Supporting Information

Palladium-Catalyzed Regioselective C-H Alkenylation of Arylacetamides via Distal Weakly Coordinating Primary Amides as Directing Groups

Yogesh Jaiswal, Yogesh Kumar and Amit Kumar*

Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India

Table of Contents

1. Optimization of reaction conditions	S2-S4
S1. Optimization of solvents	
S2. Optimization of oxidants	
S3. Optimization of amount of oxidant	S3
S4. Optimization of time and temperature	
S5. Optimization of amount of ethyl acrylate	S4
S6. Optimization of amount of catalyst	S4
2. Intermolecular competition experiment	S4-S5
3. Synthesis of phenylacetamide- <i>d</i> ₅	S5-S6
4. Kinetic isotope effect experiment	S7
5. References	S7
6. NMR spectra	

1. Optimization of reaction conditions.

Table S1. Optimization by varying solvents^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), Pd(OAc)₂ (10 mol%), Ag₂CO₃ (2.0 equiv), solvent (2.0 mL), at 100 °C for 36 h. ^{*b*}Isolated yield of **3a** through column chromatography.

Table S2. Optimization by varying oxidants^a

5.	CF ₃ CO ₂ Ag	53
6.	AgNO ₃	40
7.	$K_2S_2O_8$	8
8.	BQ/O ₂	54
9.	Cu(OAc) ₂ /O ₂	51
10.		33
11.	BQ	42

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), Pd(OAc)₂ (10 mol%), Oxidant (2.0 equiv), TFA (2.0 mL), at 100 °C for 36 h. ^{*b*}Isolated yield of **3a** through column chromatography.

Table S3. Optimization by varying amount of oxidant^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), Pd(OAc)₂ (10 mol%), BQ (X equiv.), TFA (2.0 mL), at 100 °C for 36 h. ^{*b*}Isolated yield of **3a** through column chromatography.

Table S4.Optimization by varying time and temperature^a

	NH ₂	+ U	Pd(OAc) ₂ (10 mol%) BQ/O ₂	NH ₂
ļĻ į	Ö	CO ₂ Et	TFA	
	1a	2a		3a CO ₂ Et
	S.No.	Time (h)	Temperature (°C)	Yield ^b of 3a (%)
	1	15	100	54
	2	24	100	68
	3	36	100	72
	4	36	120	71
	5	36	80	66

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), $Pd(OAc)_2$ (10 mol%), $BQ/O_2(1.0 \text{ equiv})$, solvent (2.0 mL). ^{*b*}Isolated yield of **3a** through column chromatography.

Table S5. Optimization by varying amount of ethyl acrylate^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2b** (X mmol), $Pd(OAc)_2$ (10 mol%), BQ (1.0 equiv), solvent (2.0 mL). ^{*b*}Isolated yield of **3a** through column chromatography.

Table S6. Optimization of amount of catalyst^a

S. No.	Pd(OAc) ₂ (mol%)	Yield ^b of 3a (%)
1	2	45
2	5	68
3	10	72

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), Pd(OAc)₂ (Xmol%), BQ(1.0 equiv), solvent (2.0 mL). ^{*b*}Isolated yield of **3a** through column chromatography.

2. Intermolecular competition experiment between 1d and 1e:

Intermolecular competition experiment between 2a and 2g:

3. Synthesis of Phenylacetamide-d₅

Procedure for synthesis of Benzyl bromide- d_7 : By following the reported literature procedure,¹ to a 50 mL round bottom flask equipped with magnetic stir bar, were added toluene- $d_8(1.0 \text{ mL}, 10 \text{ mmol})$, NBS (12 mmol, 2.2 g), CCl₄ (30 mL) followed by catalytic amount of tert. butylperoxybenzoate (30 mol%, 580 µL). Reaction was monitored by TLC. After 3h solution was cooled to room temperature. Reaction mixture was filtered to remove the precipitated succinimide. The filtrate was concentrated in vacuumand crude product was purified through column chromatography to give colourless oil.

Procedure for synthesis of phenyl acetonitrile- d_3 : By following the reported literature procedure,² to a 50 mL round bottom flask equipped with magnetic stir bar, were added benzyl bromide- d_7 (6 mmol, 1.06g), TMSCN (7.2 mmol, 0.98 mL), K₂CO₃ (7.2 mmol, 995 mg) and acetonitrile (20 mL). The solution was stir under reflux for 12 h. After cooling to room temperature, solvent was removed and reaction mixture was extracted with ethyl acetate (30 mL x 3). The organic layer was washed with water and brine. The solution was concentrated

undervacuum and crude product was purified by column chromatography to give colorless liquid.

Procedure for synthesis of phenyl acetamide- d_5 : By following the reported literature procedure,³ to a 25 mL round bottom flask equipped with magnetic stir bar, were added phenyl acetonitrile- d_5 (1.6 mmol, 195 mg), tetra butyl ammonium hydroxide (4.0 ml, 25% solution), ethanol (10 mL). The solution was stir under reflux for 12 h. After cooling to room temperature, solvent was evaporated in vacuum. The reaction mixture was extracted with ethyl acetate (30 mL x 3). The organic layer was washed with brine and dried over sodium sulphate. After concentrated in vacuum crude product was purified by column chromatography to give white solid (110 mg, 57%).

4. Intermolecular competition experiment between 1a and 1a-d₅ to find KIE:

5. References

- (1) Z, Hong. J. Label. Compd. Radiopharm. 2008, 51, 293.
- (2) Yabe, O.; Mizufune, H.; Ikemoto, T.Synlett. 2009, 8, 1291.
- (3) Veisi, H.; Maleki, B.; Hamelian, M.; Ashrafi, S. S. RSC Adv. 2015, 5, 6365.

6. ¹H and ¹³C{¹H} Spectra of 3a

 1H and $^{13}C\{^1H\}$ Spectra of $\bf 3b$

190

180 170

160 150

140

130 120

90

80 70

100 f1 (ppm)

110

50

40 30

20

10

60

-0 --500

Ó

 1H and $^{13}C\{^1H\}$ Spectra of 3c

 1H and $^{13}C\{^1H\}$ Spectra of 3d

 1H and $^{13}C\{^1H\}$ Spectra of 3e

¹H and ¹³C $\{^{1}H\}$ Spectra of **3f**

 1H and $^{13}C\{^1H\}$ Spectra of 3g

S14

 1H and $^{13}C\{^1H\}$ Spectra of 3h

 1H and $^{13}C\{^1H\}$ Spectra of 3i

 1H and $^{13}C\{^1H\}$ Spectra of 4a

 1H and $^{13}C\{^1H\}$ Spectra of 4b

 1H and $^{13}C\{^1H\}$ Spectra of 4c

 1H and $^{13}C\{^1H\}$ Spectra of 4d

 1H and $^{13}C\{^1H\}$ Spectra of 4e

 1H and $^{13}C\{^1H\}$ Spectra of 4f

 1H and $^{13}C\{^1H\}$ Spectra of 4g

¹H and ¹³C $\{^{1}H\}$ Spectra of **4h**

 1H and $^{13}C\{^1H\}$ Spectra of 4i

 1H and $^{13}C\{^1H\}$ Spectra of 4j

 1H and $^{13}C\{^1H\}$ Spectra of 4k

 1H and $^{13}C\{^1H\}$ Spectra of 41

 1H and $^{13}C\{^1H\}$ Spectra of $\bf 6a$

¹H and ¹³C $\{^{1}H\}$ Spectra of **6b**

¹H and ¹³C $\{^{1}H\}$ Spectra of **6c**

 1H and $^{13}C\{^1H\}$ Spectra of 6d

 1H and $^{13}C\{^1H\}$ Spectra of 7a

 1H and $^{13}C\{^1H\}$ Spectra of 7b

 1H and $^{13}C\{^1H\}$ Spectra of 7c

 1H and $^{13}C\{^1H\}$ Spectra of $\boldsymbol{9}$

