Supporting Information ## 3D Printing of PDMS Improves its Mechanical and Cell Adhesion Properties Veli Ozbolat^{1,2,3}, Madhuri Dey^{2,4}, Bugra Ayan^{1,2}, Adomas Povilianskas¹, Melik C. Demirel^{1,2,6} and Ibrahim T. Ozbolat^{1,2,5,6,*} ¹Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA, ²The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA, ³Mechanical Engineering Department, Ceyhan Engineering Faculty, Cukurova University, Adana 01950, Turkey, ⁴Chemistry Department, Penn State University, University Park, PA 16802, USA, ⁵Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA, ⁶Materials Research Institute, Penn State University, University Park, PA 16802, USA, * Corresponding author, Email: ito1@psu.edu 3 Pages total 2 Figures Figure S1: Representative stress-strain curves of dogbone samples. **Figure S2.** Representative microscopic images of tested dogbone samples (Ink 9:1) showing pores in their neck section. Cast samples (top-right image) show considerable number of large pores while printed ones exhibit small pores. Large (but a very few in quantity) void sections were also observed between the fibers of samples printed in transverse direction (middle-right image).