Supporting Information

Locally favored two-dimensional structures of block copolymer melts on nonneutral surfaces

Mani Sen ${ }^{1}$, Naisheng Jiang ${ }^{1}$, Maya K. Endoh ${ }^{1}$, Tadanori Koga ${ }^{1,2}$, Alexander Ribbe ${ }^{3}$, Atikur Rahman ${ }^{4}$, Daisuke Kawaguchi ${ }^{5}$, Keiji Tanaka ${ }^{6}$, Detlef-M. Smilgies ${ }^{7}$

${ }^{1}$ Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275
${ }^{2}$ Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
${ }^{5}$ Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
${ }^{4}$ Department of Physics, Indian Institute of Science Education and Research (IISER)-Pune, India, 411008
${ }^{5}$ Education Center for Global Leaders in Molecular Systems for Devices, Kyushu University, Fukuoka 819-0395, Japan
${ }^{6}$ Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 8190395, Japan
${ }^{7}$ Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853

Fig. S1: Small angle x-ray scattering (SAXS) profiles of the bulk (a) PS-blockP4VP and (b) SBS samples measured at $25{ }^{\circ} \mathrm{C}$. The measurements were performed at the X27C beamline of the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL) at the X-ray wavelength (λ) of 0.1371 nm . The peak positions relative to the first order maximum $\left(q_{\mathrm{m}}\right)$ are also indicated in the graph. The domain spacing $\left(\mathrm{L}_{\mathrm{d}}\right)$ was calculated by $L_{\mathrm{d}}=2 \pi / q_{\mathrm{m}}$.

Fig. S2: XR profiles of the SBS and PS-block-P4VP flattened layers derived from the annealed SBS and PS-block-P4VP thin films for 100 h . We utilized a three-layer model (a Si substrate, a $\mathrm{SiO}_{\mathrm{x}}$ layer, and a polymer layer) to fit the XR data. A least-square fit (the black solid lines) to the XR profiles were performed using the dispersion (δ) profile shown in the inset. The dispersion values, which depend on the density values of the films ${ }^{1}$, were normalized by the bulk dispersion ($\delta_{\text {bulk }}$) values. The thickness the SBS flattened layer and the roughness of the air-polymer interface was $1.6 \pm 0.2 \mathrm{~nm}$ and 0.6 nm ; the thickness the PS-block-P4VP flattened layer and the roughness of the air-polymer interface was $3.5 \pm$ 0.2 nm and 0.2 nm from the best-fitting results.

Fig. S3: AFM images $(1 \mu \mathrm{~m} \times 1 \mu \mathrm{~m})$ of the PS-block-P4VP flattened layer: a) height image; b) phase image; c) height profile along the black dashed line shown in (a). The RMS roughness of the PS-block-P4VP flattened layer was estimated to be about 0.2 nm . (d) AFM phase image ($1 \mu \mathrm{~m} \times 1 \mu \mathrm{~m}$) of the SBS flattened layer. In comparison of the SEM image shown in Fig. 2a, the bright region can be identified as the PB-rich region. To verify the homogeneity of the film surface, enlarged AFM images of the PS-block-PMMA flattened layer are shown: (e) height image; (f) phase image. The height scale is $0-4 \mathrm{~nm}$.

Fig. S4. 2D GISAXS image of the PS-block-P4VP flattened layer. The in-plane GISAXS profile was extracted at the exit angle (between the scattered beam and the film surface) of $\alpha_{\mathrm{f}}=0.17^{\circ}$, which corresponds to the q_{xy}-value of $q_{\mathrm{z}}=0.15$ nm^{-1}.

Fig. S5. Fourier transform profile of the SEM image of the PS-block-P4VP flattened layer shown in Fig. 2. There is a broad peak at around $q=0.2 \mathrm{~nm}^{-1}$. When compared it to the GISAXS profile shown in Fig. 3, there are clear differences between them: an up-turn at $q_{x y}<0.1 \mathrm{~nm}^{-1}$ and the lack of the broad peak in the GISAXS profile. This upturn suggests the presence of a larger structure composed of the percolating structure and would make the broad peak invisible.

Orientation of phenyl groups: The intensity of SFG signal (I^{SFG}) is proportional to the absolute value of the effective sum-frequency susceptibility tensor of the interface $\left(\chi_{\mathrm{eff}}\right)^{2 \text { : }}$

$$
\begin{equation*}
I^{S F G} \propto\left|\chi_{\mathrm{eff}}^{(2)}\right|^{2}=\left|\chi_{\mathrm{NR}}^{(2)}+\sum_{q} \frac{A_{q}}{\omega_{I R}-\omega_{q}+i \Gamma_{q}}\right|^{2} \tag{S1}
\end{equation*}
$$

where $\chi_{\mathrm{NR}}{ }^{(2)}$ is the non-resonant background contribution. $A_{\mathrm{q}}, \omega_{\mathrm{q}}$ and Γ_{q} are strength, resonant frequency and damping coefficient of the $q^{\text {th }}$ vibration mode, respectively. Each peak on the SF spectra was fitted by eq. S1 using $A_{\mathrm{q}}, \omega_{\mathrm{q}}$ and Γ_{q} as fitting parameters. Panels (a) and (b) of Fig. S4 show the curve-fitting results of the SFG spectra for the annealed SBS film with the ssp and $p p p$ polarization combinations, respectively. The peak assignment was described in the main text.

Fig. S4. SFG spectra with (a) the $s s p$ and (b) $p p p$ polarization combinations for the annealed SBS film. Open circles and solid lines denote experimental and calculated data, respectively.

The macroscopic sum-frequency susceptibility tensor χ_{ijk} is related to the microscopic hyperpolarizability tensor elements $\beta_{\mathrm{ij} \mathrm{ij}^{\prime} \mathrm{k}^{\prime}}$ in the molecular coordinate system defined by a, b, c axes. Phenyl groups can be treated as $C_{2 v}$ symmetry ${ }^{3,4}$. In this case,
$\chi_{x x z}=\chi_{y y z}, \chi_{x z x}=\chi_{y z y}, \chi_{z x x}=\chi_{z y y}, \chi_{z z z}$
There exist two methods to analyze the orientation of phenyl rings. One is based on the SFG intensity ratio of two different vibration modes for phenyl groups with the ssp polarization combination. Another is the calculation from the SFG intensity ratio of the ssp polarization combination over the ppp one for the n_{2} vibration mode, $\left(I_{s p p, \mathrm{n} 2} / I_{p p p, \mathrm{n} 2}\right)^{3,5,6}$. In this study, the latter method was adopted because unknown parameters are involved in the former one.
In general, $\chi_{\text {eff }, \text { ssp }}^{(2)}$ and $\chi_{\text {eff } f p p p}^{(2)}$ can be expressed as follows;

$$
\begin{align*}
& \chi_{\text {eff,ssp }}^{(2)}=F_{s s p, y y z} \chi_{y y z} \\
& =L_{y y}\left(\omega_{\mathrm{SF}}\right) L_{y y}\left(\omega_{\mathrm{Vis}}\right) L_{z z}\left(\omega_{\mathrm{IR}}\right) \sin \theta_{\mathrm{IR}} \chi_{y y z} \tag{S3a}\\
& \chi_{\text {eff }, p p p}^{(2)}=F_{p p p, x x z} \chi_{x x z}+F_{p p p, x z x} \chi_{x z x}+F_{p p p, z x x} \chi_{z x x}+F_{p p p, z z z} \chi_{z z z} \\
& =-L_{x x}\left(\omega_{\mathrm{SFG}}\right) L_{x x}\left(\omega_{\mathrm{Vis}}\right) L_{z z}\left(\omega_{\mathrm{IR}}\right) \cos \theta_{\mathrm{SF}} \cos \theta_{\mathrm{Vis}} \sin \theta_{\mathrm{IR}} \chi_{x x z} \\
& -L_{x x}\left(\omega_{\mathrm{SFG}}\right) L_{z z}\left(\omega_{\mathrm{Vis}}\right) L_{x x}\left(\omega_{\mathrm{IR}}\right) \cos \theta_{\mathrm{SF}} \sin \theta_{\mathrm{Vis}} \cos \theta_{\mathrm{IR}} \chi_{x z x} \tag{S3b}\\
& +L_{z z}\left(\omega_{\mathrm{SFG}}\right) L_{x x}\left(\omega_{\mathrm{Vis}}\right) L_{x x}\left(\omega_{\mathrm{IR}}\right) \sin \theta_{\mathrm{SF}} \cos \theta_{\mathrm{Vis}} \cos \theta_{\mathrm{IR}} \chi_{z x x}
\end{align*}
$$

$$
+L_{z z}\left(\omega_{\mathrm{SFG}}\right) L_{z z}\left(\omega_{\mathrm{Vis}}\right) L_{z z}\left(\omega_{\mathrm{IR}}\right) \sin \theta_{\mathrm{SF}} \sin \theta_{\mathrm{Vis}} \sin \theta_{\mathrm{IR}} \chi_{z z z}
$$

where $L_{i i}(i=x, y, z)$ are Fresnel coefficients. The angle between surface normal and beam is expressed as θ. The subscripts Vis and IR denote the input beams. To calculate Fresnel factors for the interfaces, the following equations are used ${ }^{7}$,
$L_{x x}(\omega)=\frac{2 n_{1}(\omega) \cos \theta_{1}}{n_{2}(\omega) \cos \theta_{1}+n_{1}(\omega) \cos \theta_{2}} \times \frac{2 n_{2}(\omega) \cos \theta_{2}}{n_{3} \cos \theta_{2}+n_{2}(\omega) \cos \theta_{3}} \times \frac{\cos \theta_{3}}{\cos \theta_{1}}$
$L_{y y}(\omega)=\frac{2 n_{1}(\omega) \cos \theta_{1}}{n_{1}(\omega) \cos \theta_{1}+n_{2}(\omega) \cos \theta_{2}} \times \frac{2 n_{2}(\omega) \cos \theta_{2}}{n_{2} \cos \theta_{2}+n_{3}(\omega) \cos \theta_{3}}$
$L_{z z}(\omega)=\frac{2 n_{1}(\omega) \cos \theta_{1}}{n_{2}(\omega) \cos \theta_{1}+n_{1}(\omega) \cos \theta_{2}} \times \frac{2 n_{2}(\omega) \cos \theta_{2}}{n_{3} \cos \theta_{2}+n_{2}(\omega) \cos \theta_{3}} \times \frac{n_{1}}{n_{3}} \times\left(\frac{n_{3}(\omega)}{n^{\prime}(\omega)}\right)^{2}$
where n^{\prime} is the refractive index of the $\mathrm{SBS} / \mathrm{SiO}_{\mathrm{x}}$ interfacial layer. The value of 1.50 was here used. In eq. S4, q_{i} is the incidence angle in the medium i. For the v_{2} mode, the component of c for an isotropic interface are given by Refs. 3 and 5,
$\chi_{y y z, v 2}=\chi_{x x z, v 2}$
$=\frac{1}{4} N_{s}\left(\beta_{a a c, v 2}+\beta_{b b c, v 2}+2 \beta_{c c c, v 2}\right)\langle\cos \phi\rangle+\frac{1}{4} N_{s}\left(\beta_{a a c, v 2}+\beta_{b b c, v 2}-2 \beta_{c c c, v 2}\right)\left\langle\cos ^{3} \phi\right\rangle$
$\chi_{y z y, v 2}=\chi_{z y y, v 2}=\chi_{x z x, v 2}=\chi_{z x x, v 2}=-\frac{1}{4} N_{s}\left(\beta_{a a c, v 2}+\beta_{b b c, v 2}-2 \beta_{c c c, v 2}\right)\left(\langle\cos \phi\rangle-\left\langle\cos ^{3} \phi\right\rangle\right)$
$\chi_{z z z, v 2}=\frac{1}{2} N_{s}\left(\beta_{a a c, v 2}+\beta_{b b c, v 2}\right)\langle\cos \phi\rangle-\frac{1}{2} N_{s}\left(\beta_{a a c, v 2}+\beta_{b b c, v 2}-2 \beta_{c c c, v 2}\right)\left\langle\cos ^{3} \phi\right\rangle$
Using eqs from S 3 to S 7 , the $\left(I_{\mathrm{ssp}, \mathrm{n2}} / I_{\mathrm{ppp}, \mathrm{n2}}\right)$ value can be obtained. Postulating that $F_{\mathrm{ppp}, \mathrm{xzx}}$ and $F_{\mathrm{ppp}, \mathrm{zx}}$ are comparable with opposite signs and that χ_{xzx} is equal to χ_{zxx} for the v_{2} mode, eq. S3b is simplified to be;
$\chi_{\mathrm{eff}, p p p}^{(2)} \cong F_{p p p, x x z} \chi_{x x z}+F_{p p p, z z z} \chi_{z z z}$
Thus, the $\left(I_{s s p, n 2} / I_{p p p, n 2}\right)$ value is given by,

$$
\begin{equation*}
\frac{I_{s s p, v 2}}{I_{p p p, v 2}}=\left|\frac{\chi_{\text {eff }, s s p, v 2}}{\chi_{\text {eff }, p p p, v 2}}\right|^{2} \cong\left|\frac{F_{s s p, y y z} \chi_{y y z, v 2}}{F_{p p p, x x z} \chi_{x x z, v 2}+F_{p p p, z z z} \chi_{z z z, v 2}}\right|^{2} \tag{S9}
\end{equation*}
$$

Functional groups existed at the interface generally possess an orientation angle with a certain distribution. Here the angle distribution (σ) was defined by Gaussian and applied to eq. S^{8}.

$$
\begin{align*}
& \left\langle\cos ^{n} \phi\right\rangle=\int_{0}^{\pi} \cos ^{n} \phi f(\phi) \sin \phi d \phi \tag{S10}\\
& f(\phi)=N \exp \left\{-\left(\phi-\phi_{0}\right)^{2} / 2 \sigma^{2}\right\} \tag{S11}
\end{align*}
$$

where ϕ_{0} is the averaged tilt angle of phenyl groups.
Fig. S5 shows the calculated $I_{\text {ssp },}, n_{2} / I_{\text {ppp }}, n_{2}$ as a function of ϕ with a tilt angle distribution (σ). Comparing the experimental $I_{\text {ssp,n2 }} / I_{\text {ppp,n2 }}$ value of 1.63 with those shown in Fig. S8, we can claim that f is possibly 55° with $\sigma=0^{\circ}$ or 90° with $\sigma=30^{\circ}$ for the two extreme cases. Hence, the phenyl rings roughly orient themselves parallel to the substrate surface.

Fig. S5. SFG intensity ratio of the v_{2} mode with ssp over ppp polarization combinations as a function of averaged tilt angle (ϕ).

References:

[1] P. Gin, N. S. Jiang, C. Liang, T. Taniguchi, B. Akgun, S. K. Satija, M. K. Endoh, and T. Koga, Revealed Architectures of Adsorbed Polymer Chains at Solid-Polymer Melt Interfaces Phys. Rev. Lett. 2012, 109, 265501.
[2] Z. Chen, Y. R. Shen, and G. A. Somorjai, Studies of Polymer Surfaces by Sum Frequency Generation Vibrational Spectroscopy, Annu. Rev. Phys. Chem. 2002, 53, 437-465.
[3] C. Hirose, N. Akamatsu, and K. Domen, Formulas for the Analysis of the Surface SFG Spectrum and Transformation Coefficients of Cartesian SFG Tensor Components, Appl. Spectrosc. 1992, 46, 1051-1072.
[4] K. S. Gautam, A. D. Schwab, A. Dhinojwala, D. Zhang, S. M. Dougal, and M. S. Yeganeh, Molecular Structure of Polystyrene at Air/Polymer and Solid/Polymer Interfaces, Phys. Rev. Lett. 2000, 85, 3854.
[5] X. Lu, J. N. Mayers, and Z. Chen, Molecular Ordering of Phenyl Groups at the Buried Polystyrene/Metal Interface, Langmuir 2014, 30, 9418-9422.
[6] Y. Tateishi, N. Kai, H. Noguchi, K. Uosaki, T. Nagamura, and K. Tanaka, Local Conformation of Poly(methyl methacrylate) at Nitrogen and Water Interfaces, Polym. Chem. 2010, 1, 303-311.
[7] H. Noguchi, H. Minowa, T. Tominaga, J. P. Gong, Y. Osada, and K. Uosaki, Interfacial Water Structure at Polymer Gel/Quartz Interfaces Investigated by Sum Frequency Generation Spectroscopy, Phys. Chem. Chem. Phys. 2008, 10, 4987-4993.
[8] X. Wei, X. Zhuang, S.-C. Hong, X. Zhuang, T. Goto, and Y. R. Shen, Sum-Frequency Vibrational Spectroscopic Study of a Rubbed Polymer Surface, Phys. Rev. Lett. 1999, 82, 4256.

