Re-workable Polyhydroxyurethane Films with Reversible Acetal Networks Obtained from Multi-functional Six-membered Cyclic

Carbonates

Hiroyuki Matsukizono,* and Takeshi Endo

Molecular Engineering Institute, Kindai University, 11-6 Kayanomori, lizuka, Fukuoka, 820-8555, Japan

Experimental

1. Characterization

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a JEOL ECS-400 NMR spectrometer operating at 400 MHz using a tetramethylsilane (TMS) as an internal reference. Fourier Transfer Infra-red (FT-IR) spectroscopy was conducted with a Thermo Fisher Scientific Nicolet iS10 equipped with an ATR instrument. Matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS) was carried out with a Shimazu Biotech AXIMA Confidence on the reflectron mode. Samples were dissolved in THF containing sodium triacetate and 1,8,9-trihydroxyanthracene (dithranol) as a matrix. Size exclusion column chromatography (SEC) were performed with a Tosoh HLC-8320GPC using DMF as eluents operating at a flow rate of 0.5 mL $\min ^{-1}$. Number averaged molecular mass $\left(M_{n}\right)$, Weight averaged molecular mass (M_{w}) and polydispersity ($M_{\mathrm{w}} / M_{\mathrm{n}}$) were determined from SEC traces using polystyrene standards. PAHU films were fabricated by gradual drying of monomer solutions under ambient atmosphere using a Sanso Vacuum Drying Oven SVD10P (width, 20 cm ; depth, 25 cm ; height, 20 cm). Stress-strain ($\mathrm{S}-\mathrm{S}$) curves of these films were measured with a Shimazu EZ Test EZ-LX with an operation rate of $50 \mathrm{~mm} \mathrm{~min}^{-1}$. PAHU films were cut to dumbbell-shaped plates with a Super dumbbell cuter (DUMBBELL Co., Ltd) and subjected to the measurements according to JISK62517. Tensile strength at a fracture point (σ_{f}) and elongation at a fracture point (ε_{f}) of the sample films were analyzed with a TRAPEZIUM X software. The tensile tests were performed 3-5 times and then mechanical parameters were averaged.

2. Reagents

Di(trimethylolpropane) (DTMP) was obtained from Aldrich Co., Ltd. Dipentaerythritol (DPE), trimethylolpropane (TMP), 1,3-dibromopropane, neopentylglycol, p-toluenesulfonyl chloride (TsCl), vanillin, , diphenyl carbonate (DPC), and 1,3-diaminopropane (DAP) were purchased from Tokyo Chemical Industry Co., Ltd. benzaldehyde, p-toluenesulfonate monohydrate $\left(\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}\right)$, benzyl chloride (BzCl), dehydrated pyridine (Py), trimethylamine $\left(\mathrm{NEt}_{3}\right)$ magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ were obtained from Wako Pure Chemical Co., Ltd. These reagents were used without any purification. DTMPC was synthesized from DTMP with 4 equiv. DPC according to the method that we previously reported. ${ }^{1}$ Other reagents and solvents were used without any purification.

3. Syntheses

3-1. Synthesis of Ph-DTMP

DTMP 50.0 g (200 mmol) were dissolved in $\mathrm{MeOH}(200 \mathrm{~mL})$. To the solution, benzaldehyde $5.3 \mathrm{~g}(50 \mathrm{mmol})$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O} 500 \mathrm{mg}$ ($2.63 \mathrm{mmol}, 5.3 \mathrm{~mol} \%$ per CHO group) were added and the mixture was stirred at $50^{\circ} \mathrm{C}$ overnight. For neutralization, $\mathrm{NaHCO}_{3} 336 \mathrm{mg}(4.00 \mathrm{mmol})$ was added in the mixture and then stirred at ambient temperature for 30 min . After drying, the resulting solids were dispersed in EtOAc and then insoluble parts were removed by suction filtration. The filtrates were washed three times with water and the organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the solution was concentrated, the resulting solids were purified by silica gel column chromatography (n-hexane/EtOAc volume ratio of $1 / 1$). Ph-DTMP including two isomers (cis-Ph-DTMP and trans-Ph-DTMP) were obtained as white solids in $12.3 \mathrm{~g}(72.7 \%)$ yields. These isomers were able to be isolated by reprecipitation from n-hexane/EtOAc or silica gel column chromatography.
cis-Ph-DTMP: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}, \delta$): 7.37-7.31 (m, 5.0H, phenyl), 5.38 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-$), 4.16 (t, 2 H , $J=5.4 \mathrm{~Hz},-\mathrm{OH}$), $3.90\left(\mathrm{~d}, 2 \mathrm{H}, J=11 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.56\left(\mathrm{~d}, 2 \mathrm{H}, J=11 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.55(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{H}$, Ph-CH-O-CH2-C-CH2 $-\mathrm{O}_{2}-\mathrm{CH}_{2}-$), 3.25 ($\mathrm{d}, 4 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}, \mathrm{HO}-\mathrm{CH}_{2}-$), $3.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{HO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\right.$-), 1.23 (q, 2 H , $\left.J=7.5 \mathrm{~Hz}, \mathrm{HO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.13\left(\mathrm{q}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 0.79-0.74\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 138.1,129.0,128.3,126.0$ (phenyl), 102.0 (Ph- $\mathrm{CH}-$), 74.8, 72.8, 71.0, 66.2 (- $\mathrm{CH}_{2}-\mathrm{O}-$), $43.1\left(\mathrm{HO}_{-}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 36.7\left(\mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 24.4,23.1\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right), 7.6,6.9\left(\mathrm{CH}_{3}-\right)$. IR (ATR): $v=$ $3300(\mathrm{~m} ; v(\mathrm{O}-\mathrm{H})$), 2966-2857 (w; v(C-H)), 1454-1388 (m; $\delta(\mathrm{C}-\mathrm{C})$ of phenyl), 1105-1024 (m; v(C-O) of ether and acetal), $748\left(\mathrm{~s} ; \delta(\mathrm{C}-\mathrm{H})\right.$ of phenyl), $700 \mathrm{~cm}^{-1}(\mathrm{~s} ; \delta(\mathrm{C}=\mathrm{C})$ of phenyl).
trans-Ph-DTMP: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}, \delta$): 7.42-7.34 (m, 5H, phenyl), 5.40 (s, 1H, Ph-CH-), 4.21 (t, 2H, $J=5.2 \mathrm{~Hz},-\mathrm{OH}$), $3.81\left(\mathrm{q}, 4 \mathrm{H}, J=10 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}{ }^{-}\right), 3.27\left(\mathrm{~d}, 4 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{HO}-\mathrm{CH}_{2}{ }^{-}\right), 3.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{HO}-\mathrm{CH}_{2^{-}}\right.$ $\left.\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\right), 1.73\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.24$ ($\left.q, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{HO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 0.87\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 0.79(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}$, $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{C}_{-} \mathrm{CH}_{2}-\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}, \delta$): 138.9, 128.7, 128.2, 126.3 (phenyl), 101.1 (Ph- $\mathrm{CH}-\mathrm{O}-$), 72.1, 71.7, $61.7\left(-\mathrm{CH}_{2}-\mathrm{O}-\right), 43.7\left(\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{C}-\right), 36.8\left(-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}\right), 23.3,22.1\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right), 8.1,7.8\left(\mathrm{CH}_{3}-\right)$.

3-2. Synthesis of cis-Ph-DTMPC

cis-Ph-DTMP $1.98 \mathrm{~g}(5.84 \mathrm{mmol})$ and DPC $6.43 \mathrm{~g}(30 \mathrm{mmol})$ were dissolved in DMAc (4 mL). To the solution, $\mathrm{MgCl}_{2} 28 \mathrm{mg}$ (0.29 mmol) was added and then the mixture was stirred at $100^{\circ} \mathrm{C}$ for 21 h . After purification by silica gel column chromatography at n-hexane/EtOAc volume ratio of $1 / 1$, cis-Ph-DTMPC was obtained as a white solid. Yield: $1.95 \mathrm{~g}(91.4 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $7.38-7.33$ ($\mathrm{m}, 5.0 \mathrm{H}$, phenyl), 5.40 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ph}-$ CH- $)$, $4.34\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{OC}(=\mathrm{O})-\right.$), $4.15\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=11 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{OC}(=\mathrm{O})-\right.$), $4.04(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-$ $\mathrm{O}-\mathrm{CH}_{2}-$), 3.75 (s, $2 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-$), $3.64\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\right.$), $3.48\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}-\right.$ $\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{OC}(=\mathrm{O})-$), $1.54\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz},-\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.24\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 0.93\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz},-\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 0.87\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 148.7 (C=O), 138.3, 129.1, 128.4, 126.1 (phenyl), 102.1 ($\mathrm{Ph}-\mathrm{CH}-$), 73.0, 72.8, 71.0, 70.3 (- $\left.\mathrm{CH}_{2}-\mathrm{O}-\right), 36.9,35.7\left(-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 24.3,23.7\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right), 7.6,7.0\left(\mathrm{CH}_{3}-\right)$. IR (ATR): $v=2965-2854$ (w; $v(\mathrm{C}-\mathrm{H})$), $1748(\mathrm{~s} ; \mathrm{v}(\mathrm{C}=\mathrm{O})$), 1469-1385 (m; $\delta(\mathrm{C}-\mathrm{C})$ of phenyl), 1171, $1098(\mathrm{~m} ; v(\mathrm{C}-\mathrm{O})$ of ether and acetal), 760 ($\mathrm{s} ; \delta\left(\mathrm{C}-\mathrm{H}\right.$) of phenyl), $699 \mathrm{~cm}^{-1}(\mathrm{~s} ; \delta(\mathrm{C}=\mathrm{C})$ of phenyl).

3-3. Synthesis of cis-Ph-DTMP-Bz 2

cis-Ph-DTMP $3.38 \mathrm{~g}(10.0 \mathrm{mmol})$ and dehydrated pyridine $2.37 \mathrm{~g}(30.0 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25$ mL) and the solution was cooled at $0^{\circ} \mathrm{C}$ in an ice bath. To the solution, $\mathrm{BzCl} 3.34 \mathrm{~g}(23.8 \mathrm{mmol}, 1.2$ equiv. per OH group) was added and the reaction mixture was stirred at ambient temperature for 5 h . After that, the mixture was washed twice with NaHCO_{3} aq. ($\mathrm{pH}=\mathrm{ca} .8,100 \mathrm{~mL}$) followed by with water (100 mL). The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then the solvents were removed by rotary evaporator. The resulting liquids were purified by silica gel column chromatography (n-hexane/EtOAc volume ratio of $3 / 1$) and cis-Ph-DTMP-Bz 2_{2} was obtained as a colorless liquid with a quantitative yield (5.70 g). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ס): 8.03-8.01 (m, 4H, phenyl), 7.56-7.53 (m, 2H, phenyl), 7.43-7.31 (m, 9H, phenyl), 5.37 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-$), 4.44$4.38\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{BzO}-\mathrm{CH}_{2}-\right)$, 4.06 ($\mathrm{d}, 4 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-$), 3.75 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-$), 3.60 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{BzO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-$), $3.59\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\right), 1.68\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{BzO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}{ }^{-}\right.$
$\left.\mathrm{CH}_{3}\right), 1.23\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{BzO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 0.77(\mathrm{t}, 3 \mathrm{H}$, $\left.J=7.4 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 166.4 ($\mathrm{C}=\mathrm{O}$ of Bz), 138.4-126.0 (phenyl), 101.9 ($\mathrm{Ph}-\mathrm{CH}-\mathrm{O}-$), 72.8, 71.4, 70.7, $65.4\left(-\mathrm{CH}_{2}-\mathrm{O}-\right), 42.3\left(\mathrm{BzO}^{-} \mathrm{CH}_{2}-\mathrm{C}-\right)$, 36.8 ($\left.\mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\right)$, 24.2, $23.7\left(\mathrm{CH}_{3}-\right.$ $\left.\mathrm{CH}_{2}-\right), 7.7,6.9\left(\mathrm{CH}_{3}-\right)$. IR (ATR): $v=2966-2848(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})), 1716(\mathrm{~s} ; \mathrm{v}(\mathrm{C}=\mathrm{O})), 1451-1381(\mathrm{~m} ; \delta(\mathrm{C}-\mathrm{C})$ of aromatic), $1264\left(\mathrm{~s} ; \mathrm{v}(\mathrm{COO}), 1098\left(\mathrm{~s} ; \mathrm{v}(\mathrm{C}-\mathrm{O})\right.\right.$ of ether and acetal), $707 \mathrm{~cm}^{-1}(\mathrm{~s} ; \delta(\mathrm{C}=\mathrm{C})$ of phenyl).

3-4. Synthesis of DTMP-Bz ${ }_{2}$

cis-Ph-DTMP-Bz $21.17 \mathrm{~g}(2.14 \mathrm{mmol})$, neopentylglycol $2.23 \mathrm{~g}(21.4 \mathrm{mmol})$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O} 50 \mathrm{mg}(0.26 \mathrm{mmol}$, $12 \mathrm{~mol} \%$ per acetal structure) were dissolved in MeOH 10 mL and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 11 h . After the removal of $\mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added to give homogeneous solutions. The solutions were washed three times with water (100 mL) and then the organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the organic layer was concentrated, the resulting liquids were purified by silica gel column chromatography (n-hexane/EtOAc volume ratio of 1/1). DTMP-Bz z_{2} was obtained as a colorless liquid. Yield: 886 mg (90.3%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 8.02 (d, $4 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$, phenyl), 7.57 (t, $2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$, phenyl), 7.44 (t, 4H, J = 7.8 Hz , phenyl), $4.41\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{BzO}-\mathrm{CH}_{2}-\right), 3.65\left(\mathrm{dd}, 4 \mathrm{H}, \mathrm{J}=29,11 \mathrm{~Hz}, \mathrm{HO}-\mathrm{CH}_{2}-\right), 3.41\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\right)$, 2.70 (br, $2 \mathrm{H}, \mathrm{HO}-$), 1.64 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{BzO}-\mathrm{CH}_{2}-\mathrm{C}_{\left.-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.27\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{HO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.01}$ ($\left.\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{BzO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 0.80\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{HO}-\mathrm{CH}_{2}-\mathrm{C}_{-}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ס): 166.4 ($\mathrm{C}=\mathrm{O}$ of Bz), 133.2, 129.8, 129.6, 128.5 (phenyl), 72.9, 70.8, 66.4, 64.7 ($-\mathrm{CH}_{2}-\mathrm{O}-$), 43.1, 42.6 (- $-\mathrm{CH}_{2}-$ $\left.\mathrm{CH}_{3}\right), 23.3,23.1\left(-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 7.5\left(-\mathrm{CH}_{3}\right) . I R(A T R): v=3405(\mathrm{~m} ; v(\mathrm{O}-\mathrm{H})), 2963-2878(\mathrm{w} ; v(\mathrm{C}-\mathrm{H})), 1716(\mathrm{~s} ; v(\mathrm{C}=\mathrm{O}))$, $1265\left(\mathrm{~s} ; \mathrm{v}(\mathrm{COO})\right.$), $1107\left(\mathrm{~m} ; \mathrm{v}(\mathrm{C}-\mathrm{O})\right.$ of ether and alcohol), $708 \mathrm{~cm}^{-1}(\mathrm{~s} ; \delta(\mathrm{C}-\mathrm{H})$ of aromatic).

3-5. Synthesis of multi-functional tosylates ${ }^{2}$

Tri-OTs: TMP $13.4 \mathrm{~g}(100 \mathrm{mmol})$ was dissolved in mixed solvent of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(220 \mathrm{~mL})$ and $\mathrm{NEt}_{3} 90.5 \mathrm{~g}(894 \mathrm{mmol})$. To the solution, $\mathrm{TsCl} 68.6 \mathrm{~g}(360 \mathrm{mmol})$ was slowly added at $0^{\circ} \mathrm{C}$ in an ice bath and then the mixture was stirred at ambient temperature for several days. After organic solvents were removed by rotary evaporator, the black oils were added in mixed solvents of 250 mM HCl aq. (1500 mL) and $\mathrm{MeOH}(300 \mathrm{~mL})$. The resulting precipitates were collected by suction filtration and the solids were washed thoroughly with water followed by MeOH. After drying, Tri-OTs was obtained as white solids. Yield: 75.9\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 7.71 (d, 6H, J = 8.4 Hz, phenyl), 7.36 (d, 6H, J = 8.0 Hz , phenyl), 3.76 (s, 6H, TsO-CH2-), 2.47 (s, 9H, CH3- of Ts), 1.36 ($q, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-$), $0.64\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\right.$). 13 C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 145.5, 131.9, 130.2, 128.1 (phenyl), 67.8 ($\mathrm{TsO}_{-2} \mathrm{CH}_{2}-$) , $42.0\left(\mathrm{TsO}-\mathrm{CH}_{2}-\mathrm{C}-\right)$, $21.9\left(\mathrm{CH}_{3}-\right.$ of Ts$), 21.7\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right), 6.7\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right)$ IR (ATR): $v=2975\left(w ; v(C-H)\right.$ of methylene), 1356, $1174\left(\mathrm{~s} ; \mathrm{v}(\mathrm{S}=\mathrm{O})\right.$), 997-809 $\mathrm{cm}^{-1}(\mathrm{~s} ; \mathrm{v}(\mathrm{S}-\mathrm{O}-\mathrm{C}))$.

Tetra-OTs: Yield: $96.9 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 7.73 (d, $8 \mathrm{H}, J=8.4 \mathrm{~Hz}$, phenyl), $7.35(\mathrm{~d}, 8 \mathrm{H}, J=7.6 \mathrm{~Hz}$,
 $\left.\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right), 0.63\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\right.$). ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 145.3,132.4,130.1,128.1$ (phenyl),
 (ATR): $v=2966-2880(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene), 1356, $1172(\mathrm{~s} ; \mathrm{v}(\mathrm{S}=\mathrm{O})$), 1095 (m; $v(\mathrm{C}-\mathrm{O})$ of ether), 954-810 $\mathrm{cm}^{-1}(\mathrm{~s} ; \mathrm{v}(\mathrm{S}-\mathrm{O}-\mathrm{C})$).

Hexa-OTs: Yield: $17.61 \mathrm{~g}(95.0 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 7.71 (d, 12H, J = 8.4 Hz , phenyl), 7.36 (d, 12H, $J=8.0 \mathrm{~Hz}$, phenyl), $3.81\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{TsO}-\mathrm{CH}_{2}-\right.$), $3.17\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\right), 2.46\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}-\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz,
 $\left(\mathrm{CH}_{3}-\right)$. IR (ATR): $v=2953-2853(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene), 1359, $1173(\mathrm{~s} ; \mathrm{v}(\mathrm{S}=\mathrm{O})$), $1095(\mathrm{~m} ; \mathrm{v}(\mathrm{C}-\mathrm{O})$ of ether), $965-785 \mathrm{~cm}^{-1}(\mathrm{~s} ; \mathrm{v}(\mathrm{S}-\mathrm{O}-\mathrm{C})$).

3-6. Synthesis of Multi-functional aldehydes ${ }^{2}$

Tri-Van: To DMF (20 mL) were added Tri-OTs 3.60 g (6.00 mmol), vanillin $4.11 \mathrm{~g}(27.0 \mathrm{mmol}, 1.5$ equiv. per OTs group) and $\mathrm{K}_{2} \mathrm{CO}_{3} 4.90 \mathrm{~g}$ (35.5 mmol). The mixture was stirred at $100^{\circ} \mathrm{C}$ for 3 days and then DMF was removed by vacuum pump. The resulting solids were added in $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$ and the mixture was washed three times with water $(100 \mathrm{~mL})$ followed by saturated NaCl aq. (100 mL). The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated by rotary evaporator. The resulting brown solids were purified by silica gel column chromatography ($\mathrm{CHCl}_{3} / \mathrm{EtOAc}$ volume ratio of $20 / 1$). Tri-Van was obtained as a pale yellow solid. Yield: 67.3\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}, \delta$): 9.78 (s, $3 \mathrm{H},-\mathrm{CHO}$), 7.48 (dd, $3 \mathrm{H}, \mathrm{J}=8.2,1.8 \mathrm{~Hz}$, phenyl), 7.31 (d, 3H, J = 2.0 Hz, phenyl), $7.21\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}\right.$, phenyl), $4.17\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.72\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}-\right), 1.75(\mathrm{q}$, $\left.2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\right), 0.93\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, \delta\right): 191.9(-\mathrm{CHO})$, 154.0, 150.0, 130.5, 126.4, 113.4, 110.5 (phenyl), $69.0\left(-\mathrm{O}_{-}-\mathrm{CH}_{2}-\right), 56.3\left(\mathrm{CH}_{3}-\mathrm{O}-\right), 43.5\left(-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}_{-}\right), 23.0\left(\mathrm{CH}_{3}-\right.$ $\left.\mathrm{CH}_{2}-\right), 7.9\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right)$. IR (ATR): $v=2963-2831(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene), $2723(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of aldehyde), 1679 $(\mathrm{s} ; \mathrm{v}(\mathrm{C}=\mathrm{O})$), 1585, $1508(\mathrm{~s} ; \mathrm{v}(\mathrm{C}=\mathrm{C})$ of aromatic), 1263, 1132, $1024(\mathrm{~s} ; \mathrm{v}(\mathrm{C}-\mathrm{O})$), $807(\mathrm{~m} ; \delta(\mathrm{C}-\mathrm{H})$ of aromatic), 730 $\mathrm{cm}^{-1}(\mathrm{~m} ; \delta(\mathrm{C}=\mathrm{C})$ of aromatic).
Tetra-Van: Yield: 50.0\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $9.81(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CHO})$, 7.35-7.32 (m, 8H, phenyl), 6.87 (d, $4 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}$, phenyl), 4.08-4.02 (m, 8H, PhO-CH2 2_{2}), $3.80\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}-\right), 3.61\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\right.$), $1.70(\mathrm{q}$, $\left.2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\right), 0.89\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 191.0(-\mathrm{CHO}), 154.4$, 150.2, 130.2, 126.6, 112.0, 109.6 (phenyl), $71.0\left(-\mathrm{CH}_{2}-\mathrm{O}_{-\mathrm{CH}_{2}-}\right), 69.5\left(\mathrm{PhO}^{-} \mathrm{CH}_{2}-\right), 56.0\left(\mathrm{CH}_{3}-\mathrm{O}-\right), 43.5\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right.$ C-), $23.3\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right)$, $7.7\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right)$. IR (ATR): $v=2961-2830(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene), $2719(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of aldehyde), $1678(\mathrm{~s} ; \mathrm{v}(\mathrm{C}=\mathrm{O})$), 1584, 1508 ($\mathrm{s} ; \mathrm{v}(\mathrm{C}=\mathrm{C}$) of aromatic), 1263, 1133, $1024(\mathrm{~s} ; \mathrm{v}(\mathrm{C}-\mathrm{O})$), 808, 781 (m; $\delta(\mathrm{C}-\mathrm{H})$ of aromatic $), 729 \mathrm{~cm}^{-1}(\mathrm{~m} ; \delta(\mathrm{C}=\mathrm{C})$ of aromatic).
Hexa-Van: Yield: $1.28 \mathrm{~g}(60.3 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta$): $9.80(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CHO}), 7.32-7.29$ (m, 12H, phenyl), $6.85\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}\right.$, phenyl), $4.30\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{PhO}-\mathrm{CH}_{2}-\right), 3.96\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.77\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}-\right)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 190.7$ (-CHO), 153.8, 150.0, 130.4, 126.3, 112.2, 109.4 (phenyl), 69.7 (-CH2-O-$\left.\mathrm{CH}_{2}-\right), 67.8\left(\mathrm{PhO}_{-\mathrm{CH}_{2}-}\right), 55.8\left(-\mathrm{CH}_{3}\right), 45.6\left(-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\underline{\mathrm{C}}-\right) . \operatorname{IR}(\mathrm{ATR}): v=2934-2827(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene $)$, $2718(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of aldehyde), $1677(\mathrm{~s} ; \mathrm{v}(\mathrm{C}=\mathrm{O})$), 1584, $1507(\mathrm{~s} ; \mathrm{v}(\mathrm{C}=\mathrm{C})$ of aromatic), 1261, 1132, $1022(\mathrm{~s} ; \mathrm{v}(\mathrm{C}-$ O)), $806,780\left(\mathrm{~m} ; \delta(\mathrm{C}-\mathrm{H})\right.$ of aromatic), $728 \mathrm{~cm}^{-1}(\mathrm{~m} ; \delta(\mathrm{C}=\mathrm{C})$ of aromatic).

3-7. Synthesis of multi-functional polyols protected by $\mathrm{Bz}_{\text {groups }}{ }^{3}$

Tri-DTMP-Bz z_{2} : Tri-Van $2.81 \mathrm{~g}(5.23 \mathrm{mmol})$, DTMP-Bz $10.8 \mathrm{~g}(23.5 \mathrm{mmol}, 1.5$ equiv. per aldehyde group) and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O} 150 \mathrm{mg}$ ($0.79 \mathrm{mmol}, 5 \mathrm{~mol} \%$ per aldehyde group) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. To the solution, anhydrous $\mathrm{MgSO}_{4} 20.0 \mathrm{~g}$ (166 mmol) was added and then the mixture was stirred at $40^{\circ} \mathrm{C}$ for 2 days. After that, the mixture was added slowly in cold water (200 mL) containing $\mathrm{NaHCO}_{3} 67 \mathrm{mg}(0.8 \mathrm{mmol})$ and insoluble parts were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The organic layer was washed three times with water (200 mL) and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the evaporation of solvents, the resulting solids were purified by reprecipitation from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ mixed solvents to afford Tri-DTMP-Bz ${ }_{2}$ as a colorless solid. Yield: $86.2 \% .{ }^{1} \mathrm{H}$

NMR (400 MHz, CDCl $3, \delta): ~ 7.97-7.92(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Bz}), 7.66-7.42(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Bz}), 7.52-7.42(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Bz}), 6.96-6.84$ (m, 9 H , vanillin), 5.30 ($\mathrm{s}, 2.2 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-$ of cis-form), 5.23 ($\mathrm{s}, 0.7 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-$ of trans-form), 4.36-4.29 (m, 12H, BzO-$\mathrm{CH}_{2}-$), $4.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{PhO}-\mathrm{CH}_{2}-\right.$), $3.89\left(\mathrm{~d}, 4.5 \mathrm{H}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\right.$ of cis-form), 3.78-3.68 (m,3.1H, Ph-CH-$\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), 3.65-3.12 (m, 13.3H, CH -O - and Ph-CH-O-CH2-C-CH2-O-CH2- of cis-form), 3.54-3.50 (m, 9.0H, $\mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form and $\mathrm{BzO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), 3.44 (s, 1.6H, Ph-CH-O-CH2-C-CH2CH_{2} - of trans-form), $3.10\left(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{BzO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\right.$ - of trans-form), 1.71-1.56 (m, $9.4 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}^{-} \mathrm{CH}_{2}-$ O-CH-Ph of trans-form, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{OBz}$ and $\mathrm{CH}_{3}-\mathrm{CH}_{2}-$ of TMP core), 1.18-1.08 (m, 4.6H, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-$ CH-Ph of cis-form), 0.95-0.90 (m, 12H, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{OBz}$ and $\mathrm{CH}_{3}-\mathrm{CH}_{2}$ - of TMP core), 0.77-0.65 (m,9H, $\mathrm{CH}_{3}-$ $\left.\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}, \delta$): 166.0 ($\mathrm{C}=\mathrm{O}$),149.1, 133.8, 132.4, 130.0, 129.7, 129.3, 119.0, 114.6, 110.5 (phenyl), 100.9 (Ph- $\underline{C H}-$), 72.5, 71.8, $70.0\left(-\mathrm{CH}_{2}-\mathrm{O}-\right), 56.0\left(\mathrm{CH}_{3}-\mathrm{O}-\right), 42.4,37.1,36.7\left(\mathrm{CH}_{3}-\right.$ $\left.\mathrm{CH}_{2}-\underline{\mathrm{C}}-\right)$, 24.2, $23.7\left(\mathrm{CH}_{3}-\underline{\mathrm{CH}}_{2}-\right), 8.0,7.2\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right)$. IR (ATR): $v=2961-2852(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene), $1717(\mathrm{~s} ;$ $v(C=O)), 1516,1450(w ; v(C=C)$ of aromatic $), 1262,1096(\mathrm{~s} ; \mathrm{v}(\mathrm{C}-\mathrm{O})), 708 \mathrm{~cm}^{-1}(\mathrm{~s} ; \delta(\mathrm{C}=\mathrm{C})$ of aromatic).

Tetra-DTMP-Bzz: Yield: 74.4\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 7.94-7.88 (m, 16H, Bz), 7.62-7.53 (m, 8H, Bz), 7.48-7.38 (m, 16H, Bz), 6.83-6.67 (m, 12H, vanillin), 5.24 (s, 2.9H, Ph-CH- of cis-form), 5.27 ($\mathrm{s}, 1.0 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-$ of trans-form), 4.31-4.25 (m, 16H, BzO-CH2-), 3.87-3.81 (m, 14.0H, $\mathrm{PhO}-\mathrm{CH}_{2} 2^{-}$and $\mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-$ of cis-form), 3.75-3.64 (m, 6.0H, Ph-CH-O-CH2 2 $_{2}$ of trans-form), 3.61-3.58 (m, 17.7H, $\mathrm{CH}_{3}-\mathrm{O}$ - and Ph-CH-O-CH2-C-CH2-O-CH2of cis-form), 3.50-3.47 (m, 12.1H, Ph-CH-O-CH2- of cis-form and BzO-CH2-C-CH2-O-CH2- of cis-form), 3.42-3.40 ($\mathrm{m}, 6.3 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of DTMP core and $\mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), 3.06 (s, 2.0H, BzO-CH2-C-$\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), 1.64 ($\mathrm{q}, 2.2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of trans-form), 1.56-1.48(m,12H, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{OBz}$ and $\mathrm{CH}_{3}-\mathrm{CH}_{2}$ - of DTMP core), 1.07 ($\mathrm{q}, 6.0 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of cis-form), 0.91-0.86 (m, 12H, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{OBz}$), 0.78-0.61 (m, 18H, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ and $\mathrm{CH}_{3}-\mathrm{CH}_{2}-$ of DTMP core). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 166.5 ($\mathrm{C}=\mathrm{O}$), 149.8, 133.2, 133.1, 130.1, 129.6, 128.6, 118.9, 110.5 (phenyl), 101.9 (Ph- $\mathrm{CH}-$), $72.9,72.1,71.5,70.8,70.1,65.5\left(-\mathrm{CH}_{2}-\mathrm{O}-\right), 56.3\left(\mathrm{CH}_{3}-\mathrm{O}-\right), 42.3,36.8\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right.$ $\underline{C-}$), 24.3, $23.7\left(\mathrm{CH}_{3}-\underline{\mathrm{CH}}_{2}-\right), 7.8,7.0\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right)$. IR (ATR): $v=2963-2858(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene), $1716(\mathrm{~s}$; $v(C=O)), 1515,1450\left(w ; v(C=C)\right.$ of aromatic), 1265, $1096(\mathrm{~s} ; \mathrm{v}(\mathrm{C}-\mathrm{O})), 707 \mathrm{~cm}^{-1}(\mathrm{~s} ; \delta(\mathrm{C}=\mathrm{C})$ of aromatic).
Hexa-DTMP-Bz 2 : Yield: $5.14 \mathrm{~g}(85.7 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta$): 7.96-7.90 (m, 24H, Bz), 7.64-7.54 (m, $12 \mathrm{H}, \mathrm{Bz}$), 7.50-7.39 (m, 24H, Bz), 6.85-6.66 (m, 18H, vanillin), 5.25 ($\mathrm{s}, 4.3 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{of}$ cis-form), 5.21 ($\mathrm{s}, 1.6 \mathrm{H}$, Ph-CH- of trans-form), $4.30\left(\mathrm{~s}, 24 \mathrm{H}, \mathrm{BzO}-\mathrm{CH}_{2}-\right), 4.05\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{PhO}-\mathrm{CH}_{2}-\right), 3.88\left(\mathrm{~d}, 9.2 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\right.$ of cis-form), 3.78-3.66 (m, 10.6H, Ph-CH-O-CH2- of tans-form and $-\mathrm{CH}_{2}-\mathrm{O}_{2}-\mathrm{CH}_{2}-$ of DPE), 3.61-3.57 (m, 27H, $\mathrm{CH}_{3}-\mathrm{O}$ - and $\mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), 3.51-3.49 (m, 17.7H, Ph-CH-O-CH2- of cis-form and BzO-$\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), 3.42 ($\mathrm{s}, 3.1 \mathrm{H}, \mathrm{BzO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), 3.08 (s,3.0H, Ph-CH-O-$\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), 1.66 (q, $3.0 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of trans-form), 1.56 (q, $12 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{OBz}$), 1.09 ($\mathrm{q}, 9.0 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of cis-form), 0.93-0.88 (m, 18H, CH $\underline{3}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{OBz}$), 0.76-0.63 (m, 18H, CH $\left.\underline{3}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 166.3 ($\mathrm{C}=\mathrm{O}$), $149.6,149.5,133.1,133.0,131.4,130.0,129.5,128.4,118.8,113.9,110.2$ (phenyl), 101.8, 101.6 (Ph-CH-), 72.7, 71.9, 71.4, 70.7, 68.6, $65.4\left(-\mathrm{CH}_{2}-\mathrm{O}-\right), 56.0\left(\mathrm{CH}_{3}-\mathrm{O}-\right), 42.2,37.0,36.7\left(-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\right), 24.2,23.7$ $\left(\mathrm{CH}_{3}-\underline{C H}_{2}-\right), 7.7,6.8\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right) . \operatorname{IR}(\mathrm{ATR}): v=2966-2854(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene $), 1717(\mathrm{~s} ; v(\mathrm{C}=\mathrm{O})), 1517,1451$ ($w ; v\left(C=C\right.$) of aromatic), $1265,1100(s ; v(C-O)), 710 \mathrm{~cm}^{-1}(\mathrm{~s} ; \delta(\mathrm{C}=\mathrm{C})$ of aromatic).

3-8. Synthesis of multi-functional DTMPs

Tri-DTMP: Tri-DTMP-Bzz $8.09 \mathrm{~g}(4.35 \mathrm{mmol})$ was dissolved in THF (100 mL). To the solution, $\mathrm{MeOH}(100 \mathrm{~mL})$ was added and then $\mathrm{NaOH} 5.2 \mathrm{~g}(130 \mathrm{mmol})$ dissolving in water $(20 \mathrm{~mL})$ was added. The mixture was stirred at ambient temperature for 1-2 days. After evaporation of the solvents, the mixture was dispersed in water (200 mL) and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$. The organic layer was washed three times with water (250 mL) and then dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, Tri-DTMP was obtained as a pale yellow solid. Yield: > 99\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta$): 6.97-6.89 (m, 9 H , phenyl), $5.32(\mathrm{~s}, 2.1 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-$ of cisform), 5.31 (s, 0.9H, Ph-CH- of trans-form), 4.24-4.19 (m, 6H, HO-), $4.04\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{PhO}-\mathrm{CH}_{2}-\right.$), $3.91(\mathrm{~d}, 4.6 \mathrm{H}, \mathrm{J}=$ $11 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), 3.82-3.74 (m, 3.3H, Ph-CH-O-CH2- of trans-form), $3.67\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}-\right.$), 3.563.53 (m, 8.7H, Ph-CH-O-CH2- of cis-form and $\mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}_{-} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), 3.28-3.24 (m, 15.5H, $\mathrm{HO}-\mathrm{CH}_{2}$ - and $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), 3.13 (s, $1.5 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), 3.05 ($\mathrm{s}, 1.4 \mathrm{H}, \mathrm{HO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), 1.71 ($\mathrm{q}, 3.5 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of trans-form and $\mathrm{CH}_{3}-\mathrm{CH}_{2}$ - of TMP core), $1.28-1.21\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{OH}\right), 1.14\left(\mathrm{q}, 4.7 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}_{2} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}_{-} \mathrm{CH}_{2}-\mathrm{O}-\right.$ CH -Ph of cis-form), 0.94-0.76 (m, 21H, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-$). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 149.3,149.1,132.5,119.2$, 114.0, 111.0 (phenyl), 101.3 ($\mathrm{Ph}-\mathrm{CH}-$), $72.3,71.9,70.6,62.2,62.0$ ($\left.-\mathrm{CH}_{2}-\mathrm{O}-\right), 56.3\left(\mathrm{CH}_{3}-\mathrm{O}-\right), 44.0,36.7\left(\mathrm{CH}_{3}-\right.$ $\left.\mathrm{CH}_{2}-\mathrm{C}-\right), 24.4,22.5\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right), 8.1,7.3\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right)$. IR (ATR): $v=3405(\mathrm{w} ; \mathrm{v}(\mathrm{O}-\mathrm{H})), 2962-2857(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene), 1515, 1463 ($\mathrm{w} ; \mathrm{v}(\mathrm{C}=\mathrm{C})$ of aromatic), 1263, 1096, $1019 \mathrm{~cm}^{-1}(\mathrm{~s} ; \mathrm{v}(\mathrm{C}-\mathrm{O}))$.
 $4.21(\mathrm{~s}, 8 \mathrm{H}, \mathrm{HO}-), 3.91\left(\mathrm{~d}, 6.0 \mathrm{H}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\right.$ of cis-form), 3.85-3.74 (m, 12.1H, Ph-CH-O-CH2${ }_{2}$ - of trans-form and $\mathrm{PhO}-\mathrm{CH}_{2}-$), $3.67-3.66\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}-\right), 3.56-3.54\left(\mathrm{~m}, 11.7 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}\right.$ - of cis-form and $\mathrm{Ph}-$ $\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}_{-} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-$ of cis-form), 3.45 ($\mathrm{s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-$ of DTMP core), $3.28-3.24\left(\mathrm{~m}, 21.7 \mathrm{H}, \mathrm{HO}-\mathrm{CH}_{2}-\right.$ and $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), 3.14 (s, 2.0H, $\mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), $3.06(\mathrm{~s}, 2.1 \mathrm{H}$, $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}_{-}-\mathrm{CH}_{2}$ - of trans-form), $1.72\left(\mathrm{q}, 2.1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}\right.$ of trans-form), $1.52(\mathrm{q}$, $4 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-$ of DTMP core), 1.28-1.22 (m, $8 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CCH}_{2}-\mathrm{OH}$), 1.15 ($\mathrm{q}, 5.9 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}-$ $\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of cis-form), $\left.0.88-0.76\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\right) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 149.0,131.9$, 118.9, 113.3, 110.6 (phenyl), 101.0 ($\mathrm{Ph}-\mathrm{CH}-$), $72.5,72.0,71.6,70.3,61.9$ ($\left.-\mathrm{CH}_{2}-\mathrm{O}-\right), 55.9$ ($\left.\mathrm{CH}_{3}-\mathrm{O}-\right), 43.7,36.3$ $\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\right), 24.1,23.4,22.2\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right), 7.8\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right) . \mathrm{IR}(\mathrm{ATR}): v=3405(\mathrm{w} ; \mathrm{v}(\mathrm{O}-\mathrm{H})), 2962-2858(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene), 1517, 1460 ($\mathrm{w} ; \mathrm{v}(\mathrm{C}=\mathrm{C})$ of aromatic), $1263,1097 \mathrm{~cm}^{-1}(\mathrm{~s} ; \mathrm{v}(\mathrm{C}-\mathrm{O})$).

Hexa-DTMP: Yield: $3.21 \mathrm{~g}(96.9 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}, \delta$): 6.90-6.75 (m, 18H, phenyl), 5.29 ($\mathrm{s}, 5.9 \mathrm{H}$, Ph-CH-), 4.21-4.17 (m, 12H, HO-), 4.06 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{PhO}-\mathrm{CH}_{2}-$), 3.92 ($\mathrm{d}, 8.9 \mathrm{H}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), 3.84-3.70 ($\mathrm{m}, 10.6 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form and - $\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of DPE core), 3.64-3.63 ($\mathrm{m}, 17.5 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}$), 3.57-3.54 (m, 17.6H, Ph-CH-O-CH2 of cis-form and Ph-CH-O-CH2-C-CH2 $\mathbf{C H}_{2}-\mathrm{O}_{2} \mathrm{CH}_{2}-$ of cis-form), 3.29-3.24 (m, $31.9 \mathrm{H}, \mathrm{HO}-\mathrm{CH}_{2}-$ and $\mathrm{HO}^{-} \mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), 3.14 (s, $3.2 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of transform), 3.06 (s, $3.1 \mathrm{H}, \mathrm{HO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), 1.73 ($\mathrm{q}, 3.2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of trans-form), 1.25 ($\mathrm{q}, 12 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{OH}$), $1.15\left(\mathrm{q}, 9.0 \mathrm{O}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}\right.$ of cis-form), 0.89-0.77 (m, 36H, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 149.0, 132.1, 118.9, 113.7, 110.5 (phenyl), 101.0 ($\mathrm{Ph}-\mathrm{CH}-), 72.0,71.6,70.2,61.9\left(-\mathrm{CH}_{2}-\mathrm{O}-\right), 55.9\left(\mathrm{CH}_{3}-\mathrm{O}-\right), 43.7,36.3\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\right), 24.1,22.2$ $\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right), 7.8,7.0\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right.$). IR (ATR): $v=3396(\mathrm{w} ; \mathrm{v}(\mathrm{O}-\mathrm{H})$), 2960-2858 ($\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene), 1516, 1462 ($w ; v(C=C)$ of aromatic), $1264,1098 \mathrm{~cm}^{-1}(s ; v(C-O))$.

3-9. Synthesis of multi-functional DTMP-based 6-CCs

Tri-DTMPC: Tri-DTMP 5.10 g (4.13 mmol), DPC 10.6 g ($49.6 \mathrm{mmol}, 4$ equiv. per 1,3-diol structure) and MgCl_{2} 118 mg ($1.24 \mathrm{mmol}, 10 \mathrm{~mol} \%$ per 1,3-diol structure) were dissolved in DMF (40 mL). The mixture was stirred at $100^{\circ} \mathrm{C}$ overnight and then DMF was removed under reduced pressure. The resulting solids were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and washed three times with water (200 mL) and then dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the resulting solids were purified by silica gel column chromatography (eluents: $\mathrm{CHCl}_{3} / \mathrm{EtOAc}^{\prime}$ $=10 / 1$ to $\mathrm{CHCl}_{3} / \mathrm{MeOH}=10 / 1$ by Vol.). Tri-DTMPC was obtained as a white solid. Yield: $94.2 \% .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}_{6}, \delta\right):$ 6.97-6.89 (m, 9H, phenyl), 5.33 ($\mathrm{s}, 2.9 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-$), 4.27-4.19 ($\mathrm{q}, 12 \mathrm{H}, \mathrm{J}=11 \mathrm{~Hz},-\mathrm{OC}(=\mathrm{O}$)O-$\mathrm{CH}_{2}-$), 4.04 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{PhO}-\mathrm{CH}_{2}-$), 3.91 (d, $4.6 \mathrm{H}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-$ of cis-form), 3.83-3.74 (m, 3.1H, Ph-CH-$\mathrm{O}-\mathrm{CH}_{2}-$ of trans-form), 3.68-3.67 (m, 9H, CH3 $3-\mathrm{O}$), 3.63 ($\mathrm{s}, 4.3 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-$ of cis-form), 3.56 (d, $4.4 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-$ of cis-form), 3.42 ($\mathrm{s}, 4.2 \mathrm{H},-\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-$ of cis-form), 3.13 (s, $1.4 \mathrm{H},-\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), $1.71\left(\mathrm{q}, 3.5 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}\right.$ of transform and $\mathrm{CH}_{3}-\mathrm{CH}_{2}$ - of TMP core), 1.41-1.35 (m, 6H, $\left.-\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}_{-}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.15\left(\mathrm{q}, 4.6 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}-\right.$ $\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of cis-form), 0.94-0.75 (m, 21H, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-$). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl $\left.{ }_{3}, \delta\right): 149.1,148.8$, 148.1, 132.1, 118.8, 113.6, 110.5 (phenyl and $\mathrm{C}=\mathrm{O}$), 101.0 ($\mathrm{Ph}-\mathrm{CH}-$), $72.6,71.8,70.0,\left(-\mathrm{CH}_{2}-\mathrm{O}-\right), 56.0\left(\mathrm{CH}_{3}-\mathrm{O}-\right)$, 43.2, 36.4, $35.0\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underline{\mathrm{C}}-\right)$, 23.8, $23.0\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right)$, 7.4, $7.0\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right)$. IR (ATR): $v=2964-2858(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene), 1748 ($\mathrm{s} ; \mathrm{v}(\mathrm{C}=\mathrm{O})$), 1515, $1466\left(\mathrm{w} ; \mathrm{v}(\mathrm{C}=\mathrm{C})\right.$ of aromatic), 1264, 1165, 1096, $1025 \mathrm{~cm}^{-1}(\mathrm{~s} ; \mathrm{v}(\mathrm{C}-\mathrm{O})$).

Tetra-DTMPC: Yield: 94.0\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}, \delta$): 6.91-6.80 (m, 12H, phenyl), 5.32 (s, 3.9H, Ph-CH-), 4.27-4.19 ($\mathrm{q}, 16 \mathrm{H}, J=10 \mathrm{~Hz},-\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-$), $3.92\left(\mathrm{~d}, 6.1 \mathrm{H}, J=11 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\right.$ of cis-form), 3.863.75 (m, 12.3H, PhO-CH2 2_{2} and $\mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-$ of trans-form), 3.68-3.67 (m, 11.7H, $\mathrm{CH}_{3}-\mathrm{O}-$), 3.63 ($\mathrm{s}, 6.0 \mathrm{H}, \mathrm{Ph}-$ $\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), 3.57 (d, $6.2 \mathrm{H}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-$ of cis-form), 3.45 ($\mathrm{s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}-$ CH_{2} - of DTMP core), $3.42\left(\mathrm{~s}, 6.0 \mathrm{H},-\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\right.$ - of cis-form), 3.33 (s, 1.9H, Ph-CH-O-CH2-C-CH2-$\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), $3.14\left(\mathrm{~s}, 2.1 \mathrm{H},-\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\right.$ - of trans-form), 1.72 (q, 2.1H,J=7.6 Hz, CH $\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of trans-form), $1.52\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\right.$ of DTMP core), $1.39(\mathrm{q}, 8 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz},-$ $\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$), 1.16 ($\mathrm{q}, 5.9 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of cis-form), 0.88-0.76(m,30H, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 149.0,148.0,131.1,118.8,113.3,110.5$ (phenyl and $\mathrm{C}=\mathrm{O}$), 100.9 (Ph-CH-), 72.5, 71.8, 70.0, (- $\left.\mathrm{CH}_{2}-\mathrm{O}-\right), 56.0\left(\mathrm{CH}_{3}-\mathrm{O}-\right), 43.2,36.4,35.0\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\right), 23.8,23.0\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right), 7.3,7.0$ $\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right.$). IR (ATR): $v=2964-2858(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene), $1749(\mathrm{~s} ; \mathrm{v}(\mathrm{C}=\mathrm{O})$), 1515, $1464(\mathrm{w} ; \mathrm{v}(\mathrm{C}=\mathrm{C})$ of aromatic), 1263, 1165, 1098, $1024 \mathrm{~cm}-1$ ($\mathrm{s} ; \mathrm{v}(\mathrm{C}-\mathrm{O})$).
Hexa-DTMPC: Yield: 3.13 g (94.1%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}, \delta$): 6.89-6.76 (m, 18H, phenyl), 5.30 (s, 5.8 H , $\mathrm{Ph}-\mathrm{CH}-$), 4.26-4.19 (m, 24H, $\left.-\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\right), 4.06$ (br, 12H, PhO-CH2-), 3.92 (d, $9.0 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), 3.85-3.74 (m, 6.5H, Ph-CH-O-CH2- of trans-form), 3.69-3.63 (m, 29.7H, CH $\mathrm{CH}_{3}-\mathrm{O}-, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form and - $\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of DPE core), $3.58-3.55\left(\mathrm{~d}, 9.3 \mathrm{H}, \mathrm{J}=11 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}\right.$ - of cis-form), 3.41 (s, 8.9H, $-\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), $3.14\left(\mathrm{~s}, 2.9 \mathrm{H},-\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\right.$ - of trans-form), 1.73 (q , $3.0 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of trans-form), $1.38\left(\mathrm{q}, 12 \mathrm{H}, J=7.5 \mathrm{~Hz},-\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$, 1.16 (q, $9.0 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of cis-form), $0.88-0.76$ (m, $36 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}$) ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 149.0, 148.7, 148.1, 132.1, 117.0, 113.6, 110.5 (phenyl and $\mathrm{C}=0$), 101.0 ($\mathrm{Ph}-\underline{\mathrm{C}} \mathrm{H}$), 72.6, 71.8, 70.0, ($\left.-\mathrm{CH}_{2}-\mathrm{O}-\right)$, $55.9\left(\mathrm{CH}_{3}-\mathrm{O}-\right), 36.4,35.0\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underline{\mathrm{C}}-\right)$, 23.8, $23.0\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right), 7.4,7.0\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right)$. IR (ATR): v $=2965-2852(w ; v(C-H)$ of methylene $), 1749(s ; v(C=O)), 1515,1463(w ; v(C=C)$ of aromatic $), 1262,1163,1097$, $1021 \mathrm{~cm}-1$ (s; v(C-O)).

3-10. Synthesis of linear poly(acetal-hydroxyurethane) (LPAHU)

LPAHU was synthesized by the polyaddition of Di-functional DTMP-based 6-CC (Di-DTMPC) and DAP. DiDTMPC was synthesized by the procedure similar to multi-functional 6-Cs. The synthetic route to LPAHU was shown in Scheme S1.

Scheme S1. a) Synthetic route to di-functional DTMP-based 6-CC (Di-DTMPC) under phosgene-free conditions and linear PAHU (LPAHU). b) Reversible fragmentation/extension reaction of LPAHU under acidic conditions.
a)

b)

i) Vanillin, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 100^{\circ} \mathrm{C}$, 2 d . vi) $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}$, 2 d. vii) $\mathrm{NaOH}, \mathrm{THF} / \mathrm{MeOH}$. r.t., overnight viii) DPC, $\mathrm{MgCl}_{2}, \mathrm{DMF}, 100^{\circ} \mathrm{C}$, overnight. v) 1.1 equiv. DAP, DMF, r. t., 3-5 d. vi) $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{DMF}, 50^{\circ} \mathrm{C}, 1 \mathrm{~h}$. vii) drying, $50^{\circ} \mathrm{C}$, reduced pressure.

3-10-1. Synthesis of Di-Van

1,3-dibromopropane $2.02 \mathrm{~g}(10.0 \mathrm{mmol})$ and vanillin $3.65 \mathrm{~g}(24.0 \mathrm{mmol}, 2.4$ equiv.) were dissolved in DMF $(25 \mathrm{~mL})$. To the solution, $\mathrm{K}_{2} \mathrm{CO}_{3} 2.7 \mathrm{~g}(20 \mathrm{mmol})$ was added and then the mixture was stirred at $100^{\circ} \mathrm{C}$ for 22 h. After the mixture was concentrated, the solids were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. The solution was washed three times with water (200 mL) and then dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the organic layer was concentrated, the resulting solids were purified by reprecipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$. Di-Van was obtained as a white solid. Yield: $3.12 \mathrm{~g}(90.7 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}, \delta$): 9.80 (s, 2H, CHO), 7.51 (d, 2H, J=8.0 Hz , phenyl), $7.35\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}\right.$, phenyl), $7.18\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}\right.$, phenyl), $4.21\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{PhO}-\mathrm{CH}_{2}-\right)$, 3.79 (s, 6H, CH 3^{-}), 2.22 (qui, $2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, \delta$): 192.0 (-CHO), $153.8,149.8,130.2,126.6,112.7,110.1$ (phenyl), $65.6\left(\mathrm{PhO}_{-} \mathrm{CH}_{2}-\right), 56.1\left(-\mathrm{CH}_{3}\right), 28.9\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)$. IR (ATR): $v=2953-2874(w ; v(C-H)$ of methylene $), 2720(w ; v(C-H)$ of aldehyde $), 1679(\mathrm{~s} ; \mathrm{v}(\mathrm{C}=\mathrm{O})$), 1585, $1509(\mathrm{~s} ; \mathrm{v}(\mathrm{C}=\mathrm{C})$ of aromatic), 1262, 1133, $1025(\mathrm{~s} ; \mathrm{v}(\mathrm{C}-\mathrm{O})), 818\left(\mathrm{~m} ; \delta(\mathrm{C}-\mathrm{H})\right.$ of aromatic), $730 \mathrm{~cm}^{-1}(\mathrm{~m} ; \delta(\mathrm{C}=\mathrm{C})$ of aromatic).

3-10-2. Synthesis of Di-DTMP-Bz ${ }_{2}$

Di-Van 3.00 g (8.71 mmol), DTMP- $\mathrm{Bz}_{2} 12.0 \mathrm{~g}$ ($26.1 \mathrm{mmol}, 1.5$ equiv. per aldehyde group) and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O} 165$ mg ($0.867 \mathrm{mmol}, 0.05$ equiv. per aldehyde group) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. To the solution, anhydrous MgSO_{4} ca. 20 g was added and then the mixture was stirred at $40^{\circ} \mathrm{C}$ for 2 days. After cooled to ambient temperature, the mixture was added slowly in cold water (200 mL) containing $\mathrm{NaHCO}_{3} 73 \mathrm{mg}(087 \mathrm{mmol})$ and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The organic layer was washed three times with water (200 mL) and then dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the crude products were purified by reprecipitation from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$, Di-DTMP-Bz z_{2} was obtained as a white solid. Yield: 9.65 g (90.5%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2}-\mathrm{d}_{6}, \delta$): 7.92 (t, $8 \mathrm{H}, J=8.4 \mathrm{~Hz}$, benzyl), 7.63-7.57 (m, 4H, benzyl), 7.49-7.41 (m, 8H, benzyl), 6.92-6.82 ($\mathrm{m}, 6 \mathrm{H}$, vanillin), 5.28 ($\mathrm{s}, 1.5 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-$ of cis-form), $5.22\left(\mathrm{~s}, 0.5 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\right.$ of trans-form), $4.29\left(\mathrm{t}, 8 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{BzO}-\mathrm{CH}_{2}-\right), 4.05(\mathrm{t}, \mathrm{J}=$ $6.0 \mathrm{~Hz}, \mathrm{PhO}-\mathrm{CH}_{2}-$), 3.86 (d, 3.2H, J= $11 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-$ of cis-form), 3.78-3.64 (m, 8.3H, Ph-CH-O-CH2- of trans-form and $\left.\mathrm{CH}_{3}-\mathrm{O}-\right), 3.61\left(\mathrm{~s}, 2.8 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\right.$ - of cis-form), 3.52-3.48 (m, 9.0H, Ph-CH-OCH_{2} - of cis-form and $\mathrm{BzO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), $3.41\left(\mathrm{~s}, 1.1 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\right.$ - of transform), 3.08 ($\mathrm{s}, 1.0 \mathrm{H}, \mathrm{BzO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), $2.10\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$), 1.65 ($\mathrm{q}, 1.0 \mathrm{H}, \mathrm{J}=7.5$ $\mathrm{Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of trans-form), 1.57 ($\mathrm{q}, 4 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{OBz}$), 1.08 ($\mathrm{q}, 3.0 \mathrm{H}, \mathrm{J}=7.5$ $\mathrm{Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of cis-form), $0.90\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{OBz}\right), 0.75-0.62\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}-\right.$ $\left.\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}, \delta$): 165.7 ($\mathrm{C}=\mathrm{O}$),148.7, 148.2, 133.5, 131.7, 129.7, 129.3, 129.0, 128.9, 118.6, 112.8, 110.2 (phenyl), 100.9 ($\mathrm{Ph}-\mathrm{CH}-$), 71.8, $70.3,65.2,65.1$ ($\left.-\mathrm{CH}_{2}-\mathrm{O}-\right), 55.6$ ($\left.\mathrm{CH}_{3}-\mathrm{O}-\right), 42.0$, $36.4\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\right), 28.9\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 23.9,23.3\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right), 7.7,6.9\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right)$. IR (ATR): $v=2966-2856(w ;$ $v(\mathrm{C}-\mathrm{H})$ of methylene), $1710(\mathrm{~s} ; \mathrm{v}(\mathrm{C}=\mathrm{O})$), 1521, $1451(\mathrm{w} ; \mathrm{v}(\mathrm{C}=\mathrm{C})$ of aromatic), 1264, 1105, $1024(\mathrm{~s} ; \mathrm{v}(\mathrm{C}-\mathrm{O})$), 709 $\mathrm{cm}^{-1}(\mathrm{~s} ; \delta(\mathrm{C}=\mathrm{C})$ of aromatic).

3-10-3. Synthesis of Di-DTMP

Di-DTMP-Bz 29.55 g (7.80 mmol) was dissolved in THF (60 mL). To the solution, $\mathrm{MeOH}(60 \mathrm{~mL})$ and NaOH 6.4 $\mathrm{g}(10 \mathrm{mmol})$ dissolving in distilled water $(20 \mathrm{~mL})$ were added and then the mixture was stirred at ambient temperature for 18 h . After concentration, the resulting liquids were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ and then washed three times with water (250 mL). The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated to afford Di-DTMP as colorless liquids. Yield: $5.65 \mathrm{~g}(89.5) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, \delta$): 6.96-6.90 (m, 6H, phenyl), 5.34 ($\mathrm{s}, 1.4 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-$ of cis-form), 5.32 ($\mathrm{s}, 0.5 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-$ of trans-form), 4.24-4.19 $(\mathrm{m}, 4 \mathrm{H}, \mathrm{OH}), 4.09\left(\mathrm{t}, 4 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{PhO}^{-} \mathrm{CH}_{2}-\right), 3.91\left(\mathrm{~d}, 3.1 \mathrm{H}, J=11 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\right.$ of cis-form$), 3.79(\mathrm{q}$, $2.2 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), $3.73\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}-\right.$), 3.56-3.54 ($\mathrm{m}, 6.2 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-$ of cisform and Ph-CH-O-CH2-C-CH2-O-CH2- of cis-form), 3.28-3.24 (m, 11H, HO-CH2- and HO-CH2-C-CH2 $\underline{H}_{2}-\mathrm{O}-\mathrm{CH}_{2}-$ of cis-form), 3.13 (s, $0.9 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), 3.06 (s, $1.0 \mathrm{H}, \mathrm{HO}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), 2.13 (qui, $2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$), 1.72 (q, $1.0 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of transform), 1.28-1.21 (m, 4H, CH $\left.\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{OH}\right), 1.15\left(3.1 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}\right.$ of cis-form), 0.880.76 ($\mathrm{m}, 12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-$). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 148.8, 148.3, 131.8, 118.7, 112.8, 110.1 (phenyl), 101.0 (Ph- $-\mathbf{C H}-$), 72.0, 71.6, 65.2, $61.9\left(-\mathrm{CH}_{2}-\mathrm{O}-\right), 55.7\left(\mathrm{CH}_{3}-\mathrm{O}-\right), 43.7,36.4\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underline{\mathrm{C}}-\right), 29.0\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)$, 24.1, $22.2\left(\mathrm{CH}_{3}-\underline{C H}_{2}-\right), 7.8,7.0\left(\underline{C H}_{3}-\mathrm{CH}_{2}-\right)$. IR (ATR): $v=3405(\mathrm{w} ; \mathrm{v}(\mathrm{O}-\mathrm{H})), 2961-2855(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene), 1517, $1465\left(\mathrm{w} ; \mathrm{v}(\mathrm{C}=\mathrm{C})\right.$ of aromatic), 1262, 1096, $1023 \mathrm{~cm}^{-1}(\mathrm{~s} ; \mathrm{v}(\mathrm{C}-\mathrm{O}))$.

3-10-4. Synthesis of Di-DTMPC

Di-DTMP $5.50 \mathrm{~g}(6.80 \mathrm{mmol})$ and DPC $11.7 \mathrm{~g}(54.4 \mathrm{mmol}, 4$ equiv. per 1,3-diol structure) were dissolved in DMF (65 mL). To the solution, $\mathrm{MgCl}_{2} 130 \mathrm{mg}$ ($1.36 \mathrm{mmol}, 0.1$ equiv. per 1,3-diol structure) and then the mixture was stirred at $100^{\circ} \mathrm{C}$ for 14 h . After the removal of DMF, the resulting solids were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(150 \mathrm{~mL})$ and washed three times with water (150 mL). After the drying with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the pale yellow solids were purified by silica gel column chromatography (eluent, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ volume ratio $=10 / 1$ to 1/1). Di-DTMPC was obtained as a colorless liquid. Yield: $5.40 \mathrm{~g}(92.1 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, \delta$): 6.96-6.90 (m, 6H, phenyl), $5.35(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-), 4.24\left(\mathrm{q}, 8 \mathrm{H}, \mathrm{J}=10 \mathrm{~Hz},-\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\right), 4.09(\mathrm{t}, 4 \mathrm{H}, J=6.2 \mathrm{~Hz}$, PhO-CH2 $\underline{2}_{2}$), 3.92 ($\mathrm{d}, 3.0 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), $3.80\left(\mathrm{q}, 1.9 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\right.$ of transform), 3.73 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}-$), 3.64 ($\mathrm{s}, 2.9 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), 3.57 (d, $3.2 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}$, Ph-$\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), 3.43 ($\mathrm{s}, 2.9 \mathrm{H},-\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), $3.13\left(\mathrm{~s}, 0.9 \mathrm{H},-\mathrm{OC}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\right.$ C-CH2 $\underline{H}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), 2.13 (qui, $2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$), 1.72 (q, $1.0 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-$ O-CH-Ph of trans-form), 1.42-1.35 (m, 4H, - $\mathrm{OC}\left(=\mathrm{O}\right.$) $\left.\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.16\left(\mathrm{q}, 3.0 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\right.$ O-CH-Ph of cis-form), 0.87-0.75 (m, 12H, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-$). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 148.8, 148.3, 148.1, 131.7, 118.7, 112.8, 110.1 (phenyl and $\mathrm{C}=\mathrm{O}$), 101.1 ($\mathrm{Ph}-\mathrm{CH}-$), $72.6,71.8,71.3,70.5,70.0,65.2,\left(-\mathrm{CH}_{2}-\mathrm{O}-\right), 55.7\left(\mathrm{CH}_{3}-\right.$ O-), 36.4, $35.0\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\right)$, 23.8, $23.0\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right)$, 7.4, $7.0\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\right)$. IR (ATR): $v=2966-2860(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene), $1748\left(\mathrm{~s} ; \mathrm{v}(\mathrm{C}=\mathrm{O})\right.$), 1515, $1468\left(\mathrm{w} ; \mathrm{v}(\mathrm{C}=\mathrm{C})\right.$ of aromatic), 1262, 1165, 1095, $1024 \mathrm{~cm}^{-1}(\mathrm{~s} ; \mathrm{v}(\mathrm{C}-\mathrm{O}))$

3-10-5. Synthesis of LPAHU ${ }^{4}$

Di-DTMPC 808 mg (0.94 mmol) and DAP 76.5 mg (1.03 mmol , 1.1 equiv.) were individually dissolved in DMF (1.0 mL). To the Di-DTMPC solution, the DAP solution was added and then the mixture was stirred at ambient temperature for 6 days. The mixture was added in water (100 mL) and the resulting precipitates were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and then organic layer was washed three times with water (100 mL). After the drying with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, LPAHU was obtained as a white solid. Yield: 819 $\mathrm{mg}(92.6 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}$, δ): 7.15-6.69 (m, 8H, phenyl and NH of urethane), 5.32 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ph}-$ CH-), $4.40(\mathrm{br}, 2 \mathrm{H}, \mathrm{OH}), 4.17-4.08\left(\mathrm{~m}, 4.2 \mathrm{H}, \mathrm{PhO}-\mathrm{CH}_{2}-\right.$), 3.89 ($\mathrm{d}, 3 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), 3.81-3.72 (m, $12 \mathrm{H},-\mathrm{NH}-\mathrm{C}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-, \mathrm{CH}_{3}-\mathrm{O}$ - and $\mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-$ of trans-form), 3.56-3.53 (m,6H, Ph-CH-O-CH2- of cis-form and $-\mathrm{NH}-\mathrm{C}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of cis-form), 3.28-3.25 (m, 4H, HO-CH2- and residual MeOH), 3.14-2.93 (m, $6 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{NH}-$, $\mathrm{Ph}-\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form and $-\mathrm{NH}-\mathrm{C}(=\mathrm{O}) \mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ - of trans-form), 2.12 (br, $\left.-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 1.72-1.50\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$ and $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of trans-form), 1.311.29 ($\mathrm{m}, 4 \mathrm{H},-\mathrm{NH}-\mathrm{C}\left(=\mathrm{O}\right.$) O- $\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$), 1.23-1.12 (m, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}-\mathrm{Ph}$ of cis-form), 0.86-0.73 (m, $12 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{CH}_{2}-$). IR (ATR): $v=3350(\mathrm{~m} ; \mathrm{v}(\mathrm{O}-\mathrm{H})), 2961-2856(\mathrm{w} ; \mathrm{v}(\mathrm{C}-\mathrm{H})$ of methylene), $1694(\mathrm{~s} ; \mathrm{v}(\mathrm{C}=\mathrm{O})$), 1514, $1463\left(\mathrm{w} ; \mathrm{v}(\mathrm{C}=\mathrm{C})\right.$ of aromatic), 1261, 1096, $1028 \mathrm{~cm}^{-1}(\mathrm{~s} ; \mathrm{v}(\mathrm{C}-\mathrm{O})$).

4. Fabrication of networked PAHU films

Multi-functional 6-CCs and DTMPC were dissolved in DMF (1.0 mL) at ambient temperature to prepare the carbonate monomer solution at different molar ratios ($5,10,15$ or 20 mol\% multi-functional 6-CCs per total carbonate monomer (multi-functional 6-CCs + DTMPC)). To the solutions, DAP dissolved in DMF (1.0 mL) was added and then the mixtures ([carbonate $]_{0}=0.5 \mathrm{M},[6-\mathrm{CC}]_{0} /\left[\mathrm{NH}_{2}\right]_{0}=1.0$) were stirred at ambient temperature for ca. 5 min . After that, the solutions were poured in glass petri-dishes with 6.0 cm in diameter and allowed
to stand at $60^{\circ} \mathrm{C}$ overnight in an oven under ambient atmosphere. The resulting films were carefully removed and immersed in distilled water for purification. After drying under ambient atmosphere, the networked PAHU films were obtained.

5. Investigation of swelling properties of networked PAHU films

PAHU films cut to dumbbell-shaped plates (length, 3.5 cm) with a Super dumbbell cuter (DUMBBELL Co., Ltd) and immersed in $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$, acetone or DMF at ambient temperature for 24 h . After that, their lengths were measured before drying and then the ratio of these lengths were defined as swelling ratios (unit, \%).

6. Investigation of fragmentation/extension properties of LPAHU

LPAHU 187 mg (0.20 unit mmol, acetal structure $=$ ca. 0.4 mmol) and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O} 15 \mathrm{mg}(0.08 \mathrm{mmol}$, 0.2 equiv. per acetal structure of LPAHU) were dissolved in DMF (1 mL). To the solution, $\mathrm{MeOH}(4 \mathrm{~mL})$ was added and the mixture was stirred at $60^{\circ} \mathrm{C}$ for ca. 1 h . The fraction of the mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy and SEC measurements. After that, the mixture was concentrated and dried at $60^{\circ} \mathrm{C}$ under reduced pressure for ca. 1 h . The resulting sticky solids were analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy and SEC measurements.

7. Investigation of crosslinking/de-crosslinking functions of networked PAHU films

To a 25 mL round-bottom flask were added PAHU films hashed, $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (0.4 equiv. per acetal structure of the film), DMF (2 mL). By heating at $60^{\circ} \mathrm{C}$ for ca .30 min , the films were dissolved in the solvents to give pale yellow solutions. The solutions were moved into glass petri-dishes in a diameter of 6.0 cm and then kept at $60^{\circ} \mathrm{C}$ overnight in an oven under ambient atmosphere. The resulting films were detached carefully from the dishes and immersed into water to remove residual DMF and TsOH. After drying under ambient atmosphere overnight, re-formed PAHU films were obtained. The de-crosslinking/re-crosslinking treatment was repeated 10 times and the re-formed film obtained in each cycle was characterized for their mechanical properties by tensile tests. In 2-10th processes, the re-formed films were readily able to be dissolved at the condition of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (0.2 equiv. per acetal structure).
a)

Chemical shift / ppm

Figure S1. a) ${ }^{1} \mathrm{H}$ NMR and b) ${ }^{13} \mathrm{C}$ NMR spectra of cis-Ph-DTMP after purification. Solvent: DMSO-d ${ }_{6}\left({ }^{1} \mathrm{H}\right.$ NMR) or CDCl_{3} containing $0.03 \mathrm{v} / \mathrm{v} \% \mathrm{TMS}\left({ }^{13} \mathrm{C}\right.$ NMR).

Figure S2. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of trans-Ph-DTMP after purification. Solvents: DMSO-d ${ }_{6}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of the DMAc solution of cis-Ph-DTMP, DPC and MgCl_{2} after heating at $100{ }^{\circ} \mathrm{C}$ for 1 d . Solvent: $\mathrm{DMSO}_{\mathrm{d}}$.

b)

CDCl_{3}

Figure S4. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of cis-Ph-DTMPC after purification. Solvents: CDCl_{3} containing 0.03v/v\% TMS.

Figure S5. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of cis-Ph-DTMP-Bz ${ }_{2}$ after purification. Solvents: CDCl_{3} containing 0.03v/v\% TMS.

Figure S6. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of $\mathrm{DTMP}-\mathrm{Bz}_{2}$ after purification. Solvents: CDCl_{3} containing $0.03 \mathrm{v} / \mathrm{v} \%$ TMS.
a)

Chemical shift / ppm
b)

Figure S7. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Tri-OTs after purification. Solvents: CDCl_{3} containing $0.03 \mathrm{v} / \mathrm{v} \%$ TMS.

Figure S8. a$)^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Tetra-OTs after purification. Solvents: CDCl_{3} containing $0.03 \mathrm{v} / \mathrm{v} \%$ TMS.

Figure S9. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Hexa-OTs after purification. Solvents: CDCl_{3} containing $0.03 \mathrm{v} / \mathrm{v} \%$ TMS.

b)

Chemical shift / ppm

Figure S10. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Tri-Van after purification. Solvents: DMSO-d ${ }_{6}$.

Figure S11. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Tetra-Van after purification. Solvents: CDCl_{3} containing $0.03 \mathrm{v} / \mathrm{v} \%$ TMS
a)

b)

Hexa-Van

d \quad gf h

Figure S12. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Hexa-Van after purification. Solvents: CDCl_{3} containing $0.03 \mathrm{v} / \mathrm{v} \%$ TMS

Figure S13. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Tri-DTMP-Bz 2 after purification. Solvents: DMSO-d ${ }_{6}$.

Figure S14. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Tetra-DTMP-Bz ${ }_{2}$ after purification. Solvents: DMSO- d_{6} (${ }^{1} \mathrm{H}$ NMR) or CDCl_{3} containing $0.03 \mathrm{v} / \mathrm{v} \% \mathrm{TMS}\left({ }^{13} \mathrm{C}\right.$ NMR).

Figure S15. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Hexa-DTMP-Bz ${ }_{2}$ after purification. Solvents: DMSO- $\mathrm{d}_{6}\left({ }^{1} \mathrm{H}\right.$ NMR) or CDCl_{3} containing $0.03 \mathrm{v} / \mathrm{v} \% \mathrm{TMS}\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$.
a)

b)

MSO-d ${ }_{6}$

Chemical shift / ppm

Figure S16. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Tri-DTMP after purification. Solvents: DMSO-d ${ }_{6}$.
a)

Chemical shift / ppm
b)

DMSO-d ${ }_{6}$

Chemical shift / ppm

Figure S17. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Tetra-DTMP after purification. Solvents: DMSO-d ${ }_{6}$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of Hexa-DTMP after purification. Solvents: DMSO-d ${ }_{6}$.
a)

b)

c)

Figure S19. a) MALDI-TOF-mass spectra of Tri-DTMP-Bz ${ }_{2}$ (top) and Tri-DTMP (bottom) after purification. b) Chemical structures and molar weights of Tri-DTMP-Bz ${ }_{2}$ (left) and Tri-DTMP (right). c) Chemical structures and molar weights of the by-products included in Tri-DTMP-Bz 2 and Tri-DTMP. The by-product with a M.W. of $1,322 \mathrm{~g} \mathrm{~mol}^{-1}$ was possibly produced from benzaldehyde or Ph-DTMP included in DTMP-Bz ${ }_{2}$ as impurities.

M.W. $=1716.13 \mathrm{~g} \mathrm{~mol}^{-1}$
c)

Figure S20. a) MALDI-TOF-mass spectra of Tetra-DTMP-Bz $\mathbf{2}_{\mathbf{2}}$ (top) and Tetra-DTMP (bottom) after purification. b) Chemical structures and M.W. of Tetra-DTMP-Bz2 (left) and Tetra-DTMP (right). c) Chemical structures and M.W. of the by-products included in Tetra-DTMP-Bz 2_{2} and Tetra-DTMP. The by-product with a M.W. of 1,804 $\mathrm{g} \mathrm{mol}^{-1}$ was possibly produced from benzaldehyde or Ph-DTMP included in DTMP-Bz ${ }_{2}$ as impurities.
a)

b)

c)

Figure S21. a) MALDI-TOF-mass spectra of Hexa-DTMP-Bzz (top) and Hexa-DTMP (bottom) after purification. b) Chemical structures and M.W. of Hexa-DTMP-Bz (left) and Hexa-DTMP (right). c) Chemical structures and M.W. of the by-products included in Hexa-DTMP-Bzz and Hexa-DTMP. The by-product with a M.W. of $2,541 \mathrm{~g}$ mol^{-1} was potentially produced from benzaldehyde or $\mathrm{Ph}-\mathrm{DTMP}$ included in $\mathrm{DTMP}^{-\mathrm{Bz}_{2}}$ as impurities.

M.W. $=2034.32 \mathrm{~g} \mathrm{~mol}^{-1}$

$\mathrm{M} . \mathrm{W} .=2823.15 \mathrm{~g} \mathrm{~mol}^{-1}$

Figure S22. Chemical structures and M.W. of the by-products included in a) Tetra-DTMP-Bz ${ }_{2}$ and b) HexaDTMP.

Table S1. Analysis of the purity of multi-functional 6-CCs.

	acetal / \%[a]	aldehyde groups / \% ${ }^{[b]}$	6 -CC structures / \%[c]	bis(phenoxycarbonyl) $/ \%$ (dd]	groups
Tri-DTMPC	97.3	2.7	96.6	3.4	
Tetra-DTMPC	97.0	3.0	96.0	4.0	
Hexa-DTMPC	97.5	2.5	96.2	3.8	

${ }^{[a]}$ Molar fraction of acetal structures in multi-functional 6-CCs. ${ }^{[b]}$ Molar fraction of residual aldehyde groups in multifunctional 6-CCs. ${ }^{[c]}$ Molar fraction of 6-CC structures in multi-functional 6-CC. ${ }^{[d]}$ Molar fraction of bis(phenoxycarbonyl) groups in multi-functional 6-CCs. These fractions were determined by ${ }^{1} \mathrm{H}$ NMR spectra of these multi-functional 6-CCs.

Figure S23. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Tri-DTMPC after purification. Solvents: DMSO-d ${ }_{6}$.

Figure S24. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Tetra-DTMPC after purification. Solvents: DMSO- d_{6}.

b)

C
A

Chemical shift / ppm

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum of Hexa-DTMPC after purification (silica gel column chromatography and recrystallization from n-hexane/EtOAc). Solvents: CDCl_{3} containing $0.03 \mathrm{v} / \mathrm{v} \% \mathrm{TMS}\left({ }^{1} \mathrm{H} N M R\right)$ and DMSO-d6 (${ }^{13} \mathrm{C}$ NMR).

Figure S26. FT-IR spectra of a) Hexa-DTMPC, b) DTMP and c) PAHU-Hexa-15.

Figure S27. Photographs of networked PAHU films fabricated from multi-functional 6-CCs, DTMPC and DAP at different feed ratios. a) PAHU-Hexa-n. b) PAHU-Tetra-n. c) PAHU-Tri-n ($\mathrm{n}=5,10,15$ or 20). The molar fraction of multi-functional 6 -CCs used are $5,10,15$ or 20 mol\% with respect to total carbonate monomers. d) Photographs of bent films prepared from different multi-functional 6-CCs.

Figure S28. FT-IR spectra of networked PAHU films fabricated from different multi-functional 6-CCs, DTMPC and DAP at different feed ratios. a) PAHU-Hexa-n. b) PAHU-Tetra-n. c) PAHU-Tri-n. The molar fraction of multifunctional 6-CCs used are i) $5 \mathrm{~mol} \%(\mathrm{n}=5$), ii) $10 \mathrm{~mol} \%(\mathrm{n}=10)$, iii) $15 \mathrm{~mol} \%(\mathrm{n}=15)$, or iv) $20 \mathrm{~mol} \%(\mathrm{n}=20)$.

Figure S29. Swelling Properties of networked PAHU films in different solvents ($\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$, acetone or DMF). Swelling ratios were calculated by the lengths of the films before/after immersion in solvents for 1day at room temperature. a) Networked PAHU films obtained using 5 mol\% multi-functional 6-CCs. b) Networked PAHU films obtained using 20 mol\% multi-functional 6-CCs. In these figures, a swelling ratio of 100% means no absorption of solvents (no swelling of the films).

Figure S30. S-S curves of PAHU-Hexa-n fabricated at different Hexa-DTMPC/DTMPC feed ratios. a) PAHU-Hexa-5. b) PAHU-Hexa-10. c) PAHU-Hexa-15. d) PAHU-Hexa-20. Tensile tests were carried out 3 or 4 times.

Figure S31. S-S curves of PAHU-Tetra-n fabricated at different Tetra-DTMPC/DTMPC feed ratios. a) PAHU-Tetra-5. b) PAHU-Tetra-10. c) PAHU-Tetra-15. d) PAHU-Tetra-20. Tensile tests were carried out 4 times.

Figure S32. S-S curves of PAHU-Tri-n fabricated at different Tri-DTMPC/DTMPC feed ratios. a) PAHU-Tri-5. b) PAHU-Tri-10. c) PAHU-Tri-15. d) PAHU-Tri-20 Tensile tests were carried out 4-5 times.

Figure S33. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Di-Van after purification. Solvents: DMSO-d ${ }_{6}$.
a)

b)

DMSO-d ${ }_{6}$

Chemical shift / ppm

Figure S34. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Di-DTMP-Bz ${ }_{2}$ after purification. Solvents: DMSO- d_{6}.
a)

Chemical shift / ppm
b)

Figure S35. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Di-DTMP after purification. Solvents: DMSO- d_{6}.
a)

b)

Chemical shift / ppm

DMSO-d ${ }_{6}$

Figure S36. a) ${ }^{1} \mathrm{H}$ and b) ${ }^{13} \mathrm{C}$ NMR spectra of Di-DTMPC after purification. Solvents: DMSO- d_{6}.

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectrum of LPAHU after purification. Solvents: DMSO-d ${ }_{6}$.

Figure S38. SEC traces of a) LPAHU before fragmentation, b) fragmented LPAHU after heating at $60^{\circ} \mathrm{C}$ in DMF containing TsOH monohydrate (0.2 equiv. per acetal structure), and c) partially-elongated LPAHU after the elimination of solvents by drying at $40^{\circ} \mathrm{C}$ under reduced pressure.

a)
b)

Chemical shift / ppm

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectra of a) fragmented LPAHU (after heating at $60^{\circ} \mathrm{C}$ in DMF solution containing TsOH monohydrate and b) partially-extended LPAHU (after the removal of the solvents by heating at $60^{\circ} \mathrm{C}$ under reduced pressure). Solvents: DMSO-d ${ }_{6}$. Assignments of signals derived from acetal and aldehyde protons are shown in the spectra.

Figure S40. ${ }^{1} \mathrm{H}$ NMR spectra of partially-de-crosslinked PAHU-Hexa-20 (after heating in DMF solution containing TsOH monohydrate) during a) 6th and b) 9th re-forming processes. Solvent: DMSO-d ${ }_{6}$.

Table S2. Characterization of networked structures of PAHU-Hexa-20 after de-crosslinking treatments by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

	Re-workable process		
	1st	6th	9th
Proton ratio of the signal at $2.54 \mathrm{ppm}{ }^{[\text {a] }}$	097	1.09	1.14
Theoretical proton ratio of methylene protons adjacent to amino groups of DAP ${ }^{[b]}$	4.67	4.67	4.67
Remaining amino groups in PAHU-Hexa-20 / \%	20.8	23.3	24.4

[a] Assigned to methylene protons adjacent to amino groups of DAP. The value is normalized by the total ratio of acetal and aldehyde protons. [b] Calculated using Hexa-DTMPC/DAP feed ratios. The value is normalized by the total ratio of acetal and aldehyde protons.

Figure S41. S-S curves of re-formed PAHU-Hexa-20. The re-formation treatment of the film was repeated 10 times. a) 1st, b) 2nd, c) 3rd, d) 4th, e) 5th, f) 6th, g) 7th, h) 8th, i) 9th, and j) 10th cycles. Tensile tests were carried out 4-5 times.

References

1) Matsukizono, H.; Endo, T. J. Appl. Polym. Sci. 2015, 132, 41956.
2) a) Laliberté, D.; Maris, T.; Sirois, A.; Wuest, J. D. Org. Lett. 2003, 5, 4787-4790. b) Deng, G.; Tang, C.; Li, F.; Jiang, H.; Chen, Y. Macromolecules 2010, 43, 1191.
3) a) Pemba, A. G.; Rostagno, M.; Lee, T. A.; Miller, S. A. Polym. Chem. 2014, 5, 3214. b) Llevot, A.; Grau, E.; Carlotti, S.; Grelier, S.; Cramail, H. Macromol. Rapid Commun. 2016, 37, 9.
4) Matsukizono, H.; Endo, T. RSC Adv. 2015, 5, 71360.
