Supporting Information

Composites of Layered M(HPO₄)₂ (M = Zr, Sn, and Ti) with Reduced Graphene Oxide as Anode Materials for Lithium Ion Batteries

Mei Ma, Shouwu Guo* Wenzhuo Shen*

Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China

Correspondence should be addressed to: swguo@sjtu.edu.cn or shenwenzhuo@sjtu.edu.cn

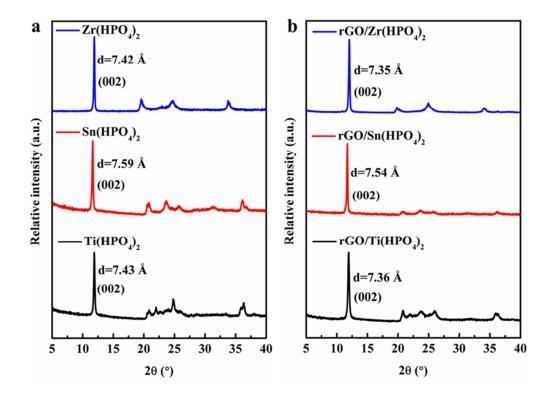
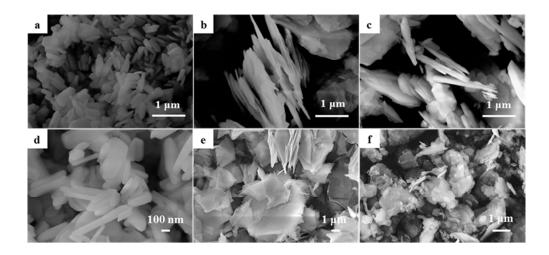



Figure S1. XRD patterns of (a) $M(HPO_4)_2$, and (b) $rGO/M(HPO_4)_2$ with rGO-to- $M(HPO_4)_2$ ratio

of 5:100 (in weight). The interlayer d-spacings of the materials are labeled in the Figure.



Figure S2. FE-SEM images of metal phosphates hydrates before and after dehydration, (a) $Zr(HPO_4)_2 \cdot H_2O$, (b) $Sn(HPO_4)_2 \cdot H_2O$, (c) $Ti(HPO_4)_2 \cdot H_2O$, (d) $Zr(HPO_4)_2$, (e) $Sn(HPO_4)_2$, and (f) $Ti(HPO_4)_2$, revealing that all three metal phosphates have similar thin flake morphology with the thickness ranged in nanometers and lateral dimensions over a few micrometers.

Figure S3. FE-SEM images of the electrodes using rGO/Sn(HPO₄)₂ composites with

rGO-to-Sn(HPO₄)₂·H₂O ratio of 5:100 (in weight) at different charge-discharge states. (a) without charge-discharge process, (b) after 1000 charge-discharge cycles at 1 A g^{-1} and (c) after 1000 charge-discharge at 5 A g^{-1} .

Figure S4. FE-SEM images of (a) $rGO/Zr(HPO_4)_2$ composite with rGO-to- $Zr(HPO_4)_2$ ratio of 20:100 (in weight), (b) $rGO/Sn(HPO_4)_2$ composite with rGO-to- $Sn(HPO_4)_2$ ratio of 10:100 (in

weight), and (c) rGO/Ti(HPO₄)₂ composite with rGO-to-Ti(HPO₄)₂ ratio of 20:100 (in weight).

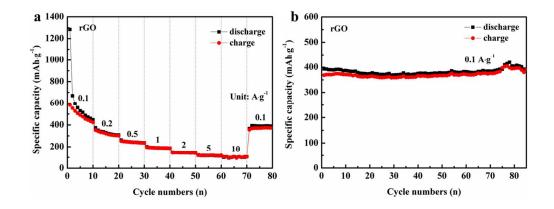


Figure S5. (a) Galvanostatic charge-discharge curves of bare rGO as anode material for LIBs,

measured at current densities from 0.1 to 10 A g^{-1} ; (b) Cycling performance of rGO anode at 0.1 A

g⁻¹.