), 6.58 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=154.9,136.4,136.1,133.6,129.9,129.31,129.28,128.7,128.0$, 126.4, 121.9, 89.8, 84.7, 70.2, 55.1; IR (neat, cm^{-1}): 1746, 1474, 1439, 1249, 1064, 1034; MS (70 eV, EI) $m / z(\%): 302$ [$\left.\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 9.89\right], 300\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 27.67\right], 189$ (100); HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{13}{ }^{35} \mathrm{ClO}_{3}\left(\mathrm{M}^{+}\right): 300.0553$, Found: 300.0556 .
(4) Synthesis of (R)-1-(4-chlorophenyl)-3-phenylprop-2-ynyl methyl carbonate ($($ R)-2m) (lj1-2)

84% yield, 99.0/1.0 er
To a three-necked flask were added (R)-1-(4-chlorophenyl)-3-phenylprop-2-ynol ${ }^{66-\mathrm{c}}$ ($1.8512 \mathrm{~g}, 7.62 \mathrm{mmol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The resulting mixture was stirred and cooled with an ice/water bath. DMAP ($01870 \mathrm{~g}, 1.53 \mathrm{mmol}$) and pyridine $(2.5 \mathrm{~mL}, \mathrm{~d}$ $=0.983 \mathrm{~g} / \mathrm{mL}, 2.4575 \mathrm{~g}, 31.1 \mathrm{mmol}$) were added sequentially. Then methyl chloroformate ($2.4 \mathrm{~mL}, \mathrm{~d}=1.223 \mathrm{~g} / \mathrm{mL}, 2.9352 \mathrm{~g}, 31.1 \mathrm{mmol}$) was added slowly. The resulting mixture was warmed up naturally to room temperature and stirred for 8.7 h . The resulting mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed with water (30 mL), $1 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})(30 \mathrm{~mL} \times 3)$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column
chromatography on silica gel [eluent: petroleum ether/ethyl acetate $=80 / 1(0.8 \mathrm{~L})$ to 40/1 (0.8 L)] to afford $(R)-\mathbf{2 m}(1.9348 \mathrm{~g}, 84 \%)$ as an oil: 99.0/1.0 er (HPLC conditions: Chiralcel OJ-H column, hexane $/ i-\operatorname{PrOH}=90 / 10,0.7 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}$, $t_{\mathrm{R}}($ minor $)=16.0 \mathrm{~min}, t_{\mathrm{R}}($ major $\left.)=17.5 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}{ }^{20}=+30.6\left(\mathrm{c}=0.85, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.46(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}$), 7.38-7.34 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.33-7.27 (m, $3 \mathrm{H}, \mathrm{ArH}$), 6.50 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 3.80 (s, $3 \mathrm{H}, \mathrm{Me}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=154.7$, 135.1, 135.0, 131.8, 129.1, 129.0, 128.8, 128.2, 121.6, 88.2, 84.3, 69.3, 55.1; IR (neat, cm^{-1}): 2230, 1746, 1597, $1489,1440,1411,1326,1292,1254,1243,1193,1178,1089,1071,1032,1015 ;$ MS (70 eV, EI) $m / z(\%): 302\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 9.68\right], 300\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 28.30\right], 225$ (100); HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{13}{ }^{35} \mathrm{ClO}_{3}\left(\mathrm{M}^{+}\right): 300.0553$, Found: 300.0556.

II. Palladium-catalyzed synthesis of 3,4-allenyl ketones 3

(1) 1,5,7-Triphenylhepta-5,6-dien-2-one (3aa) (jmq3-152)

Typical Procedure I: To a flame-dried Schlenk tube were added $\operatorname{Pd}(\mathrm{dba})_{2}(28.8 \mathrm{mg}$, 0.05 mmol) and XPhos ($41.2 \mathrm{mg}, 0.085 \mathrm{mmol}$) under Ar atmosphere. Compound 1a (liquid, $177.6 \mathrm{mg}, 1.2 \mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$ and $\mathbf{2 a}(266.5 \mathrm{mg}, 1.0 \mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$ were then added sequentially under Ar atmosphere at room temperature. The Schlenk tube was then stirred at $50{ }^{\circ} \mathrm{C}$ until completion of the reaction as monitored by TLC (3 h). The crude reaction mixture was filtrated through a short column of silica gel (height: $2 \mathrm{~cm}, \Phi: 3.5 \mathrm{~cm}$) eluted with ethyl acetate (80 mL). After evaporation, the residue was purified by chromatography on silica gel to afford 3aa $(240.3 \mathrm{mg}, 71 \%)$ [eluent: petroleum ether/ethyl acetate $=40 / 1(1.6 \mathrm{~L})$] as a white solid: m.p. $=60.4-61.3{ }^{\circ} \mathrm{C}$ (petroleum ether/dichloromethane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=7.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.36-7.15(\mathrm{~m}, 11 \mathrm{H}, \mathrm{ArH}), 7.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH})$, , $6.55-6.43(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 3.61\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{PhCH}_{2}\right), 3.56$
(d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of PhCH_{2}), 2.95-2.65 (m, $\left.4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=207.0,205.7,135.5,134.0,133.9129 .4,128.7,128.49,128.46$, $127.3,127.2,126.81,126.76,125.9,109.3,99.3,50.1,39.8,23.5$; IR (neat, cm^{-1}): 3029, 2897, 1936, 1715, 1595, 1493, 1446, 1416, 1363, 1308, 1074, 1027; MS (70 eV, EI) $m / z(\%): 338\left(\mathrm{M}^{+}, 17.58\right), 204$ (100); Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}:$ C 88.72, H 6.55; Found: C 88.80, H 6.55.

(2) 5,7-Diphenyl-1-(p-tolyl)hepta-5,6-dien-2-one (3ba) (jmq3-156)

Typical Procedure II: To a flame-dried Schlenk tube were added $\operatorname{Pd}(\mathrm{dba})_{2}(28.9 \mathrm{mg}$, 0.05 mmol) and XPhos ($41.2 \mathrm{mg}, 0.085 \mathrm{mmol}$) under Ar atmosphere. Compound 1b (solid, $199.9 \mathrm{mg}, 1.2 \mathrm{mmol}$), $\mathbf{2 a}(266.5 \mathrm{mg}, 1.0 \mathrm{mmol})$, and toluene (5.0 mL) were then added sequentially under Ar atmosphere at room temperature. The Schlenk tube was then stirred at $50{ }^{\circ} \mathrm{C}$ until completion of the reaction as monitored by TLC (3 h). The crude reaction mixture was filtrated through a short column of silica gel (height: $2 \mathrm{~cm}, \Phi: 3.5 \mathrm{~cm}$) eluted with ethyl acetate (60 mL). After evaporation, the residue was purified by chromatography on silica gel to afford 3ba ($261.3 \mathrm{mg}, 74 \%$) [eluent: petroleum ether/ethyl acetate $=40 / 1(1.6 \mathrm{~L})]$ as a white solid: m.p. $=72.0-74.2^{\circ} \mathrm{C}$ (petroleum ether/dichloromethane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.41$ (d, $J=7.2$ Hz, 2 H, ArH), 7.36-7.25 (m, 6 H, ArH), 7.25-7.18 (m, 2 H, ArH), 7.04 (d, J=7.6 Hz, $2 \mathrm{H}, \mathrm{ArH}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.52-6.46(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 3.58(\mathrm{~d}, J=15.2$ $\mathrm{Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 3.53\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\mathrm{CH}_{2} \mathrm{Ar}$), 2.90-2.65 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), $2.29(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 207.3, 205.7, 136.4, 135.6, 134.0, 131.0, 129.2, 128.7, 128.5, 127.23, 127.20, 126.8, 125.9, 109.3, 99.3, 49.8, 39.7, 23.6, 21.0; IR (neat, cm^{-1}): 3030, 2897, 1933, 1713, $1595,1516,1492,1460,1446,1411,1366,1314,1106,1083,1026$; MS ($70 \mathrm{eV}, \mathrm{EI}$) m / z (\%): 352 ($\mathrm{M}^{+}, 26.21$), 204 (100); Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}: \mathrm{C} 88.60$, H 6.86;

Found: C 88.33, H 6.87.
(3) 1-(4-Methoxyphenyl)-5,7-diphenylhepta-5,6-dien-2-one (3ca) (jmq3-151)

Following Typical Procedure I, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(28.8 \mathrm{mg}, 0.05 \mathrm{mmol})$, XPhos ($41.2 \mathrm{mg}, 0.085 \mathrm{mmol}$), $\mathbf{1 c}(213.9 \mathrm{mg}, 1.2 \mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$, and 2a ($266.5 \mathrm{mg}, 1.0 \mathrm{mmol}$)/toluene (2.5 mL) for 4 h afforded 3ca ($260.4 \mathrm{mg}, 71 \%$) [eluent: petroleum ether/ethyl acetate $=30 / 1(2.0 \mathrm{~L})]$ as a white solid: m.p. $=86.5-87.4^{\circ} \mathrm{C}$ (petroleum ether/dichloromethane); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.42(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.36-7.28 (m, $6 \mathrm{H}, \mathrm{ArH}$), 7.26-7.17 (m, $2 \mathrm{H}, \mathrm{ArH}$), 6.96 (d, J=8.8 Hz, $2 \mathrm{H}, \mathrm{ArH}), 6.77$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.54-6.48 (m, $1 \mathrm{H},=\mathrm{CH}$), 3.77 (s, 3 H , OMe), $3.58\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 3.52(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\mathrm{CH}_{2} \mathrm{Ar}$), 2.94-2.66 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 207.6, 205.7, 158.5, 135.6, 134.0, 130.4, 128.8, 128.5, 127.3, 127.2, 126.8, 126.1, $126.0,114.0,109.4,99.4,55.2,49.3,39.6,23.6$; IR (neat, cm^{-1}): 3050, 3030, 2957, 2899, 1933, 1710, 1612, 1595, 1511, 1493, 1242, 1079, 1029; MS (70 eV, EI) m/z (\%): $368\left(\mathrm{M}^{+}, 19.25\right), 121$ (100); Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{2}$: C 84.75, H 6.57; Found: C 84.87, H 6.58.
(4) 1-(4-Chlorophenyl)-5,7-diphenylhepta-5,6-dien-2-one (3da) (wpl-1-77)

Following Typical Procedure II, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.4 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos (23.9 mg, 0.085 mmol), $\mathbf{1 d}(219.0 \mathrm{mg}, 1.2 \mathrm{mmol}$), and 2a ($265.9 \mathrm{mg}, 1.0$ $\mathrm{mmol}) /$ toluene (5.0 mL) for 6 h afforded 3da (257.2 mg , 69\%) (eluent: petroleum
ether/ethyl acetate for the first run, then all the products was collected and treated with the second run of chromatography, eluent: petroleum ether/dichloromethane $=$ $2 / 1$) as a white solid: m.p. $=122.0-122.5^{\circ} \mathrm{C}$ (petroleum ether/ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.36-7.10(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$, $6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.51(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 3.61(\mathrm{~d}, 1 \mathrm{H}, J=15.6$ Hz , one proton of $\mathrm{CH}_{2} \mathrm{Ar}$), $3.54\left(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\mathrm{CH}_{2} \mathrm{Ar}$), 3.08-2.58 ($\mathrm{m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=206.3,205.7$, 135.6, 133.9, $132.8,132.4,130.8,128.8,128.6,128.5,127.4,127.3,126.8,126.0,109.4,99.5,49.3$, 39.9, 23.5; IR (neat, cm^{-1}): $v=1931,1716,1595,1491,1102,1028,1014 ; \mathrm{MS}(70 \mathrm{eV}$, EI) $m / z(\%): 374\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 5.31\right], 372\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 13.74\right), 204$ (100); Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{OCl}: \mathrm{C} 80.53$, H 5.68; found: C 80.54, H 5.83.
(5) 1-(4-Bromophenyl)-5,7-diphenylhepta-5,6-dien-2-one (3ea) (jmq3-160)

Following Typical Procedure II, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(28.8 \mathrm{mg}, 0.05 \mathrm{mmol})$, XPhos ($41.1 \mathrm{mg}, 0.085 \mathrm{mmol}$), $\mathbf{1 e}(272.9 \mathrm{mg}, 1.2 \mathrm{mmol})$, and $\mathbf{2 a}(266.4 \mathrm{mg}, 1.0 \mathrm{mmol})$ /toluene (5.0 mL) for 19 h afforded 3ea (233.2 mg , 56\%) [eluent: petroleum ether/dichloromethane/ethyl acetate $=50 / 1 / 1(1.6 \mathrm{~L})$] as a white solid: m.p. $=$ 123.3-125.0 ${ }^{\circ} \mathrm{C}$ (petroleum ether/dichloromethane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 7.42 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.36-7.17 (m, $10 \mathrm{H}, \mathrm{ArH}$), 6.85 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), $6.50(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 3.58\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right)$, $3.51\left(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 2.95-2.65\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=206.2,205.7,135.5,133.9,132.9,131.5,131.1,128.8$, 128.5, 127.4, 127.3, 126.8, 125.9, 120.9, 109.3, 99.5, 49.3, 39.9, 23.4; IR (neat, cm^{-1}): 2898, 1931, 1715, 1593, 1487, 1446, 1328, 1069, 1028, 1010; MS (70 eV, EI) $m / z(\%):$ 418 [$\left.\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right), 7.68\right], 416$ [$\left.\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right), 7.89\right], 204$ (100). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{BrO}: \mathrm{C}$ 71.95, H 5.07; Found: C 72.03, H 5.03.
(6) 1-Phenoxy-5,7-diphenylhepta-5,6-dien-2-one (3fa) (jmq4-56)

Following Typical Procedure II, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.3 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos ($23.8 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathbf{1 f}(197.4 \mathrm{mg}, 1.2 \mathrm{mmol})$, and $2 \mathrm{a}(266.3 \mathrm{mg}, 1.0 \mathrm{mmol})$ /toluene (5.0 mL) for 8 h afforded $\mathbf{3 f a}(251.3 \mathrm{mg}, 71 \%$ yield) [petroleum ether/ethyl acetate $=60 / 1(0.4 \mathrm{~L})$ to $40 / 1(2.0 \mathrm{~L})$ for the first run provided pure product $\mathbf{3 f a}$ and some impure product. The impure product was treated with the second run of chromatography (eluent: petroleum ether/ethyl acetate $=60 / 1$ to $40 / 1$) to get another batch of pure product] as an oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}$), 7.44-7.16 (m, $10 \mathrm{H}, \mathrm{ArH}$), $6.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.76(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 6.63-6.48 (m, $1 \mathrm{H},=\mathrm{CH}), 4.45(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{OCH}_{2}\right), 4.39\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{OCH}_{2}\right), 3.12-2.74\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=206.6,205.7,157.6,135.5,133.8,129.5,128.7$, $128.5,127.32,127,29,126.7,126.0,121.5,114.5,109.2,99.5,72.8,36.8,23.1$; IR (neat, cm^{-1}): 1934, 1738, 1682, 1597, 1490, 1433, 1288, 1240, 1086, 1072, 1029; MS (70 eV, EI) $m / z(\%): 354\left(\mathrm{M}^{+}, 7.31\right), 204$ (100); HRMS Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right):$ 354.1620, Found: 354.1617.
(7) 1-(4-Chlorophenyl)-4,6-diphenylhexa-4,5-dien-1-one (3ga) (jmq4-108)

Following Typical Procedure II, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.4 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos ($23.9 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathbf{1 g}(202.5 \mathrm{mg}, 1.2 \mathrm{mmol})$, and $\mathbf{2 a}(266.3 \mathrm{mg}, 1.0 \mathrm{mmol})$ /toluene (5.0 mL) for 8 h afforded 3ga ($256.7 \mathrm{mg}, 72 \%$) [eluent: petroleum ether/ethyl
acetate $=80 / 1(1.6 \mathrm{~L})]$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.76(\mathrm{dd}, J$ $=7.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.48(\mathrm{dd}, J=8.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.38-7.14(\mathrm{~m}, 10 \mathrm{H}$, ArH), 6.49 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), 3.27-3.18 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.15-2.93 (m, 2 H , CH_{2}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=205.8,197.9,139.2,135.6,135.3,133.9$, $129.3,128.6,128.5,127.3,127.2,126.7,126.0,109.3,99.5,36.3,24.2$; IR (neat, cm^{-1}): 1933, 1682, 1588, 1572, 1492, 1446, 1398, 1359, 1200, 1175, 1091, 1074, 1012; MS (70 eV, EI) m / z (\%): $360\left[\mathrm{M}^{+}{ }^{37} \mathrm{Cl}\right.$), 5.22], $358\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right.\right.$), 13.79], 105 (100); HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{O}^{35} \mathrm{Cl}\left(\mathrm{M}^{+}\right): 358.1124$, Found: 358.1126 .
(8) 4-Butyl-1-(4-methoxyphenyl)-6-phenylhexa-4,5-dien-1-one (3hb) (jmq4-102)

Following Typical Procedure II, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.3 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos (23.8 mg, 0.05 mmol), 1h ($197.4 \mathrm{mg}, 1.2 \mathrm{mmol}$), 2b ($246.3 \mathrm{mg}, 1.0$ $\mathrm{mmol}) /$ toluene $(5.0 \mathrm{~mL})$ for 12 h afforded $\mathbf{3 h b}(237.3 \mathrm{mg}, 71 \%$ yield) [eluent: petroleum ether/ethyl acetate $=80 / 1(1.6 \mathrm{~L})$] as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.85(\mathrm{dt}, J=9.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.35-7.10(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.84(\mathrm{dt}, J=$ 9.2, $2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.12 (quint, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), 3.83 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.20-2.98 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=$), 2.64-2.38 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.16 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.55-1.42 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.40-1.32 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $0.89\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=201.6,198.1,163.2,135.6,130.13,130.07,128.4$, $126.41,126.35,113.4,108.5,96.8,55.3,35.9,32.9,29.8,26.8,22.4,13.9$; IR (neat, cm^{-1}): 2956, 2927, 1946, 1675, 1599, 1575, 1510, 1496, 1460, 1417, 1360, 1256, 1212, 1168, 1028; MS (70 eV, EI) $m / z(\%): 334\left(\mathrm{M}^{+}, 29.11\right), 135$ (100); HRMS Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right): 334.1933$, Found: 334.1929 .
(9) 1,6,8-Triphenylocta-6,7-dien-3-one (3ia) (wpl-1-135)

Following Typical Procedure II, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.5 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos ($24.0 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathbf{1 i}$ ($194.5 \mathrm{mg}, 1.2 \mathrm{mmol}$), and $\mathbf{2 a}(266.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ /toluene (5.0 mL) for 12 h afforded 3ia ($247.7 \mathrm{mg}, 70 \%$) [eluent: petroleum ether/ethyl acetate $=60 / 1(0.8 \mathrm{~L})$ to $40 / 1(1.2 \mathrm{~L})]$ as a white solid: m.p. $=86-87^{\circ} \mathrm{C}$ (petroleum ether/ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.44$ (d, $J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}$), 7.38-7.25 (m, $6 \mathrm{H}, \mathrm{ArH}$), 7.25-7.17 (m, $4 \mathrm{H}, \mathrm{ArH}$), 7.15 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.03 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $6.51(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.98-2.50(\mathrm{~m}, 8$ $\mathrm{H}, 4 \times \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=208.7,205.7,141.1,135.6,134.0$, $128.8,128.5,128.4,128.3,127.33,127.27,126.8,125.99,125.96,109.4,99.4,44.8$, 40.4, 29.5, 23.6; IR (neat, cm^{-1}): $v=1929,1707,1596,1492,1447,1402,1376,1094$, 1073, 1030, 1001; MS (70 eV, EI) m/z (\%): 352 (M ${ }^{+}$, 19.56), 204 (100); Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}: \mathrm{C} 88.60$, H 6.86 ; found: C 88.66, H 6.89.
(10) 1-Cyclohexyl-4,6-diphenylhexa-4,5-dien-1-one (3ja) (jmq4-111)

Following Typical Procedure I, the reaction of $\operatorname{Pd}(d b a)_{2}(14.4 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos ($23.9 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathbf{1} \mathbf{j}(168.5 \mathrm{mg}, 1.2 \mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$, and $\mathbf{2 a}$ ($266.3 \mathrm{mg}, 1.0 \mathrm{mmol}$)/toluene (2.5 mL) for 6 h afforded $\mathbf{3 j a}(242.2 \mathrm{mg}, 73 \%$) [eluent: petroleum ether/ethyl acetate $=100 / 1(0.4 \mathrm{~L})$ to $80 / 1(1.2 \mathrm{~L})]$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.36-7.26(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH})$, 7.25-7.12 (m, $2 \mathrm{H}, \mathrm{ArH}), 6.54(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.95-2.66\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$, 2.30-2.14 (m, 1 H , one proton of c-Hex), 1.86-1.52 (m,5 H, 5 protons of c-Hex),
1.34-1.02 (m, $5 \mathrm{H}, 5$ protons of c-Hex); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=212.7,205.7$, 135.7, 134.1, 128.7, 128.4, 127.2, 126.7, 126.0, 109.5, 99.1, 50.8, 38.4, 28.5, 28.2, 25.7, 25.6, 26.5, 23.6; IR (neat, cm^{-1}): 2927, 2852, 1934, 1704, 1596, 1493, 1446, 1093, 1073, 1028; MS (70 eV, EI) $m / z(\%): 330\left(\mathrm{M}^{+}, 12.12\right), 161$ (100); HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}\left(\mathrm{M}^{+}\right): 330.1984$, Found: 330.1988 .
(11) 1,3-Diphenyldodeca-1,2-dien-6-one (3ka) (wpl-1-148)

Following Typical Procedure II, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.4 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos ($23.8 \mathrm{mg}, 0.05 \mathrm{mmol}$), 1k ($170.3 \mathrm{mg}, 1.2 \mathrm{mmol}$), and 2a ($266.4 \mathrm{mg}, 1.0 \mathrm{mmol}$) /toluene (5.0 mL) for 13 h afforded $3 \mathbf{k a}(239.2 \mathrm{mg}, 72 \%$) [eluent: petroleum ether/ethyl acetate $=100 / 1(0.4 \mathrm{~L})$ to $60 / 1(0.4 \mathrm{~L})$ to $40 / 1(0.4 \mathrm{~L})]$ as a white solid: m.p. $=49-50{ }^{\circ} \mathrm{C}$ (petroleum ether/ethyl acetate), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 7.46 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.35-7.26 (m, $6 \mathrm{H}, \mathrm{ArH}$), 7.25-7.14 (m, $2 \mathrm{H}, \mathrm{ArH}$), $6.55(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.96-2.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.73-2.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.40-2.25 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.52-1.36 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.32-1.10 (m, $\left.6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 0.85$ $\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=210.0,205.7,135.7$, 134.1, 128.7, 128.5, 127.2, 126.7, 126.0, 109.4, 99.3, 43.1, 40.3, 31.5, 28.8, 23.7, 23.6, 22.4, 14.0; IR (neat, cm^{-1}): $v=2955,2930,2864,2847,1933,1704,1595,1492,1461$, 1445, 1409, 1373, 1092; MS (70 eV, EI) m/z (\%): 332 (M ${ }^{+}$, 14.91), 204 (100); Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}$: C 86.70, H 8.49; found: C 86.40, H 8.48.
(12) 4-Butyl-1-cyclohexyl-6-phenylhexa-4,5-dien-1-one (3jb) (jmq4-107)

Following Typical Procedure I, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.4 \mathrm{mg}, 0.025 \mathrm{mmol})$,

XPhos ($23.9 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathbf{1} \mathbf{j}(168.7 \mathrm{mg}, 1.2 \mathrm{mmol}) /$ toluene (2.5 mL), and $\mathbf{2 b}$ ($246.3 \mathrm{mg}, 1.0 \mathrm{mmol}$)/toluene (2.5 mL) for 13 h afforded $\mathbf{3 j b}$ ($234.0 \mathrm{mg}, 74 \%, 98 \%$ purity) [petroleum ether/ethyl acetate $=80 / 1(0.4 \mathrm{~L})$ to $60 / 1(0.8 \mathrm{~L})$ for the first run. All the product was collected and treated with the second run of chromatography (eluent: petroleum ether/ethyl acetate $=100 / 1(1.6 \mathrm{~L})]$ as an oil: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.32-7.10(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.14(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.59(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.44-2.16 (m, $3 \mathrm{H}, \mathrm{CH}+\mathrm{CH}_{2}$), $2.11\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 1.85-1.52 (m, $\left.5 \mathrm{H}, \mathrm{CH}+2 \times \mathrm{CH}_{2}\right), 1.52-1.02\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}+4 \times \mathrm{CH}_{2}\right), 0.88(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=213.1,201.5,135.7,128.5,126.5$, $126.4,108.6,96.8,50.8,38.2,33.0,29.7,28.5,28.2,26.0,25.8,25.6,25.5,22.4,13.9 ;$ IR (neat, cm^{-1}): 2926, 2854, 1947, 1707, 1495, 1448, 1403, 1374, 1265, 1143, 1071, 1028; MS (70 eV, EI) m/z (\%): $310\left(\mathrm{M}^{+}, 17.94\right), 142$ (100); HRMS Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}$ $\left(\mathrm{M}^{+}\right): 310.2297$, Found: 310.2299.
(13) 5-Butyl-1,7-diphenylhepta-5,6-dien-2-one (3ab) (jmq3-164)

Following typical Procedure I, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(28.8 \mathrm{mg}, 0.05 \mathrm{mmol})$, XPhos ($41.2 \mathrm{mg}, 0.085 \mathrm{mmol}$), 1a ($177.9 \mathrm{mg}, 1.2 \mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$, and $\mathbf{2 b}$ ($246.4 \mathrm{mg}, 1.0 \mathrm{mmol}$)/toluene (2.5 mL) for 6 h afforded 3ab ($251.4 \mathrm{mg}, 79 \%$) [eluent: petroleum ether/ethyl acetate $=80 / 1(2.0 \mathrm{~L})$] as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.26-7.15(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.07-6.96(\mathrm{~m}, 2 \mathrm{H}$, ArH), 6.11 (quint, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), $3.57(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of PhCH_{2}), $3.51\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{PhCH}_{2}\right)$, 2.63-2.50 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.45-2.32 ($\mathrm{m}, 1 \mathrm{H}$, one proton of CH_{2}), 2.31-2.20 ($\mathrm{m}, 1 \mathrm{H}$, one proton of CH_{2}), 2.13-2.00 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.53-1.36 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.36-1.20 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $0.86(\mathrm{t}, J$ $\left.=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=207.2,201.4,135.5,134.1$, $129.3,128.5,128.4,126.7,126.6,126.4,108.4,96.9,50.0,39.6,32.8,29.6,25.9,22.3$,
13.8; IR (neat, cm^{-1}): 2956, 2927, 1947, 1714, 1598, 1496, 1455, 1405, 1360, 1334, 1072, 1029; MS (70 eV, EI) $m / z(\%): 318$ (M^{+}, 8.57), 142 (100); HRMS Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}\left(\mathrm{M}^{+}\right): 318.1984$, Found: 318.1980.
(14) 5-Hexyl-1,7-diphenylhepta-5,6-dien-2-one (3ac) (jmq4-5)

Following Typical Procedure I, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.4 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos ($23.9 \mathrm{mg}, 0.05 \mathrm{mmol}$), 1a ($178.0 \mathrm{mg}, 1.2 \mathrm{mmol}$)/toluene (2.5 mL), and $\mathbf{2 c}$ $(274.4 \mathrm{mg}, 1.0 \mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$ for 6 h afforded 3ac ($263.3 \mathrm{mg}, 76 \%$) [eluent: petroleum ether/ethyl acetate $=80 / 1(1.6 \mathrm{~L})]$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.26-7.12(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.02(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.11 (quint, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 3.59(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of PhCH_{2}), $3.52\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{PhCH}_{2}\right), 2.68-2.52(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 2.48-2.18 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.07\left(\mathrm{td}, J=7.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.55-1.38(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 1.38-1.15 (m, $\left.6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 0.84\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=207.3,201.5,135.5,134.1,129.4,128.52,128.46,126.8,126.6$, 126.4, 108.4, 96.9, 50.1, 39.7, 33.2, 31.6, 29.0, 27.5, 26.0, 22.6, 14.0; IR (neat, cm^{-1}): 2925, 2856, 1947, 1714, 1598, 1496, 1455, 1405, 1359, 1072; MS (70 eV, EI) $m / z(\%)$: $346\left(\mathrm{M}^{+}, 5.60\right), 142$ (100); HRMS Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}\left(\mathrm{M}^{+}\right): 346.2297$, Found: 346.2299 .
(15) 5-Phenethyl-1,7-diphenylhepta-5,6-dien-2-one (3ad) (jmq3-186)

Following typical Procedure I, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.4 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos ($23.9 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathbf{1 a}(179.0 \mathrm{mg}, 1.2 \mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$, and $\mathbf{2 d}$
($294.3 \mathrm{mg}, 1.0 \mathrm{mmol}$)/toluene (2.5 mL) for 3 h afforded 3ad ($295.1 \mathrm{mg}, 81 \%$) [eluent: petroleum ether/ethyl acetate $=80 / 1(2.0 \mathrm{~L})]$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.32-7.08(\mathrm{~m}, 13 \mathrm{H}, \mathrm{ArH}), 7.02(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.12$ (quint, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 3.57\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{PhCH}_{2}\right), 3.51$ ($\mathrm{d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of PhCH_{2}), $2.85-2.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.67-2.52(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{CH}_{2}$), 2.49-2.24 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=207.2$, 201.5, 141.7, 135.2, 134.1, 129.4, 128.51, 128.46, 128.3, 128.2, 126.8, 126.7, 126.5, 125.8, $107.8,97.5,50.1,39.6,34.8,33.8,26.0$; IR (neat, cm^{-1}): 1948, 1712, 1599, 1495, 1453, 1072, 1029; MS (ESI) $m / z=389(\mathrm{M}+\mathrm{Na})^{+}, 384\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 367(\mathrm{M}+\mathrm{H})^{+}$; HRMS Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}\left(\mathrm{M}^{+}\right): 366.1984$, Found: 366.1980.
(16) 5-Allyl-1,7-diphenylhepta-5,6-dien-2-one (3ae) (jmq4-23)

Following typical Procedure I, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.4 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos ($23.9 \mathrm{mg}, 0.05 \mathrm{mmol}$), 1a ($177.9 \mathrm{mg}, 1.2 \mathrm{mmol}$)/toluene (2.5 mL), and 2 e $(230.3 \mathrm{mg}, 1.0 \mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$ for 4 h afforded 3ae ($188.6 \mathrm{mg}, 62 \%$) [eluent: petroleum ether/ethyl acetate $=60 / 1(2.0 \mathrm{~L})]$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) $\delta=7.44-7.12(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}$), $7.09-6.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.13$ (quint, $J=3.0 \mathrm{~Hz}$, $1 \mathrm{H},=\mathrm{CH}), 5.93-5.74(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 5.10(\mathrm{dd}, J=16.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.=\mathrm{CH}_{2}\right), 5.02\left(\mathrm{dt}, J=10.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 3.59(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of PhCH_{2}), $3.53\left(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{PhCH}_{2}\right), 2.84(\mathrm{~d}, J=$ $\left.6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.74-2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.48-2.34\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right)$, 2.34-2.16 (m, 1 H , one proton of CH_{2}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=207.2$, 201.8, $135.3,135.1,134.1,129.4,128.6,128.5,126.8,126.5,116.4,106.8,97.1,50.1,39.6$, 37.9, 25.6; IR (neat, cm^{-1}): 1949, 1711, 1598, 1495, 1454, 1407, 1241, 1071, 1029; MS (70 eV, EI) $m / z(\%): 302\left(\mathrm{M}^{+}, 7.72\right), 91$ (100); HRMS Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 302.1671, Found: 302.1669.
(17) 5-(4-Acetylphenyl)-1,7-diphenylhepta-5,6-dien-2-one (3af) (jmq4-24)

Following typical Procedure I, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.5 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos ($23.9 \mathrm{mg}, 0.05 \mathrm{mmol}$), 1a ($177.9 \mathrm{mg}, 1.2 \mathrm{mmol}$)/toluene (2.5 mL), and $\mathbf{2 f}$ ($308.4 \mathrm{mg}, 1.0 \mathrm{mmol}$)/toluene (2.5 mL) for 5 h afforded 3af ($268.3 \mathrm{mg}, 70 \%$) [eluent: petroleum ether/ethyl acetate $=50 / 1(0.4 \mathrm{~L})$ to $25 / 1(1.2 \mathrm{~L})$ to $8 / 1(0.8 \mathrm{~L})$] as a white solid: m.p. $=75.4-76.8{ }^{\circ} \mathrm{C}$ (petroleum ether/dichloromethane); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.40-7.15$ (m, $8 \mathrm{H}, \mathrm{ArH}$), 7.03 (dd, $J=7.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.56(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$, $3.64\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{PhCH}_{2}\right), 3.58(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of PhCH_{2}), 2.98-2.70 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), $2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=206.81,206.75,197.5,140.7,135.7,133.9,133.2,129.3,128.8,128.6$, $128.5,127.6,126.9,126.0,108.9,99.9,50.2,39.6,26.5,23.3$; IR (neat, cm^{-1}): 1931, 1708, 1678, 1598, 1496, 1456, 1408, 1264, 1183, 1089, 1072, 1032; MS (70 eV, EI) m / z (\%): $380\left(\mathrm{M}^{+}, 25.32\right), 91$ (100); HRMS Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right): 380.1776$, Found: 380.1784.
(18) 5-(2-Chlorophenyl)-1,7-diphenylhepta-5,6-dien-2-one (3ag) (jmq4-45)

Following Typical Procedure I, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.6 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos ($23.9 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathbf{1 a}(177.7 \mathrm{mg}, 1.2 \mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$, and $\mathbf{2 g}$ ($300.8 \mathrm{mg}, 1.0 \mathrm{mmol}$)/toluene (2.5 mL) for 4 h afforded $\mathbf{3 a g}$ ($205.7 \mathrm{mg}, 55 \%$) [eluent: petroleum ether/ethyl acetate $=50 / 1(2.0 \mathrm{~L})]$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta=7.45-7.12(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH}), 7.05(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.29(\mathrm{t}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CH}), 3.63\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{PhCH}_{2}\right), 3.58(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, 1 H , one proton of PhCH_{2}), 2.86-2.62 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=206.9,203.8,136.4,134.1,132.8,130.1,129.9,129.4,128.63,128.55,127.2$, 127.1, 126.9, 126.8, 107.5, 97.3, 50.1, 39.8, 26.9; IR (neat, cm^{-1}): 1948, 1712, 1598, $1495,1473,1456,1434,1062,1032$; MS (70 eV, EI) $m / z(\%): 374\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 13.65\right]$, $372\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 40.75\right]$, 203 (100); HRMS Calcd for $\mathrm{C}_{25} \mathrm{H}_{21}{ }^{35} \mathrm{ClO}\left(\mathrm{M}^{+}\right): 372.1281$, Found: 372.1276.
(19) 5-Butyl-7-(3,5-dichlorophenyl)-1-phenylhepta-5,6-dien-2-one (3ah) (jmq4-1)

Following Typical Procedure I, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.3 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos ($23.8 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathbf{1 a}(178.5 \mathrm{mg}, 1.2 \mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$, and $\mathbf{2 h}$ ($315.2 \mathrm{mg}, 1.0 \mathrm{mmol}$)/toluene (2.5 mL) for 23 h afforded 3ah ($298.6 \mathrm{mg}, 77 \%$) [petroleum ether/ethyl acetate $=70 / 1(2.0 \mathrm{~L})$ for the first run. Then all the product was treated with the second run of chromatography (eluent: petroleum ether/ethyl acetate $=80 / 1(2.0 \mathrm{~L}))]$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.30-7.18(\mathrm{~m}, 3 \mathrm{H}$, ArH), 7.15 (t, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.12-7.05 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.05-6.99 (m, 2 H , ArH), 5.94 (quint, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), $3.61(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of PhCH_{2}), $3.56\left(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of PhCH_{2}), $2.59(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), 2.44-2.20 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.16-1.98 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $1.50-1.20\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$, $0.87\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=206.9$, 202.2, 139.0, $135.0,134.0,129.3,128.5,126.9,126.3,124.6,109.8,95.2,50.1,39.5,32.6,29.5$, 25.7, 22.3, 13.8; IR (neat, cm^{-1}): 2956, 2927, 1949, 1714, 1584, 1563, 1496, 1454, 1431, 1375, 1360, 1113, 1087, 1031; MS (ESI) $m / z=411\left[M\left({ }^{37,35} \mathrm{Cl}_{2}\right)+\mathrm{Na}\right]^{+} ; 409$ $\left[\mathrm{M}\left({ }^{35,35} \mathrm{Cl}_{2}\right)+\mathrm{Na}\right]^{+} ;$HRMS Calcd for $\mathrm{C}_{23} \mathrm{H}_{24}{ }^{35,35} \mathrm{Cl}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 386.1204, Found: 386.1207.
(20) 5-Butyl-7-(4-(methoxycarbonyl)phenyl)-1-phenylhepta-5,6-dien-2-one (3ai) (wpl-1-92)

Following Typical Procedure I, the reaction of $\mathrm{Pd}(\mathrm{dba})_{2}(28.7 \mathrm{mg}, 0.05 \mathrm{mmol})$, XPhos ($40.6 \mathrm{mg}, 0.085 \mathrm{mmol}$), 1a ($148.2 \mathrm{mg}, 1.0 \mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$, and $\mathbf{2 i}$ ($303.7 \mathrm{mg}, 1.0 \mathrm{mmol}$)/toluene (2.5 mL) for 13 h afforded 3ai ($209.3 \mathrm{mg}, 56 \%$) [petroleum ether/ethyl acetate $=80 / 1(1.2 \mathrm{~L})$ to $40 / 1(1.0 \mathrm{~L})$ was used for for the first run. Then all the product was treated with the second run of chromatography (eluent: petroleum ether/ethyl acetate $=80 / 1(1.2 \mathrm{~L})$ to $40 / 1(1.2 \mathrm{~L}))]$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.30-7.18(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$, 7.10-6.97 (m, $2 \mathrm{H}, \mathrm{ArH}$), 6.12 (quint, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), $3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.59$ (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of Bn$), 3.54(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of Bn$)$, 2.72-2.51 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.48-2.20 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.18-2.03 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.52-1.40 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.39-1.27 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $0.86\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.1,202.9,166.9,140.6,134.0,129.9,129.3,128.5,128.1$, $126.9,126.2,109.0,96.5,52.0,50.2,39.6,32.7,29.6,25.9,22.4,13.8$; IR (neat, cm^{-1}): $v=2953,2927,1945,1713,1605,1496,1273,1190,1173,1107,1016 ;$ MS (70 eV, EI) $m / z(\%): 376\left(\mathrm{M}^{+}, 14.02\right), 200(100)$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right): 376.2038$, found: 376.2041 .
(21) 5-Butyl-7-(4-cyanophenyl)-1-phenylhepta-5,6-dien-2-one (3aj) (jmq4-22)

Following Typical Procedure I, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.5 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos ($23.9 \mathrm{mg}, 0.05 \mathrm{mmol}$), 1a ($148.1 \mathrm{mg}, 1.0 \mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL}$), and $\mathbf{2 j}$
($271.3 \mathrm{mg}, 1.0 \mathrm{mmol}) /$ toluene (2.5 mL) in for 16 h afforded 3aj ($271.2 \mathrm{mg}, 79 \%$) [eluent: petroleum ether/ethyl acetate $=60 / 1(0.4 \mathrm{~L})$ to $40 / 1(1.2 \mathrm{~L})$ to $30 / 1(0.8 \mathrm{~L})$] as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 7.27-7.15 (m, 5 H, ArH), 7.08-6.95 (m, $2 \mathrm{H}, \mathrm{ArH}$), 6.09 (t, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), $3.58(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of Bn$), 3.52(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\mathrm{Bn}), 2.72-2.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.50-2.35\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right)$, 2.35-2.18 (m, 1 H , one proton of CH_{2}), 2.18-1.98 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.52-1.20 (m, $\left.4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 0.86(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=206.8,203.2,140.7,133.8$, $132.2,129.2,128.4,126.8,126.7,119.1,109.5,96.1,50.0,39.3,32.5,29.5,25.6,22.3$, 13.8; IR (neat, cm^{-1}): 2956, 2927, 2858, 2224, 1945, 1713, 1603, 1498, 1454, 1393, 1359, 1334, 1204, 1172, 1071; MS (70 eV, EI) $m / z(\%): 343\left(\mathrm{M}^{+}, 17.68\right), 91$ (100); HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}\left(\mathrm{M}^{+}\right): 343.1936$, Found: 343.1939.
(22) 5-Hexyl-7-methyl-1-phenylocta-5,6-dien-2-one (3ak) (wpl1-147)

Typical Procedure III: To a flame-dried Schlenk tube were added $\operatorname{Pd}(\mathrm{dba})_{2}(14.2 \mathrm{mg}$, 0.025 mmol), XPhos ($24.2 \mathrm{mg}, 0.05 \mathrm{mmol}$), and $\mathrm{K}_{3} \mathrm{PO}_{4} \bullet 3 \mathrm{H}_{2} \mathrm{O}$ ($266.3 \mathrm{mg}, 1.0 \mathrm{mmol}$) under Ar atmosphere. Compound $\mathbf{1 a}(177.7 \mathrm{mg}, 1.2 \mathrm{mmol})$ and $\mathbf{2 k}(226.3 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ /toluene $(5.0 \mathrm{~mL})$ were then added sequentially under Ar atmosphere at room temperature. The resulting mixture was then stirred at $80{ }^{\circ} \mathrm{C}$ until completion of the reaction as monitored by NMR (19 h). The crude reaction mixture was filtrated through a short column of silica gel (height: $2 \mathrm{~cm}, \Phi: 3.5 \mathrm{~cm}$) eluted with ethyl acetate $(60 \mathrm{~mL})$. After evaporation, the residue was purified by chromatography on silica gel to afford 3ak ($161.2 \mathrm{mg}, 54 \%$) [eluent: petroleum ether/ethyl acetate $=$ 100/1 (0.8 L)] as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.43-7.15(\mathrm{~m}, 5 \mathrm{H}$, ArH), 3.67 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ of Bn), $2.52\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $2.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.88\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.61\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.43-1.20(\mathrm{~m}, 8 \mathrm{H}, 4 \times$
CH_{2}), $0.87\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.8,198.0$, 134.4, 129.4, 128.6, 126.8, 101.4, 97.1, 50.1, 40.2, 33.2, 31.8, 28.9, 27.6, 26.6, 22.7, 20.9, 14.1; IR (neat, cm^{-1}): $v=2924,2855,1714,1602,1496,1454,1360,1264,1187$, 1074, 1031; MS (70 eV, EI) m/z (\%): 298 (${ }^{+}$, 6.60), 91 (100); HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}\left(\mathrm{M}^{+}\right): 298.2297$, found: 298.2293.
(23) 7-Methyl-5-pentyl-1-phenyldeca-5,6-dien-2-one (3al) (wpl1-149)

Following Typical Procedure III, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.4 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos ($23.5 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(266.4 \mathrm{mg}, 1.0 \mathrm{mmol}), 1 \mathrm{a}(177.9 \mathrm{mg}, 1.2$ $\mathrm{mmol})$, and $21(240.0 \mathrm{mg}, 1.0 \mathrm{mmol}) /$ toluene $(5.0 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 19 h afforded 3al $(156.0 \mathrm{mg}, 95 \%$ purity, $48 \%)$ [petroleum ether/ethyl acetate $=100 / 1(1.2 \mathrm{~L})$ was used for the first run. Then all the product was treated with the second run of chromatography(eluent: petroleum ether/ethyl acetate $=100 / 1$)] as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.15(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 3.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Bn), 2.55-2.46 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.20-2.11 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $1.92-1.80\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.59$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.42-1.19 (m, $8 \mathrm{H}, 4 \times \mathrm{CH}_{2}$), 0.93-0.82 (m, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.9,197.6,134.4,129.4,128.6,126.8,102.6,101.4,50.1$, $40.3,36.7,33.3,31.5,27.4,26.6,22.5,21.0,19.4,14.1,14.0$; IR (neat, cm^{-1}): $v=$ 2956, 2927, 2871, 1714, 1496, 1455, 1408, 1359, 1260, 1089, 1074, 1031; MS (70 eV, EI) $m / z(\%): 312\left(\mathrm{M}^{+}, 5.98\right)$, 91 (100); HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}\left[\mathrm{M}^{+}\right]: 312.2453$, found: 312.2455 .
(24) 1, 7-Diphenylhepta-5,6-dien-2-one (3an) (wpl2-141)

To a flame-dried Schlenk tube were added $\operatorname{Pd}(\mathrm{dba})_{2}(28.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ and XPhos ($40.4 \mathrm{mg}, 0.085 \mathrm{mmol}$) under Ar atmosphere. Compound $1 \mathbf{1 a}$ (liquid, 177.7 mg , $1.2 \mathrm{mmol}) /$ toluene $(1.0 \mathrm{~mL}), \mathbf{2 n}(190.3 \mathrm{mg}, 1.0 \mathrm{mmol}) /$ toluene $(1.0 \mathrm{~mL})$, and toluene $(3.0 \mathrm{~mL})$ were then added sequentially under Ar atmosphere at room temperature. The resulting mixture was then stirred at $50{ }^{\circ} \mathrm{C}$ until completion of the reaction as monitored by TLC (12 h). The crude reaction mixture was filtrated through a short column of silica gel (height: $3 \mathrm{~cm}, \Phi: 3.5 \mathrm{~cm}$) eluted with ethyl acetate (60 mL). After evaporation, the residue was purified by chromatography on silica gel to afford 3an $(52.1 \mathrm{mg}, 20 \%)$ [eluent: petroleum ether/ethyl acetate $=100 / 1(2.0 \mathrm{~L})$] as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50-7.15(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2$ $\mathrm{H}, \mathrm{ArH}), 6.17-6.07(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 5.60(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 3.65(\mathrm{~d}, J=15.2$ $\mathrm{Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.61\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$, 2.74-2.56 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.51-2.30 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 207.2, 204.8, 134.5, 134.1, 129.4, 128.59, 128.58, 126.91, 126.88, 126.6, 96.1, 94.1, 50.1, 40.4, 22.2; IR (neat, cm^{-1}): $v=3061,3029,2915,1948,1710,1597,1495,1454$, 1406, 1359, 1311, 1267, 1203, 1072, 1029; MS (70 eV, EI) $m / z(\%): 262\left(\mathrm{M}^{+}, 30.50\right)$, 128 (100); HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}^{+}\right]: 262.1358$, found: 262.1360 .
(25) Steroidal skeleton containing allene 31a (jmq3-193)

Following Typical Procedure II, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.4 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos ($23.7 \mathrm{mg}, 0.05 \mathrm{mmol}$), $11(584.5 \mathrm{mg}, 1.2 \mathrm{mmol})$, and $\mathbf{2 a}(266.3 \mathrm{mg}, 1.0 \mathrm{mmol})$ /toluene (5.0 mL) for 3 h afforded 3la $(563.8 \mathrm{mg}, 81 \%, \mathrm{dr}=1.5 / 1$) [eluent: petroleum ether/ethyl acetate $=200 / 1(0.4 \mathrm{~L})$ to $100 / 1(1.6 \mathrm{~L})$] as a white foam. The dr ratio of 3la was determined to be $1.5 / 1$ by HPLC (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=4.0 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=$ $5.5 \mathrm{~min}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.40-7.28$
(m, $6 \mathrm{H}, \mathrm{ArH}$), 7.26-7.16 (m, $2 \mathrm{H}, \mathrm{ArH}), 6.56(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 3.65-3.50(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 3.00-2.64\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.48-2.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.98-1.66(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{CH}+2 \times \mathrm{CH}_{2}\right), 1.65-0.94(\mathrm{~m}, 21 \mathrm{H}), 0.90\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}+t-\mathrm{Bu}\right), 0.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3$ $\mathrm{H}, \mathrm{CH}_{3}$), $0.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.07\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 210.4, 205.7, 135.7, 134.0, 128.7, 128.5, 127.3, 127.2, 126.8, 126.0, 109.5, 99.29, $99.28,72.8,56.3,55.9,55.8,42.6,42.2,40.3,40.1,40.06,39.9,36.9,35.8,35.5,35.1$, $34.5,30.98,29.52,29.50,28.11,28.10,27.3,26.4,25.9,24.1,23.6,23.4,20.7,18.3$, 12.0, -4.6; IR (neat, cm^{-1}): 2926, 2856, 1935, 1715, 1597, 1494, 1461, 1447, 1409, 1372, 1250, 1093, 1076; MS (ESI): $m / z 693(\mathrm{M}+\mathrm{H})^{+}, 710\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; HRMS Calcd for $\mathrm{C}_{47} \mathrm{H}_{72} \mathrm{NO}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 710.5327$, Found: 710.5324; Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{68} \mathrm{O}_{2} \mathrm{Si}$: C 81.44, H 9.89; found: C 80.43, H 9.87.
(26) Steroidal skeleton containing allene 3ld (jmq4-6)

Following Typical Procedure II, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(14.3 \mathrm{mg}, 0.025 \mathrm{mmol})$, XPhos ($23.9 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\mathbf{1 l}(584.8 \mathrm{mg}, 1.2 \mathrm{mmol})$, and $\mathbf{2 d}(294.3 \mathrm{mg}, 1.0 \mathrm{mmol})$ /toluene (5.0 mL) for 6 h afforded 3ld ($518.1 \mathrm{mg}, 72 \%, \mathrm{dr}=1.4 / 1$) [eluent: petroleum ether/ethyl acetate $=200 / 1(0.4 \mathrm{~L})$ to $100 / 1(1.6 \mathrm{~L})]$ as a colorless oil: The dr ratio of 3ld was determined to be $1.4 / 1$ by HPLC (HPLC conditions: (S, S)-whelk-O 1 column, hexane $/ i-\mathrm{PrOH}=95 / 5,0.2 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=29.1 \mathrm{~min}, t_{\mathrm{R}}($ major $)=$ $30.5 \mathrm{~min}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.40-7.07(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 6.16(\mathrm{t}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CH}$), 3.70-3.50 (m, $1 \mathrm{H}, \mathrm{CH}$ of CHOTBS), 2.80 (t, $J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$, COCH_{2}), 2.66-2.54 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), 2.54-2.10 (m, 6 H), 1.97-0.95 (m, 26 H), $0.94-0.85\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}+t-\mathrm{Bu}\right), 0.77\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.58(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3$ $\mathrm{H}, \mathrm{CH}_{3}$), $0.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=210.6,201.5,141.7$, 135.2, 128.5, 128.3, 128.2, 126.7, 126.4, 125.7, 107.9, 97.47, 97.46, 72.7, 56.3, 55.84, $55.78,42.6,42.2,40.11,40.06,40.04,40.03,39.8,36.8,35.8,35.5,35.09,35.08,34.9$,
34.5, 33.8, 31.0, 29.47, 29.44, 28.07, 28.06, 27.2, 26.3, 26.1, 25.9, 24.1, 23.3, 20.7, 18.3, 11.9, -4.6; IR (neat, cm^{-1}): 2927, 2857, 1948, 1716, 1600, 1496, 1451, 1406, 1372, 1251, 1094, 1077; MS (ESI): $m / z 743(\mathrm{M}+\mathrm{Na})^{+}, 738\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 721(\mathrm{M}+\mathrm{H})^{+}$; HRMS Calcd for $\mathrm{C}_{49} \mathrm{H}_{76} \mathrm{NO}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}: 738.5640$, Found: 738.5635. Anal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{72} \mathrm{O}_{2} \mathrm{Si}$: C 81.61, H 10.06; found: C 81.84, H 10.10 .

Chirality transfer:

(1) $\left(R_{a}\right)$-5-Allyl-1,7-diphenylhepta-5,6-dien-2-one (($\left.R_{a}\right)$-3ae) (jmq4-120)

Following Typical Procedure I, the reaction of $\operatorname{Pd}(d b a)_{2}(7.2 \mathrm{mg}, 0.0125 \mathrm{mmol})$, XPhos ($12.0 \mathrm{mg}, 0.025 \mathrm{mmol}$), $\mathbf{1 a}(89.2 \mathrm{mg}, 0.6 \mathrm{mmol}) /$ toluene $(1.0 \mathrm{~mL})$, and (R)-2e ($115.2 \mathrm{mg}, 0.5 \mathrm{mmol},>99.5 / 0.5 \mathrm{er}) /$ toluene $(1.5 \mathrm{~mL})$ for 1.3 h afforded $\left(R_{a}\right)$-3ae $(90.3 \mathrm{mg}, 60 \%)$ [eluent: petroleum ether/ethyl acetate $=60 / 1(0.4 \mathrm{~L})$ to $50 / 1(0.8 \mathrm{~L})$] as a colorless oil: 95.3/4.7 er (HPLC conditions: Chiralcel AD-H column, hexane $/ i-\operatorname{PrOH}=100 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=9.7 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=$ $10.3 \mathrm{~min}) ;[\alpha]_{\mathrm{D}}{ }^{25}=+44.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36-7.14$ (m, $8 \mathrm{H}, \mathrm{ArH}$), 7.09-6.93 (m, $2 \mathrm{H}, \mathrm{ArH}$), 6.13 (quint, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), 5.90-5.76 $(\mathrm{m}, 1 \mathrm{H},=\mathrm{CH}), 5.10\left(\mathrm{dd}, J=16.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 5.02(\mathrm{dd}, J=$ $10.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.=\mathrm{CH}_{2}\right), 3.59(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{PhCH}_{2}\right), 3.53\left(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{PhCH}_{2}\right), 2.84(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), 2.72-2.51 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.48-2.20 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=207.2,201.9,135.3,135.2,134.1,129.4,128.6,128.5,126.8,126.5,116.4,106.8$, 97.1, 50.1, 39.6, 37.9, 25.6; IR (neat, cm^{-1}): 2976, 1948, 1712, 1598, 1495, 1407, 1360, 1071, 1029; MS (70 eV, EI) m/z (\%): 302 (${ }^{+}$, 6.78), 91 (100); HRMS Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}\left(\mathrm{M}^{+}\right): 302.1671$, Found: 302.1674.
(2) (\boldsymbol{R}_{a})-5-(2-Chlorophenyl)-1-(4-methoxyphenyl)-7-phenylhepta-5,6-dien-2-one ($\left(R_{a}\right)$-3cg) $(\mathbf{j m q 4} 424)$

Following Typical Procedure I, the reaction of $\mathrm{Pd}(\mathrm{dba})_{2}(2.9 \mathrm{mg}, 0.005 \mathrm{mmol})$, XPhos ($4.8 \mathrm{mg}, 0.01 \mathrm{mmol}$), $\mathbf{1 c}(42.9 \mathrm{mg}, 0.24 \mathrm{mmol}) /$ toluene $(0.5 \mathrm{~mL})$, and $(R)-\mathbf{2 g}$ ($60.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 98.5 / 1.5 \mathrm{er}$)/toluene (0.5 mL) for 3 h afforded $\left(R_{a}\right)$ - $\mathbf{3 c g}(63.4 \mathrm{mg}$, $79 \%)$ [eluent: petroleum ether/ethyl acetate $=40 / 1(0.4 \mathrm{~L})$ to $30 / 1(0.8 \mathrm{~L})$ to 20/1 $(0.4$ L)] as a colorless oil: 95.5/4.5 er (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=11.8 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=$ $16.0 \mathrm{~min}) ;[\alpha]_{\mathrm{D}}{ }^{20}=-158.0\left(\mathrm{c}=0.408, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 7.44-7.26 (m, 6 H, ArH), 7.25-7.11 (m, $3 \mathrm{H}, \mathrm{ArH}$), 6.96 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.78 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $6.29(t, J=3.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 3.76$ (s, $3 \mathrm{H}, \mathrm{OMe}$), $3.57\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{ArCH}_{2}\right), 3.52(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of ArCH_{2}), 2.86-2.54 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 207.4, 203.9, 158.5, 136.4, 134.1, 132.8, 130.4, 130.1, 129.9, 128.6, 128.5, 127.2, $127.1,126.8,126.1,114.0,107.5,97.3,55.2,49.2,39.6,26.9$; IR (neat, cm^{-1}): 1947, 1711, 1611, 1584, 1511, 1461, 1435, 1406, 1300, 1245, 1177, 1113, 1063, 1032; MS (70 eV, EI) m / z (\%): 404 [$\left.\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 3.43\right], 402$ [$\left.\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 9.45\right], 121$ (100); HRMS Calcd for $\mathrm{C}_{26} \mathrm{H}_{23}{ }^{35} \mathrm{ClO}_{2}\left(\mathrm{M}^{+}\right): 402.1387$, Found: 402.1392.
(3) (\boldsymbol{R}_{a})-7-(4-Chlorophenyl)-1,5-diphenylhepta-5,6-dien-2-one (jmq5-29)

Following Typical Procedure I, the reaction of $\operatorname{Pd}(\mathrm{dba})_{2}(2.9 \mathrm{mg}, 0.005 \mathrm{mmol})$, XPhos ($4.9 \mathrm{mg}, 0.01 \mathrm{mmol}$), $\mathbf{1 a}(35.8 \mathrm{mg}, 0.24 \mathrm{mmol}) /$ toluene $(0.5 \mathrm{~mL})$, and $(R)-\mathbf{2 m}$ ($60.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 99.0 / 1.0 \mathrm{er}$)/toluene (0.5 mL) for 2 h afforded (R_{a}) -3am (53.5 mg , $72 \%)$ [eluent: petroleum ether/ethyl acetate $=60 / 1(0.4 \mathrm{~L})$ to $40 / 1(1.2 \mathrm{~L})$] as a solid: m.p. 88.8-89.3 ${ }^{\circ} \mathrm{C}$ (petroleum ether/dichloromethane); 95.6/4.4 er (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, t_{\mathrm{R}}$ (major) $=8.6 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=13.2 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}{ }^{20}=-248.3\left(\mathrm{c}=0.44, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.36-7.15(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 7.12-6.94$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}), 6.50-6.40(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 3.62(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\mathrm{Bn}), 3.56(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of Bn$), 3.01-2.65\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=206.8,205.8,135.3,133.9,132.8,132.5,129.3,128.9$, $128.5,128.0,127.4,126.9,126.0,109.8,98.4,50.2,39.7,23.5$; IR (neat, cm^{-1}): 3026, $2892,1930,1716,1596,1487,1453,1428,1407,1380,1313,1229,1083,1073,1030$, 1013; MS (70 eV, EI) m/z (\%): 374 [$\left.\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 7.93\right], 372\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 23.25\right], 91$ (100); Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClO}$: C 80.53, H 5.68; found: C 80.48, H 5.70.

III. Gram-scale synthesis and transformations of product 3db.

Gram scale reaction: 5-Butyl-1-(4-chlorophenyl)-7-phenylhepta-5,6-dien-2-one (3db) (jmq4-49)

Following Typical Procedure II, the reaction of $\mathrm{Pd}(\mathrm{dba})_{2}(71.9 \mathrm{mg}, 0.125 \mathrm{mmol})$, XPhos ($119.4 \mathrm{mg}, 0.25 \mathrm{mmol}$), 1d ($1.0050 \mathrm{~g}, 5.5 \mathrm{mmol}$), and 2b ($1.2320 \mathrm{~g}, 5.0 \mathrm{mmol}$) in toluene (5.0 mL), and toluene (20.0 mL) for 17 h afforded 75% yield of $\mathbf{3 d b}$ $(1.3279 \mathrm{~g})$ [eluent: petroleum ether/ethyl acetate $=100 / 1(0.8 \mathrm{~L})$ to $60 / 1(1.6 \mathrm{~L})$] as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.35-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.25-7.12(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{ArH}$), $6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.11$ (quint, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 3.56(\mathrm{~d}$,
$J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{PhCH}_{2}\right), 3.49(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{PhCH}_{2}\right), 2.73-2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.48-2.36\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2}\right), 2.35-2.20$ ($\mathrm{m}, 1 \mathrm{H}$, one proton of CH_{2}), $2.08\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54-1.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.40-1.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.87\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=206.6,201.4,135.4,132.7,132.5,130.8,128.6,128.5,126.7,126.4,108.5,97.1$, $49.2,39.8,32.9,29.7,25.9,22.4,13.9$; IR (neat, cm^{-1}): 2955, 2927, 2871, 2859, 1945, 1715, 1597, 1492, 1461, 1406, 1360, 1089, 1073, 1016; MS (70 eV, EI) m/z (\%): 354 $\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 1.35\right], 352\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 4.74\right], 142$ (100); HRMS Calcd for $\mathrm{C}_{23} \mathrm{H}_{25}{ }^{35} \mathrm{ClO}\left(\mathrm{M}^{+}\right)$: 352.1594, Found: 352.1597.

Transformations of product 3db:

(1) Reduction with NaBH_{4} for the synthesis of 5-butyl-1-(4-chlorophenyl)-7-phenylhepta-5,6-dien-2-ol (5) (jmq4-54, wpl-2-16)

To a flame-dried Schlenk tube were added $\mathbf{3 d b}(176.5 \mathrm{mg}, 0.5 \mathrm{mmol})$ and MeOH (5.0 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(29.0 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) was added slowly. The resulting mixture was allowed to warm up to room temperature and stirred at rt for 2 h . The resulting mixture was then cooled to $0^{\circ} \mathrm{C}$ and quenched with water (10 mL) and the aqueous layer was extracted by EtOAc (15 mL $\times 3$). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. After evaporation, the residue was purified by chromatography on silica gel [eluent: petroleum ether/ethyl acetate $=20 / 1(1.2 \mathrm{~L})$] to afford 5 ($172.1 \mathrm{mg}, 97 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 7.40-7.14 (m, $7 \mathrm{H}, \mathrm{ArH}$), 7.09 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.89 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 6.27-6.02 (m, $1 \mathrm{H},=\mathrm{CH}), 3.96-3.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.85-2.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.38-1.98 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 1.82-1.58 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.57-1.40 (m, $3 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{OH}$),
1.39-1.26 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $0.88\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$); IR (neat, cm^{-1}): 2925, 2857, 1946, 1894, 1597, 1491, 1461, 1406, 1089, 1071, 1015; MS (70 eV, EI) $m / z(\%): 356$ $\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 0.65\right], 354\left[\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 2.34\right], 129$ (100); HRMS Calcd for $\mathrm{C}_{23} \mathrm{H}_{27}{ }^{35} \mathrm{ClO}\left(\mathrm{M}^{+}\right)$: 354.1750, Found: 354.1754; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ClO}$: C 77.83, H 7.67; found: C 77.75, H 7.77.
(2) Reaction with EtMgCl for the synthesis of 6-butyl-3-(4-chlorobenzyl)-8-phenylocta-6,7-dien-3-ol (6) (jmq4-67, wpl-2-18)

To a flame-dried Schlenk tube was added a solution of $\mathbf{3 d b}$ ($105.9 \mathrm{mg}, 0.3 \mathrm{mmol}$) in THF (1.5 mL). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{EtMgCl}(2.0 \mathrm{M}$ in THF, 0.6 $\mathrm{mmol}, 0.2 \mathrm{~mL}+0.1 \mathrm{~mL}$) was added slowly. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , the resulting mixture was quenched with water at $0^{\circ} \mathrm{C}(10 \mathrm{~mL})$ and the aqueous layer was extracted by EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. After evaporation, the residue was purified by chromatography on silica gel [eluent: petroleum ether/ethyl acetate $=40 / 1$ (1.2 L)] to afford $6\left(95.2 \mathrm{mg}, 83 \%\right.$ yield) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.43-6.98(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}), 6.26-6.03(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH})$, [the major isomer: $2.70(\mathrm{~s})$, the minor isomer $2.69(\mathrm{~s}), 2 \mathrm{H}, \mathrm{CH}_{2}$ of ArCH_{2}], $2.25-2.00\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$, 1.70-1.52 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $1.50-1.40\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.40-1.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.18$ (s, $1 \mathrm{H}, \mathrm{OH}$), 1.00-0.80 (m, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$); IR (neat, cm^{-1}): 2956, 2927, 2872, 2857, 1946, 1597, 1491, 1459, 1406, 1378, 1111, 1092, 1029, 1016; MS (MALDI) m/z: 400 $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$; HRMS Calcd for $\mathrm{C}_{25} \mathrm{H}_{31}{ }^{35} \mathrm{ClO}\left(\mathrm{M}^{+}\right)$: 382.2063, Found: 382.2069; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{ClO}$: C 78.41, H 8.16; found: C 78.31, H 8.14.
(3) Synthesis of 6-butyl-3-(4-chlorophenylmethyl)-1,8-phenyl-nona-1-yn-6,7-dien-3-ol (7) (jmq4-61, wpl-2-17)

To a flame-dried Schlenk tube were added phenylacetylene ($102.8 \mathrm{mg}, 1.0 \mathrm{mmol}$) and THF (0.5 mL) under Ar. The resulting mixture was cooled to $-78^{\circ} \mathrm{C}$, then n - BuLi (2.5 M in hexane, $0.32 \mathrm{~mL}, 0.8 \mathrm{mmol}$) was added dropwise. After the addition, the resulting mixture was stirred at room temperature for 30 min . The resulting mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, and a solution of $\mathbf{3 d b}(176.5 \mathrm{mg}, 0.5 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ was added dropwise. The resulting mixture was stirred at room temperature for 3 h , and then cooled to $0{ }^{\circ} \mathrm{C}$, quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, extracted with ethyl ether (15 $\mathrm{mL} \times 3$), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration under reduced pressure, the crude product was purified by column chromatography on silica gel [eluent: petroleum ether/ethyl acetate $=60 / 1(2.4 \mathrm{~L})$] to afford $7(142.2 \mathrm{mg}, 63 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.44-7.10(\mathrm{~m}, 14 \mathrm{H}, \mathrm{ArH})$, 6.26-6.04 (m, $1 \mathrm{H},=\mathrm{CH}), 2.99\left(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 2.92(\mathrm{~d}, J$ $=13.2 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 2.54-2.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.24-2.10(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $2.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.07-1.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.55-1.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.40-1.28$ (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $0.88\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$); IR (neat, cm^{-1}): $3559,3415,2954,2924$, 2857, 2323, 2228, 1947, 1597, 1490, 1459, 1406, 1378, 1110, 1029, 1016; MS (70 eV, EI) $m / z(\%): 456\left[\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 2.23\right], 454$ [$\left.\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 5.99\right], 329$ (100); HRMS Calcd for $\mathrm{C}_{31} \mathrm{H}_{31}{ }^{35} \mathrm{ClO}\left(\mathrm{M}^{+}\right)$: 454.2063, Found: 454.2065; Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{ClO}: \mathrm{C} 81.83$, H 6.87; found: C 81.40, H 7.07 .
(4) Reductive amination with amine and $\mathrm{NaBH}_{3} \mathrm{CN}$ for the synthesis of N-(5-butyl-1-(4-chlorophenyl)-7-phenylhepta-5,6-dien-2-yl)-4-methoxyaniline (8) (jmq4-72, wpl-2-20)

To a flame-dried Schlenk tube were added $4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}(49.5 \mathrm{mg}, 0.4 \mathrm{mmol})$ and a solution of $\mathbf{3 d b}(70.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$. AcOH ($20 \mu \mathrm{~L}$, d $=1.049 \mathrm{~g} / \mathrm{mL}, 21.0 \mathrm{mg}, 0.35 \mathrm{mmol}$) was then added, and the resulting solution was cooled with an ice/water bath. $\mathrm{NaBH}_{3} \mathrm{CN}(37.9 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv) was added slowly. After addition, the resulting mixture was stirred at room temperature for 28 h before the reaction was cooled with an ice/water bath and quenched with water (10 $\mathrm{mL})$. The aqueous layer was extracted by EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. After evaporation, the residue was purified by preparative thin layer chromatography on silica gel $(20 \times 20 \mathrm{~cm})$ to afford 64% yield of $8(59.3 \mathrm{mg}, 64 \%$ yield) (petroleum ether/ethyl acetate $=40 / 1$ was used for the first run. This TLC plate was re-eluted with petroleum ether/ethyl acetate $=25 / 1)$ as an oil: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.40-7.08(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.90(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.75 (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.56-6.44 (m, $2 \mathrm{H}, \mathrm{ArH}$), 6.07 (q, $J=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), [the major isomer: $3.74(\mathrm{~s})$, the minor isomer $3.73(\mathrm{~s}), 3 \mathrm{H}, \mathrm{MeO}$], 3.63-3.47 (m, $1 \mathrm{H}, \mathrm{NH}$), 2.86-2.57 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$ of ArCH_{2}), 2.36-2.06 (m, $2 \mathrm{H}, \mathrm{CH}$ and one proton of $\left.\mathrm{CH}_{2}\right)$, 2.06-1.92 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.80-1.62(\mathrm{~m}, 1 \mathrm{H}$, one proton of CH_{2}), 1.56-1.17 (m, $6 \mathrm{H}, 3 \times \mathrm{CH}_{2}$), $0.85\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; IR (neat, $\left.\mathrm{cm}^{-1}\right)$: 2952, 2927, 1946, 1597, 1509, 1491, 1462, 1407, 1234, 1178, 1107, 1038, 1015; MS (ESI) $m / z=462\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)+\mathrm{H}\right]^{+}, 460\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)+\mathrm{H}\right]^{+} ;$HRMS Calcd for $\mathrm{C}_{30} \mathrm{H}_{34}{ }^{35} \mathrm{ClNO}$ $\left(\mathrm{M}^{+}\right): 459.2329$, Found: 459.2331; Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{ClNO}: \mathrm{C} 78.32$, H 7.45, N 3.04; found: C 78.43, H 7.37, N 2.96.
(5) One-pot reduction-cyclization for the synthesis of 2-butyl-5-(4-chlorobenzyl)-2-styryltetrahydrofuran (12) (jmq4-65)

To a flame-dried Schlenk tube were added $\mathbf{3 d b}$ ($105.9 \mathrm{mg}, 0.3 \mathrm{mmol}$) and MeOH $(3.0 \mathrm{~mL})$ under Ar atmosphere. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(17.2 \mathrm{mg}$, $0.45 \mathrm{mmol}, 1.5$ equiv) was added slowly. The resulting mixture was warmed up to room temperature, stirred at rt for 1 h , cooled to $0^{\circ} \mathrm{C}$, quenched with water (10 mL), and extracted by EtOAc $(15 \mathrm{~mL} \times 3)$. The combined organic phase was washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. After evaporation, the residue was used directly for next step.

To a flame-dried Schlenk tube were added $\mathrm{PPh}_{3} \mathrm{AuNTf}_{2}(6.8 \mathrm{mg}, 0.009 \mathrm{mmol}$) and a solution of the above-prepared crude product in dichloromethane solution (3.0 mL). The resulting mixture was stirred at room temperature for 15 h . After concentration under reduced pressure, the crude product was purified by flash column chromatography on silica gel [eluent: petroleum ether/ethyl acetate $=50 / 1(1.2 \mathrm{~L})$] to provide 12 ($85.5 \mathrm{mg}, 80 \%$ yield for 2 steps, $1.9 / 1 E / Z, E: 1.3 / 1 \mathrm{dr}, Z: 1.6 / 1 \mathrm{dr}$) as an oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-6.89$ (m, $9 \mathrm{H}, \mathrm{ArH}$), 6.62-6.33 (m, $1 \mathrm{H},=\mathrm{CH}$), [E, the minor isomer: $6.23(\mathrm{~d}, J=16.0 \mathrm{~Hz})$, the major isomer: $6.15(\mathrm{~d}, J=16.0 \mathrm{~Hz}) ; Z$, the minor isomer: 5.71 ($\mathrm{d}, J=12.8 \mathrm{~Hz}$), the major isomer: $5.59(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 1 \mathrm{H}$, $=\mathrm{CH}], 4.17-3.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.18-2.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.02-1.10(\mathrm{~m}, 10 \mathrm{H}, 5 \times$ CH_{2}), 1.01-0.80 (m, $3 \mathrm{H}, \mathrm{CH}_{3}$); IR (neat): $v=2955,2930,2860,1598$, 1491, 1447, 1407, 1377, 1299, 1194, 1090, 1042, $1015 \mathrm{~cm}^{-1}$; MS (70 eV, EI) m / z (\%): 356 [$\left.\mathrm{M}^{+}\left({ }^{37} \mathrm{Cl}\right), 0.79\right], 354$ [$\left.\mathrm{M}^{+}\left({ }^{35} \mathrm{Cl}\right), 2.35\right], 297$ (100); Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ClO}: \mathrm{C}$ 77.83, H 7.67; found: C 77.58, H 7.60; HRMS Calcd for $\mathrm{C}_{23} \mathrm{H}_{27}{ }^{35} \mathrm{ClO}\left(\mathrm{M}^{+}\right): 354.1750$, Found: 354.1746.

IV. Mechanistic studies

(1) Reaction of cyclopropanol 1a under standard conditions (jmq4-38)

To a flame-dried Schlenk tube were added $\operatorname{Pd}(\mathrm{dba})_{2}(14.4 \mathrm{mg}, 0.025 \mathrm{mmol})$ and XPhos ($23.8 \mathrm{mg}, 0.05 \mathrm{mmol}$) under Ar atmosphere. A solution of $\mathbf{1 a}(148.2 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ in toluene $(5.0 \mathrm{~mL})$ was added under Ar atmosphere at room temperature and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 5 h and filtrated through a short column of silica gel eluted with ethyl acetate (80 mL). After evaporation, the residue was analyzed with the NMR spectrum in CDCl_{3} with $\mathrm{CH}_{2} \mathrm{Br}_{2}(43.8 \mathrm{mg})$ as the internal standard-the recovery of $\mathbf{1 a}{ }^{1 a}$ and NMR yield of compound $\mathbf{4}^{8}$ were determined to be 84% and 6%, respectively.
(2) Reaction of propargylic carbonate $2 a$ with alcohol under standard conditions

1) Reaction of propargylic carbonate 2a with EtOH under standard conditions (jmq4-39)

To a flame-dried Schlenk tube were added $\operatorname{Pd}(\mathrm{dba})_{2}(14.3 \mathrm{mg}, 0.025 \mathrm{mmol})$ and XPhos ($23.8 \mathrm{mg}, 0.05 \mathrm{mmol}$) under Ar atmosphere. Compound 2a ($266.3 \mathrm{mg}, 1.0$ $\mathrm{mmol}) /$ toluene $(5.0 \mathrm{~mL})$ and $\operatorname{EtOH}(70.1 \mu \mathrm{~L}, \mathrm{~d}=0.789 \mathrm{~g} / \mathrm{mL}, 55.3 \mathrm{mg}, 1.2 \mathrm{mmol})$ were then added sequentially under Ar atmosphere at room temperature. The Schlenk tube was then stirred at $50{ }^{\circ} \mathrm{C}$ for 5 h . Then the crude reaction mixture was filtrated through a short column of silica gel eluted with ethyl acetate (80 mL). After evaporation, the residue was characterized by crude NMR in CDCl_{3} with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ (44.3 mg) as the internal standard. The recovery of $\mathbf{2 a}{ }^{2 b}$ and NMR yield of compounds $9 \mathbf{a}^{9 \mathrm{a}}$ and $\mathbf{3 a} \mathbf{a}^{9 \mathrm{bb}}$ were determined to be $48 \%, 22 \%$, and 28%, respectively. Then the crude mixture was concentrated and purified by silica gel column chromatography [eluent: petroleum ether/ethyl acetate $=200 / 1(0.8 \mathrm{~L})$ to petroleum
ether/ethyl acetate $=30 / 1(0.8 \mathrm{~L})$] to provide $\mathbf{2 a}(102.3 \mathrm{mg}, 38 \%$ recovery $), \mathbf{9 a}$ (27.4 $\mathrm{mg}, 14 \%$ yield) and 3aa' ($29.0 \mathrm{mg}, 15 \%$ yield).

9a: ${ }^{9 \mathrm{a}}$ oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.55-7.24(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 3.83(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=136.7,131.6,128.5,128.2,127.9,127.8$, 126.6, 123.6, 87.5, 82.6, 25.7; IR (neat, cm^{-1}): 3061, 3030, 2198, 1692, 1641, 1598, 1582, 1490, 1451, 1416, 1316, 1286, 1207, 1174, 1070, 1028, 1013; MS (70 eV, EI) $m / z(\%): 192\left(\mathrm{M}^{+}, 44.9\right), 121(100)$.

3aa': ${ }^{9 b}$ oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.48-7.20(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 6.59(\mathrm{~s}, 2 \mathrm{H}, 2$ $x=\mathrm{CH}$).

2a: ${ }^{2 \mathrm{~b}}$ oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.70-7.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhH})$, 7.54-7.45 (m, 2 H, ArH), 7.44-7.37 (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.35-7.27 (m, $3 \mathrm{H}, \mathrm{ArH}$), 6.53 (s, $1 \mathrm{H}, \mathrm{CH}$), 3.82 (s, $3 \mathrm{H}, \mathrm{MeO}$).
2) Reaction of propargylic carbonate 2 a with \boldsymbol{t} - BuOH under standard conditions (jmq5-66)

To a flame-dried Schlenk tube were added $\operatorname{Pd}(\mathrm{dba})_{2}(14.3 \mathrm{mg}, 0.025 \mathrm{mmol})$ and XPhos ($23.8 \mathrm{mg}, 0.05 \mathrm{mmol}$) under Ar atmosphere. Compound 2a ($266.3 \mathrm{mg}, 1.0$ $\mathrm{mmol}) /$ toluene $(5.0 \mathrm{~mL})$ and t-BuOH ($110.0 \mu \mathrm{~L}, \mathrm{~d}=0.81 \mathrm{~g} / \mathrm{mL}, 89.1 \mathrm{mg}, 1.2 \mathrm{mmol}$) were then added sequentially under Ar atmosphere at room temperature. The Schlenk tube was then stirred at $50{ }^{\circ} \mathrm{C}$ for 5 h . Then the crude reaction mixture was filtrated through a short column of silica gel eluted with ethyl ether (50 mL). After evaporation, the residue was analyzed with the ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} with $\mathrm{CH}_{2} \mathrm{Br}_{2}(17.5 \mu \mathrm{~L})$ as the internal standard. The recovery of $\mathbf{2 a}{ }^{2 b}$ and NMR yields of compounds $\mathbf{9 a}{ }^{9 a}$ and 3aa ${ }^{9 b}$ were determined to be $89 \%, 5 \%$, and 4%, respectively. Then the crude mixture was concentrated and purified by silica gel column chromatography [eluent: petroleum ether/ethyl acetate $=200 / 1(1.2 \mathrm{~L})$ to petroleum ether/ethyl acetate $=30 / 1$
(0.8 L)] to provide 2a ($197.9 \mathrm{mg}, 74 \%$ yield) and trace amounts of impure $\mathbf{9 a}$ and 3aa'.

(3) Reaction of propargylic acetate 10 a with cyclopropanol 1a under standard conditions (jmq4-164)

To a flame-dried Schlenk tube were added $\operatorname{Pd}(\mathrm{dba})_{2}(23.9 \mathrm{mg}, 0.05 \mathrm{mmol})$ and XPhos ($40.6 \mathrm{mg}, 0.085 \mathrm{mmol}$) under Ar atmosphere. Compound 1a $(178.5 \mathrm{mg}, 1.0$ $\mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$ and 10a ($250.3 \mathrm{mg}, 1.0 \mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$ were then added sequentially under Ar atmosphere at room temperature. The resulting mixture was then stirred at $50{ }^{\circ} \mathrm{C}$ for 16 h and filtrated through a short column of silica gel eluted with ethyl acetate (60 mL). After evaporation, the residue was analyzed with the ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} with $\mathrm{CH}_{2} \mathrm{Br}_{2}(44.0 \mathrm{mg})$ as the internal standard. The recovery of 10a, ${ }^{3}$ NMR yield of $\mathbf{4},{ }^{8}$ and allene product 3aa were determined to be $24 \%, 35 \%$, and 26%.

V. Characterization of the byproducts

1) Characterization of the byproducts 3aa' and 4^{\prime} (jmq4-199)

To a flame-dried Schlenk tube were added $\mathrm{Pd}(\mathrm{dba})_{2}(28.7 \mathrm{mg}, 0.05 \mathrm{mmol})$ and PPh_{3} ($26.2 \mathrm{mg}, 0.10 \mathrm{mmol}$) under Ar atmosphere. Compound $\mathbf{1 a}(178.1 \mathrm{mg}, 1.2$ $\mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$ and 2a $(266.3 \mathrm{mg}, 1.0 \mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$ were then added sequentially under Ar atmosphere at room temperature. The Schlenk tube was
then stirred at $50{ }^{\circ} \mathrm{C}$ until completion of the reaction as monitored by TLC $(3 \mathrm{~h})$. The crude reaction mixture was filtrated through a short column of silica gel (height: 2 cm , $\Phi: 3.5 \mathrm{~cm}$) eluted with ethyl acetate (60 mL). After evaporation, the residue was analyzed with the ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} with $\mathrm{CH}_{2} \mathrm{Br}_{2}(44.4 \mathrm{mg})$ as the internal standard. All the residue was then purified by chromatography on silica gel to afford 3aa ${ }^{9 b}(138.2 \mathrm{mg}, 72 \%)$ and $\mathbf{4}^{, 9 \mathrm{c}}(80.2 \mathrm{mg}, 55 \%)$ [eluent: petroleum ether $(0.4 \mathrm{~L})$ to petroleum ether/ ethyl ether $=30 / 1$, (1.2 L)].

3aa': ${ }^{\text {b }}$ oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.44-7.27(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.26-7.18$ (m, $2 \mathrm{H}, \mathrm{ArH}$), $6.59(\mathrm{~s}, 2 \mathrm{H}, 2 \times=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=207.8,133.6$, 128.7, 127.3, 127.0, 98.4; IR (neat, cm^{-1}): 1936, 1701, 1597, 1492, 1450, 1310, 1072, 1028; MS (70 eV, EI) m/z (\%): 192 ($\mathrm{M}^{+}, 100$).
$4^{\prime}:{ }^{9 \mathrm{c}}$ oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.36-7.15(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.39(\mathrm{dd}, J=$ $17.4,10.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 6.29\left(\mathrm{dd}, J=17.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, one proton of $\left.=\mathrm{CH}_{2}\right), 5.80$ (dd, $J=10.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $=\mathrm{CH}_{2}$), $3.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=197.6,135.5,134.0,129.4,128.9,128.6,126.9,47.0$; IR (neat, cm^{-1}): 2924, 1706, 1495, 1454, 1399, 1184, 1075, 1031; MS (ESI) m/z $169(\mathrm{M}+\mathrm{Na})^{+}$, $147(\mathrm{M}+\mathrm{H})^{+}$.
2) Characterization of the byproduct 4 (jmq5-50)

To a flame-dried Schlenk tube were added $\mathrm{Pd}(\mathrm{OAc})_{2}(11.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ and XPhos ($40.5 \mathrm{mg}, 0.085 \mathrm{mmol}$) under Ar atmosphere. Compound 1a ($296.6 \mathrm{mg}, 2.0$ $\mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$ and $\mathbf{2 a}(266.5 \mathrm{mg}, 1.0 \mathrm{mmol}) /$ toluene $(2.5 \mathrm{~mL})$ were then added sequentially under Ar atmosphere at room temperature. The Schlenk tube was then stirred at $50{ }^{\circ} \mathrm{C}$ until completion of the reaction as monitored by TLC (3 h). The crude reaction mixture was filtrated through a short column of silica gel (height: 2 cm , $\Phi: 3.5 \mathrm{~cm})$ eluted with ethyl ether (50 mL). After evaporation, the residue was
purified by chromatography on silica gel to afford 3aa and $\mathbf{4}$ [eluent: petroleum ether/ethyl acetate $=80 / 1(2.0 \mathrm{~L})]$.

3aa: white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.41$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.36-7.16 (m, $11 \mathrm{H}, \mathrm{ArH}$), 7.04 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $6.50(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 3.62(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of $\left.\mathrm{PhCH}_{2}\right), 3.57(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, one proton of PhCH_{2}), 2.97-2.65 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=207.0,205.7$, 135.6, 134.0, 129.4, 128.8, 128.53, 128.49, 127.3, 127.2, 126.85, 126.80, 126.0, 109.3, 99.3, 50.2, 39.8, 23.6.

4: ${ }^{\text {d }}$ colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.50-7.15(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 3.68(\mathrm{~s}, 2$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.47\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.03\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=209.0,134.5,129.4,128.7,126.9,49.8,35.2,7.7$; IR (neat, cm^{-1}): 2957, 2926, 2854, 1738, 1716, 1666, 1604, 1494, 1451, 1369, 1335, 1262, 1231, 1078, 1017; MS (70 eV, EI) $m / z(\%): 148\left(\mathrm{M}^{+}, 16.13\right), 57(100)$.

References:

1. a) Zhou, X.; Yu, S.; Kong, L.; Li, X. ACS Catal. 2016, 6, 647-651; b) Zhao, H.; Fan, X.; Yu, J.; Zhu, C. J. Am. Chem. Soc. 2015, 137, 3490-3493; c) He, X.-P.; Shu, Y.-J.; Dai, J.-J.; Zhang, W.-M.; Feng, Y.-S.; Xu, H.-J. Org. Biomol. Chem. 2015, 13, 7159-7163; d) Jiao, J.; Nguyen, L. X.; Patterson, D. R.; Flowers II, R. A. Org. Lett. 2007, 9, 1323-1326; e) Prokhorevich, K. N.; Kulinkovich, O. G. Tetrahedron Asymmetry, 2006, 17, 2976-2980.
2. a) Ito, H.; Sasaki, Y.; Sawamura, M. J. Am. Chem. Soc. 2008, 130, 15774-15775; b) Shen, R.; Yang, J.; Zhu, S.; Chen, C.; Wu, L. Adv. Synth. Catal. 2015, 357, 1259-1269. c) Luo, H.; Yu, Y.; Ma, S. Org. Chem. Front. 2016, 3, 1705-1710; d) Ambrogio, I.; Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Iazzetti, A. Eur. J. Org. Chem. 2015, 3147-3151.
3. Li, Q.-H.; Jeng, J.-Y.; Gau, H.-M. Eur. J. Org. Chem. 2014, 7916-7923.
4. Yan, W.; Wang, Q.; Chen, Y.; Petersen, J. L.; Shi, X. Org. Lett. 2010, 12, 3308-3311.
5. Pan, X.; Chen, M.; Yao, L.; Wu, J. Chem. Commun. 2014, 50, 5891-5894.
6. a) Subirats, S.; Jimeno, C.; Pericàs, M. A. Tetrahedron Asymmetry 2009, 20, 1413-1418; b) Moore, D.; Pu, L. Org. Lett. 2002, 4, 1855-1857; c) Emmerson, D. P. G.; Hems, W. P.; Davis, B. G. Org. Lett. 2006, 8, 207-210.
7. Patil, N. T.; Lutete, L. M.; Wu, H.; Pahadi, N. K.; Gridnev, I. D.; Yamamoto, Y. J. Org. Chem. 2006, 71, 4270-4279.
8. Lamb, J. R.; Mulzer, M.; LaPointe, A. M.; Coates, G. W. J. Am. Chem. Soc. 2015, 137, 15049-15054.
9. a) Cheng, J.; Sun, Y.; Wang, F.; Guo, M.; Xu, J.-H.; Pan, Y.; Zhang, Z. J. Org. Chem. 2004, 69, 5428-5432; b) Yang, X.; She, Y.; Chong, Y.; Zhai, H.; Zhu, H.; Chen, B.; Huang, G.; Yan, R. Adv. Synth. Catal. 2016, 358, 3130-3134; c) Chanthamath, S.; Takaki, S.; Shibatomi, K.; Iwasa, S. Angew. Chem. Int. Ed. 2013, 52, 5818-5821; d) S. Moteki, A.; Usui, A.; Zhang, T.; Alvarado, C. R. S.; Maruoka, K. Angew. Chem. Int. Ed. 2013, 52, 8657-8660.
