Supporting Information

Palladium-Catalyzed Regioselective C-H Alkenylation of Arylacetamides via Distal Weakly Coordinating Primary Amides as Directing Groups
Yogesh Jaiswal, Yogesh Kumar and Amit Kumar*Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
Table of Contents

1. Optimization of reaction conditions S2-S4
S1. Optimization of solvents S2
S2. Optimization of oxidants S2-S3
S3. Optimization of amount of oxidant S3
S4. Optimization of time and temperature S3
S5. Optimization of amount of ethyl acrylate S4
S6. Optimization of amount of catalyst. S4
2. Intermolecular competition experiment S4-S5
3. Synthesis of phenylacetamide- d_{5} S5-S6
4. Kinetic isotope effect experiment. S7
5. References S7
6. NMR spectra S8-S36

1. Optimization of reaction conditions.

Table S1. Optimization by varying solvents ${ }^{a}$

S. No.	Solvent	Yeild $^{\boldsymbol{b}}$ of 3a(\%)
1.	DCE	16
2.	ACN	12
3.	AcOH	43
4.	HFIP	36
5.	TFE	40
6.	TFA	50
7.	NMP	16
8.	TMF	18
9.	10	

${ }^{a}$ Reaction conditions: 1a (0.2 mmol), 2a (0.6 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%$), $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (2.0 equiv), solvent (2.0 mL), at $100^{\circ} \mathrm{C}$ for 36 h . ${ }^{b}$ Isolated yield of 3a through column chromatography.

Table S2. Optimization by varying oxidants ${ }^{a}$

S.No.	Oxidant	Yield $^{\boldsymbol{b}}$ of 3a (\%)
1.	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	50
2.	$\mathrm{Ag}_{2} \mathrm{O}$	45
3.	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Ag}$	50
4.	AgBF_{4}	--

5.	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Ag}$	53
6.	AgNO_{3}	40
7.	$\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	8
8.	$\mathrm{BQ} / \mathrm{O}_{2}$	54
9.	$\mathrm{Cu}(\mathrm{OAc})_{2} / \mathrm{O}_{2}$	51
10.	--	33
11.	BQ	42

${ }^{a}$ Reaction conditions: 1a (0.2 mmol), 2a (0.6 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($10 \mathrm{~mol} \%$), Oxidant (2.0 equiv), TFA (2.0 mL), at $100^{\circ} \mathrm{C}$ for $36 \mathrm{~h} .{ }^{b}$ Isolated yield of 3a through column chromatography.

Table S3. Optimization by varying amount of oxidant ${ }^{a}$

S. No.	Oxidant	Amount (equiv.) $^{\text {Yield }^{\boldsymbol{b}} \text { of 3a (\%) }}$	
1.	BQ	2.0	64
2.	BQ	0.5	61
3.	BQ	1.0	72

${ }^{a}$ Reaction conditions: 1a $(0.2 \mathrm{mmol})$, 2a (0.6 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, BQ (X equiv.), TFA $(2.0 \mathrm{~mL})$, at $100^{\circ} \mathrm{C}$ for $36 \mathrm{~h} .{ }^{b}$ Isolated yield of $\mathbf{3 a}$ through column chromatography.

Table S4.Optimization by varying time and temperature ${ }^{a}$

S.No.	Time (h)	Temperature ($^{\mathbf{}} \mathbf{C}$)	Yield $^{\boldsymbol{b}}$ of 3a (\%)
1	15	100	54
2	24	100	68
3	36	100	72
4	36	120	71
5	36	80	66

${ }^{a}$ Reaction conditions: 1a (0.2 mmol), 2a $(0.6 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%), \mathrm{BQ} / \mathrm{O}_{2}(1.0$ equiv $)$, solvent (2.0 mL). ${ }^{b}$ Isolated yield of $\mathbf{3 a}$ through column chromatography.

Table S5. Optimization by varying amount of ethyl acrylate ${ }^{a}$

S. No.	Ethyl acrylate (equiv)	Yield $^{\boldsymbol{b}}$ of 3a (\%)
1	2	65
2	3	72
3	4	73

${ }^{a}$ Reaction conditions: 1a (0.2 mmol), 2b (X mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, BQ (1.0 equiv), solvent (2.0 mL). ${ }^{b}$ Isolated yield of $\mathbf{3 a}$ through column chromatography.

Table S6. Optimization of amount of catalyst ${ }^{a}$

S. No.	$\mathbf{P d}(\mathbf{O A c})_{\mathbf{2}}(\mathbf{m o l} \%)$	Yield $^{\boldsymbol{b}} \mathbf{~ o f ~ 3 a ~ (\%) ~}$
1	2	45
2	5	68
3	10	72

${ }^{a}$ Reaction conditions: 1a $(0.2 \mathrm{mmol})$, 2a (0.6 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(\mathrm{Xmol} \%), \mathrm{BQ}(1.0$ equiv), solvent $(2.0 \mathrm{~mL}) .{ }^{b}$ Isolated yield of $\mathbf{3 a}$ through column chromatography.

2. Intermolecular competition experiment between 1 d and 1 e :

(4d:4e = 3.6:1)

Intermolecular competition experiment between 2 a and $\mathbf{2 g}$:

3. Synthesis of Phenylacetamide- \boldsymbol{d}_{5}

Procedure for synthesis of Benzyl bromide- \boldsymbol{d}_{7} : By following the reported literature procedure, ${ }^{1}$ to a 50 mL round bottom flask equipped with magnetic stir bar, were added toluene- $d_{8}(1.0 \mathrm{~mL}$, $10 \mathrm{mmol})$, NBS ($12 \mathrm{mmol}, 2.2 \mathrm{~g}$), $\mathrm{CCl}_{4}(30 \mathrm{~mL})$ followed by catalytic amount of tert. butylperoxybenzoate ($30 \mathrm{~mol} \%$, $580 \mu \mathrm{~L}$). Reaction was monitored by TLC. After 3 h solution was cooled to room temperature. Reaction mixture was filtered to remove the precipitated succinimide. The filtrate was concentrated in vacuumand crude product was purified through column chromatography to give colourless oil.

Procedure for synthesis of phenyl acetonitrile- \boldsymbol{d}_{5} : By following the reported literature procedure, ${ }^{2}$ to a 50 mL round bottom flask equipped with magnetic stir bar, were added benzyl
 acetonitrile $(20 \mathrm{~mL})$. The solution was stir under reflux for 12 h . After cooling to room temperature, solvent was removed and reaction mixture was extracted with ethyl acetate (30 mL x 3). The organic layer was washed with water and brine. The solution was concentrated
undervacuum and crude product was purified by column chromatography to give colorless liquid.

Procedure for synthesis of phenyl acetamide- \boldsymbol{d}_{5} : By following the reported literature procedure, ${ }^{3}$ to a 25 mL round bottom flask equipped with magnetic stir bar, were added phenyl acetonitrile- $\mathrm{d}_{5}(1.6 \mathrm{mmol}, 195 \mathrm{mg})$, tetra butyl ammonium hydroxide ($4.0 \mathrm{ml}, 25 \%$ solution), ethanol (10 mL) . The solution was stir under reflux for 12 h . After cooling to room temperature, solvent was evaporated in vacuum. The reaction mixture was extracted with ethyl acetate (30 mL x 3). The organic layer was washed with brine and dried over sodium sulphate. After concentrated in vacuum crude product was purified by column chromatography to give white solid (110 mg, 57\%).

4. Intermolecular competition experiment between 1 a and $1 \mathrm{a}-\mathrm{d}_{5}$ to find KIE:

5. References
(1) Z, Hong. J. Label. Compd. Radiopharm. 2008, 51, 293.
(2) Yabe, O.; Mizufune, H.; Ikemoto, T.Synlett. 2009, 8, 1291.
(3) Veisi, H.; Maleki, B.; Hamelian, M.; Ashrafi, S. S. RSC Adv. 2015, 5, 6365.
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{3 a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{3 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{3 c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of 3d

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{3 e}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{3 f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{3 g}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{3 h}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{3 i}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{4 a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{4 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{4 c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{4 d}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{4 e}$
(

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{4 f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{4 g}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{4 h}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{4 i}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{4 j}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{4 k}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{4 I}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{6 a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{6 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{6 c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of $\mathbf{6 d}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of 7a

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of 7b

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of 7c

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ Spectra of 9

