Supporting Information *for*

Copper-Mediated One-Pot Synthesis of 2,2-Difluoro-1,3-Benzoxathioles from

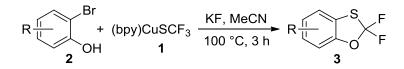
o-Bromophenols and Trifluoromethanethiolate

Mengjia Zhang, Shouxiong Chen, and Zhiqiang Weng*

State Key Laboratory of Photocatalysis on Energy and Environment College of

Chemistry, Fuzhou University, Fuzhou, 350108, China

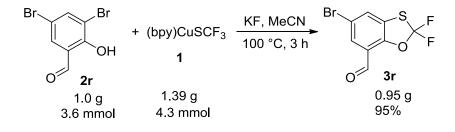
E-mail: <u>zweng@fzu.edu.cn</u>


Table of Contents

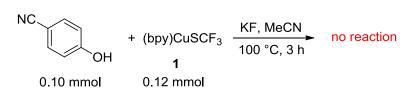
General	procedure	of	copper-mediated	synthesis	of	3		
						5		
Procedure for	or synthesis of 2	2,2-diflu	oro-1,3-benzoxathioles	in a 3.6 mmol s	scale	4		
reaction					•••••	4		
Mechanism exploratory experiment.								
Data for compounds 3								
Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra								
Crystal struc	ture analyses					77		
Refenences.						79		

General information

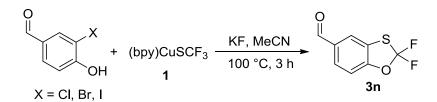
¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded using Bruker AVIII 400 spectrometer. ¹H NMR and ¹³C NMR chemical shifts were reported in parts per million (ppm) downfield from tetramethylsilane and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as the external standard and low field is positive. Coupling constants (J) are reported in Hertz (Hz). The residual solvent peak was used as an internal reference: ¹H NMR (chloroform δ 7.26) and ¹³C NMR (chloroform δ 77.0). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. HRMS were obtained **(1)**,^{1,2} $CsSCF_3$,³ GCT-TOF. (bpy)CuSCF₃ on Waters (8*R*,13*S*,14*S*)-2-bromo-3-hydroxy-13-methyl-7,8,9,11,12,13,15,16-octahydro-6*H*-cycl $(2ai),^4$ openta[a]phenanthren-17(14H)-one and 4-methoxy-2-((trifluoromethyl)thio)phenol $(3f')^5$ were prepared according to the published procedures. Other reagents were received from commercial sources. Solvents were freshly dried and degassed according to the published procedures prior use. Column chromatography purifications were performed by to flash chromatography using Merck silica gel 60.

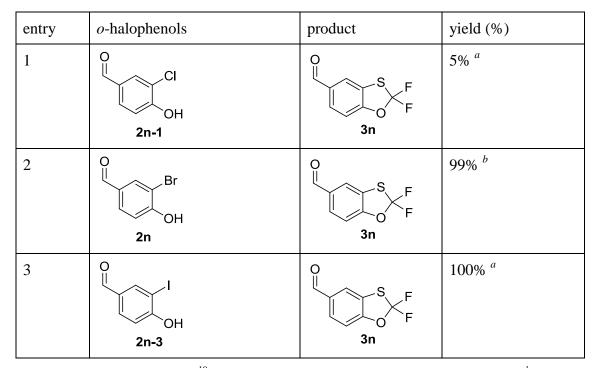

Generalprocedureofcopper-mediatedsynthesisof2,2-difluoro-1,3-benzoxathioles

In a glove box filled with nitrogen, to an oven-dried 25 mL pressure tube equipped with a stir bar were added [(bpy)CuSCF₃] (1) (116 mg, 0.36 mmol, 1.2 equiv), *o*-bromophenol (0.30 mmol, 1.0 equiv), KF (0.30 mmol, 1.0 equiv) and CH₃CN (2.50 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 100 °C for 3 h. The tube was removed from the oil bath and cooled to room temperature. The reaction mixture was diluted with *n*-pentane (20×3 mL), washed with saturated brine (30 mL), and water (20 mL), dried over MgSO₄, and filtered. The residue obtained was purified by column chromatography on silica gel with *n*-pentane/ dichloromethane or *n*-pentane/ diethyl ether.


Procedure	for	synthesis	of
-----------	-----	-----------	----

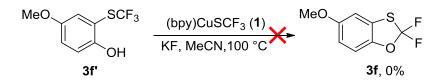
5-bromo-2,2-difluorobenzo[d][1,3]oxathiole-7-carbaldehyde (3r) in a 3.6 mmol scale reaction.


In a glove box filled with nitrogen, to an oven-dried 100 mL pressure tube equipped with a stir bar were added [(bpy)CuSCF₃] (1) (1.39 g, 4.3 mmol, 1.2 equiv), 3,5-dibromo-2-hydroxybenzaldehyde (1.0 g, 3.60 mmol, 1.0 equiv), KF (209 mg, 3.6 mmol, 1.0 equiv), and CH₃CN (25.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 100 °C for 3 h. The tube was removed from the oil bath and cooled to room temperature. The reaction mixture was diluted with *n*-pentane (50 × 3 mL), washed with saturated brine (30 mL), and water (20 mL), dried over MgSO₄, and filtered. The residue obtained was purified by column chromatography on silica gel with *n*-pentane/ diethyl ether to give 0.95 g of product **3r** (95% yield).


Procedure for reaction of 4-hydroxybenzonitrile with [(bpy)CuSCF₃] (1).

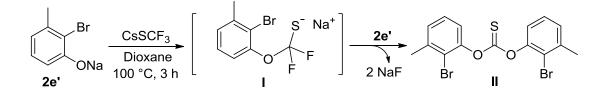
In a glove box filled with nitrogen, to an oven-dried 25 mL pressure tube equipped with a stir bar were added [(bpy)CuSCF₃] (1) (38 mg, 0.12 mmol, 1.2 equiv), 4-hydroxybenzonitrile (12 mg, 0.10 mmol), KF (5.8 mg, 0.10 mmol, 1.0 equiv) and CH₃CN (1.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 100 °C for 3 h. The tube was removed from the oil bath and cooled to room temperature. The reaction mixture was filtered through a layer of Celite. The mixture solution was analyzed by GC/MS and ¹⁹F NMR spectroscopy. No product was detected.

The effects of the halides for the reaction

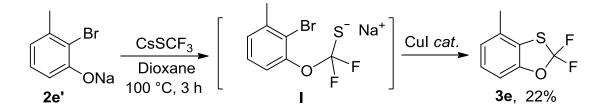


^{*a*} The yield was determined by ¹⁹F NMR spectroscopy with PhOCF₃ as internal standard. ^{*b*} Isolated yield

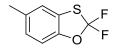
The effects of the halides were investigated with o-halophenol substrates 2n-1, 2n, and 2n-3 (entries 1-3); 3-bromo-4-hydroxybenzaldehyde (**2n**) and 4-hydroxy-3-iodobenzaldehyde (2n-3) were readily converted into 3n in excellent yields (99% and 100%, respectively), while 3-chloro-4-hydroxybenzaldehyde (2n-1) was only difluoromethylenated in 5% yield (¹⁹F NMR).


Mechanism exploratory experiment

Procedurefortheattemptedtransformationof4-methoxy-2-((trifluoromethyl)thio)phenol3f'to2,2-difluoro-1,3-benzoxathioleproduct3f

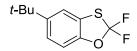

In a glove box filled with nitrogen, to an oven-dried 5 mL pressure tube equipped with a stir bar were added compound 3f' (22.4 mg, 0.10 mmol), [(bpy)CuSCF₃] (1) (38.8 mg, 0.12 mmol, 1.2 equiv), KF (7.1 mg, 0.12 mmol, 1.2 equiv), MeCN (1.0 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 100 °C for 3 h. The tube was removed from the oil bath and cooled to room temperature. The reaction mixture was filtered through a layer of Celite. No 2,2-difluoro-5-methoxybenzo[d][1,3]oxathiole (**3f**) was detected by 19 F NMR spectroscopy.

Procedure for the attempted isolation of *O,O*-bis(2-bromo-3-methylphenyl) carbonothioate II

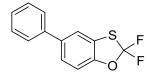


In a glove box filled with nitrogen, to an oven-dried 5 mL pressure tube equipped with a stir bar were added sodium 2-bromo-3-methylphenoxide **2e'** (63 mg, 0.30 mmol), CsSCF₃ (85 mg, 0.36 mmol, 1.2 equiv), and dioxane (2.5 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 100 °C for 3 h. The tube was removed from the oil bath and cooled to room temperature. The reaction mixture was filtered through a layer of Celite. The solvent was removed by rotary evaporation and the resulting product was purified by column chromatography on silica gel with *n*-pentane/diethyl ether to give 35 mg of product *O*,*O*-bis(2-bromo-3-methylphenyl) carbonothioate **II** (56% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (t, *J* = 7.7 Hz, 2H), 7.24 (d, *J* = 7.4 Hz, 2H), 7.17 (d, *J* = 7.9 Hz, 2H), 2.52 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 191.9 (s), 150.8 (s), 140.5 (s), 128.9 (s), 127.8 (s), 121.1 (s), 118.6 (s), 23.1 (s). HR-MS (ESI) m/z: calcd. for C₁₅H₁₂O₂Br₂S: [M+H]⁺: 416.8977; found: 416.8969.

Procedure for the attempted transformation of intermediate I to 2,2-difluoro-1,3-benzoxathiole product 3e under copper-catalyzed conditions

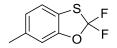


In a glove box filled with nitrogen, to an oven-dried 5 mL pressure tube equipped with a stir bar were added sodium 2-bromo-3-methylphenoxide **2e'** (63 mg, 0.30 mmol), CsSCF₃ (85 mg, 0.36 mmol, 1.2 equiv), and dioxane (2.5 mL). The tube was sealed with Teflon screw cap and the solution was stirred at 100 °C for 3 h. The reaction mixture was cooled to room temperature, and was added CuI (5.7 mg, 0.01 mmol, 0.10 equiv), phen (11.8 mg, 0.06 mol, 0.20 equiv), The reaction mixture was further stirred at 100 °C for 3 h. The tube was removed from the oil bath and cooled to room temperature, and then 10μ L (trifluoromethoxy)benzene was added as an internal standard. The resulting mixture was filtered through a layer of Celite. The filtrate was analyzed by ¹⁹F NMR and GC-MS. The yield of the 2,2-difluoro-4-methylbenzo[*d*][1,3]oxathiole **3e** was calculated to be 22%.


2,2-Difluoro-5-methylbenzo[*d*][1,3]oxathiole (**3a**)

Following the general procedure and workup, **3a** was isolated as a pale yellow oil in 78% yield (44 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.06 (s, 1H), 7.03 – 6.92 (m, 2H), 2.32 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -30.8 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 147.5 (s), 138.9 (t, *J* = 284.5 Hz), 134.2 (s), 127.2 (s), 122.1 (s), 121.9 (s), 110.7 (s), 20.9 (s). IR (KBr): v 2926, 1763, 1598, 1482, 1243, 1149, 1131, 1099, 1072, 1033, 902, 805, 716, 649, 554, 503 cm⁻¹. GC-MS m/z 188 (M⁺). HR-MS (EI) m/z: calcd. for C₈H₆OF₂S: 188.0107; found: 188.0102.

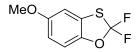
5-(*tert*-Butyl)-2,2-difluorobenzo[*d*][1,3]oxathiole (**3b**)


Following the general procedure and workup, **3b** was isolated as a yellow oil in 75% yield (52 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (s, 1H), 7.19 (d, *J* = 8.6 Hz, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 1.30 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -30.8 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 147.9 (s), 147.3 (s), 139.0 (t, *J* = 285.0 Hz), 123.7 (s), 121.9 (s), 118.6 (s), 110.5 (s), 34.7 (s), 31.4 (s). IR (KBr): v 2964, 1597, 1489, 1364, 1259, 1240, 1149, 1120, 1078, 1033, 907, 871, 814, 717, 605, 438 cm⁻¹. GC-MS m/z 230 (M⁺). HR-MS (EI) m/z: calcd. for C₁₁H₁₂OF₂S: 230.0577; found: 230.0585.

2,2-Difluoro-5-phenylbenzo[*d*][1,3]oxathiole (**3c**)

Following the general procedure and workup, **3c** was isolated as a yellow oil in 77% yield (58 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.52 (m, 2H), 7.51 – 7.44 (m,

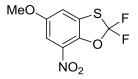
3H), 7.43 – 7.38 (m, 2H), 7.16 (d, J = 8.4 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -30.5 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 148.9 (t, J = 1.3 Hz), 139.8 (s), 139.0 (t, J = 285.6 Hz), 138.3 (s), 129.0 (s), 127.7 (s), 127.0 (s), 125.7 (s), 123.0 (s), 120.3 (t, J = 1.4 Hz), 111.3 (s). IR (KBr): v 3031, 2919, 1598, 1467, 1400, 1237, 1145, 1106, 1069, 1031, 904, 818, 757, 714, 696, 677, 592, 526 cm⁻¹. GC-MS m/z 251 (M⁺). HR-MS (EI) m/z: calcd. for C₁₃H₈OF₂S: 250.0264; found: 250.0271.


2,2-Difluoro-6-methylbenzo[*d*][1,3]oxathiole (**3d**)

Following the general procedure and workup, **3d** was obtained as a yellow oil in 59% yield (33 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 7.9 Hz, 1H), 6.99 – 6.88 (m, 2H), 2.38 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -30.9 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 149.5 (t, *J* = 1.3 Hz), 139.1 (t, *J* = 284.9 Hz), 137.2 (s), 125.1 (s), 121.2 (t, *J* = 1.3 Hz), 118.8 (s), 111.9 (s), 21.2 (s). IR (KBr): v 2919, 2849, 1463, 1157, 1109, 905, 731, 650, 422 cm⁻¹. GC-MS m/z 188 (M⁺). HR-MS (EI) m/z: calcd. for C₈H₆OF₂S: 188.0107; found: 188.0110.

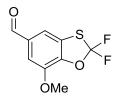
2,2-Difluoro-4-methylbenzo[*d*][1,3]oxathiole (**3e**)

Following the general procedure and workup, **3e** was obtained as a yellow oil in 61% yield (34 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.13 (t, *J* = 7.9 Hz, 1H), 6.99 – 6.90 (m, 2H), 2.30 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -30.1 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 149.3 (t, *J* = 1.2 Hz), 138.7 (t, *J* = 284.6 Hz), 131.8 (t, *J* = 1.1 Hz), 126.5 (s), 125.0 (s), 122.3 (s), 108.4 (s), 20.4 (s). IR (KBr): v 2925, 2854, 2015, 1611, 1581, 1459, 1263, 1250, 1153, 1126, 1077, 1015, 907, 766, 704, 475, 440 cm⁻¹; GC-MS m/z 188 (M⁺). HR-MS (EI) m/z: calcd. for C₈H₆OF₂S: 188.0107; found: 188.0105.

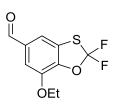

2,2-Difluoro-5-methoxybenzo[d][1,3]oxathiole (3f)

Following the general procedure and workup, **3f** was obtained as a yellow oil in 73% yield (45 mg). ¹H NMR (400 MHz, CDCl₃) δ 6.99 (d, J = 8.9 Hz, 1H), 6.83 – 6.78 (m, 1H), 6.72 (dd, J = 8.9, 1.4 Hz, 1H), 3.80 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -30.8 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 156.6 (s), 143.8 (s), 138.9 (t, J = 284.9 Hz), 123.1 (s), 111.9 (s), 111.4 (s), 107.4 (s), 55.9 (s). IR (KBr): v 2939, 2838, 1760, 1593, 1482, 1442, 1219, 1151, 1103, 1070, 1035, 901, 830, 798, 717, 634, 580 cm⁻¹. GC-MS m/z 204 (M⁺). HR-MS (EI) m/z: calcd. for C₈H₆O₂F₂S: 204.0057; found: 204.0054.

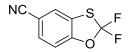
2,2-Difluoro-7-methoxybenzo[*d*][1,3]oxathiole (**3g**)


Following the general procedure and workup, **3g** was obtained as a yellow oil in 99% yield (61 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.05 (t, *J* = 8.1 Hz, 1H), 6.85 – 6.74 (m, 2H), 3.90 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -30.0 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 144.9 (s), 139.1 (t, *J* = 286.2 Hz), 138.1 (s), 124.8 (s), 123.2 (s), 113.5 (s), 110.3 (s), 56.3 (s). IR (KBr): v 2942, 2842, 1609, 1487, 1322, 1282, 1240, 1140, 1083, 1030, 874, 802, 756, 708, 644, 572, 507 cm⁻¹. GC-MS m/z 204 (M⁺). HR-MS (EI): m/z: calcd. for C₈H₆O₂F₂S: 204.0057; found: 204.0056.

2,2-Difluoro-5-methoxy-7-nitrobenzo[*d*][1,3]oxathiole (**3h**)


Following the general procedure and workup, 3h was obtained as a pale yellow solid

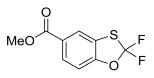
in 99% yield (74 mg). Mp: 103-105 °C. ¹HNMR (400 MHz, CDCl₃) δ 7.46 (d, J = 2.6 Hz, 1H), 7.12 (d, J = 2.6 Hz, 1H), 3.89 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -30.0 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 155.9 (s), 138.9 (t, J = 289.1 Hz), 137.1 (t, J = 2.0 Hz), 133.7 (s), 127.2 (s), 114.4 (t, J = 1.6 Hz), 106.3 (s), 56.4 (s). IR (KBr): v 3109, 2922, 2848, 1618, 1534, 1480, 1441, 1349, 1291, 1242, 1209, 1129, 1106, 1067, 1037, 928, 862, 763 cm⁻¹. GC-MS m/z 249 (M⁺). HR-MS (EI) m/z: calcd. for C₈H₅NO₄F₂S: 248.9907; found: 248.9903.


2,2-difluoro-7-methoxybenzo[*d*][1,3]oxathiole-5-carbaldehyde (3i)

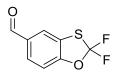
Following the general procedure and workup, **3i** was obtained as a pale yellow solid in 99% yield (69 mg). Mp: 83-85 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.87 (s, 1H), 7.40 (s, 1H), 7.34 (s, 1H), 4.00 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -28.9 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 189.7 (s), 145.4 (s), 142.1 (t, *J* = 1.0 Hz), 139.1 (t, *J* = 288.8 Hz), 133.8 (s), 124.2 (s), 116.6 (t, *J* = 1.3 Hz), 110.2 (s), 56.5 (s). IR(KBr): v 3095, 2924, 2866, 1697, 1606, 1486, 1302, 1260, 1082, 1032, 842, 722, 686, 637, 574, 520 cm⁻¹. GC-MS m/z 232 (M⁺). HR-MS (EI) m/z: calcd. for C₉H₆O₃F₂S: 232.0006; found: 232.0012.

7-Ethoxy-2,2-difluorobenzo[*d*][1,3]oxathiole-5-carbaldehyde (**3j**) Following the general procedure and workup, **3j** was obtained as a pale yellow solid in 99% yield (73 mg). Mp: 108-110 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 7.38 (s, 1H), 7.33 (s, 1H), 4.23 (q, *J* = 7.0 Hz, 2H), 1.51 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR

 $(376 \text{ MHz}, \text{CDCl}_3) \delta$ -28.9 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 189.7 (s), 144.7 (s), 142.3 (s), 139.1 (t, *J* = 288.5 Hz), 133.8 (s), 124.3 (s), 116.3 (t, *J* = 1.3 Hz), 111.2 (s), 65.3 (s), 14.6 (s). IR (KBr): v 2986, 1694, 1606, 1476, 1434, 1387, 1298, 1235, 1156, 1122, 1070, 915, 846, 825, 718, 650, 580, 546 cm⁻¹. GC-MS m/z 246 (M⁺). HR-MS (EI) m/z: calcd. for C₁₀H₈O₃F₂S: 246.0162; found: 246.0160.

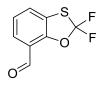

2,2-Difluorobenzo[d][1,3]oxathiole-5-carbonitrile (3k)

Following the general procedure and workup, **3k** was obtained as a pale yellow solid in 81% yield (48 mg). Mp: 108-110 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.49 (m, 2H), 7.18 (d, *J* = 8.3 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -29.8 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 151.9 (s), 138.6 (t, *J* = 288.7 Hz), 131.5 (s), 125.3 (s), 124.5 (s), 117.5 (s), 111.9 (s), 108.8 (s). IR (KBr): v 3110, 3045, 2234, 1884, 1588, 1473, 1402, 1254, 1118, 1096, 1073, 1034, 906, 885, 815, 731, 592, 479 cm⁻¹. GC-MS m/z 199 (M⁺). HR-MS (EI) m/z: calcd. for C₈H₃NOF₂S: 198.9903; found: 198.9906.



2,2-Difluoro-7-nitrobenzo[*d*][1,3]oxathiole (**3**I)

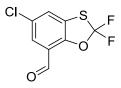
Following the general procedure and workup, **31** was obtained as a pale yellow solid in 99% yield (65 mg). Mp: 137-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 9.3 Hz, 1H), 7.58 (d, *J* = 8.8 Hz, 1H), 7.32 (t, *J* = 8.1 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -29.3 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 142.5 (t, *J* = 2.0 Hz), 139.1 (t, *J* = 289.7 Hz), 134.0 (s), 127.1 (t, *J* = 1.6 Hz), 126.4 (s), 124.4 (s), 122.7 (s). IR (KBr): v 1604, 1533, 1460, 1347, 1319, 1250, 1136, 1056, 889, 796, 759, 728, 649, 603, 577, 455 cm⁻¹. GC-MS m/z 219 (M⁺). HR-MS (EI) m/z: calcd. for C₇H₃NO₃F₂S: 218.9802; found: 218.9811.



Methyl 2,2-difluorobenzo[*d*][1,3]oxathiole-5-carboxylate (**3m**) Following the general procedure and workup, **3m** was obtained as a pale yellow solid in 99 % yield (69 mg). Mp: 79-81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.91 (d, *J* = 8.5 Hz, 1H), 7.11 (d, *J* = 8.5 Hz, 1H), 3.91 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -30.0 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 165.5 (s), 152.3 (t, *J* = 1.2 Hz), 138.9 (t, *J* = 287.1 Hz), 129.0 (s), 126.9 (s), 123.3 (t, *J* = 1.5 Hz), 123.0 (s), 110.9 (s), 52.4 (s). IR (KBr): v 2955, 1718, 1595, 1282, 1256, 1139, 1078, 1031, 974, 760, 737, 714, 702, 622, 454 cm⁻¹. GC-MS m/z 232 (M⁺). HR-MS (EI) m/z: calcd. for C₉H₆O₃F₂S: 232.0006; found: 232.0003.

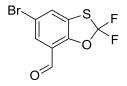
2,2-Difluorobenzo[*d*][1,3]oxathiole-5-carbaldehyde (**3n**)

Following the general procedure and workup, **3n** was obtained as a pale yellow solid in 99% yield (60 mg). Mp: 56-58 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 7.82 (s, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -29.9 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 189.6 (s), 153.3 (s), 138.8 (t, J = 287.9 Hz), 133.4 (s), 130.1 (s), 124.3 (s), 122.4 (s), 111.5 (s). IR (KBr): v 2849, 1693, 1586, 1477, 1421, 1389, 1249, 1142, 1081, 1029, 904, 818, 736, 693, 616, 556 cm⁻¹. GC-MS m/z 202 (M⁺). HR-MS (EI) m/z: calcd. for C₈H₄O₂F₂S: 201.9900; found: 201.9892.

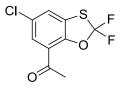

2,2-Difluorobenzo[*d*][1,3]oxathiole-7-carbaldehyde (**3**0)

Following the general procedure and workup, **30** was obtained as a pale yellow solid in 99% yield (60 mg). Mp: 78-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.31 (s, 1H), 7.73 (d, *J* = 7.8 Hz, 1H), 7.51 (d, *J* = 7.8 Hz, 1H), 7.28 (t, *J* = 7.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -29.8 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 186.6 (s), 150.3 (t, *J* = 1.4 Hz), 139.5 (t, *J* = 288.3 Hz), 127.0 (t, *J* = 1.5 Hz), 125.5 (s), 124.6 (s), 124.2 (t, *J* = 0.7 Hz), 120.7 (s). IR (KBr): v 3093, 2922, 2856, 1688, 1607, 1571, 1442, 1393, 1257, 1126, 1079, 1057, 978, 878, 782, 735, 716, 504 cm⁻¹. GC-MS m/z 202 (M⁺). HR-MS (EI) m/z: calcd. for C₈H₄O₂F₂S: 201.9900; found: 201.9896.

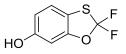
2,2-Difluorobenzo[*d*][1,3]oxathiole-4-carbaldehyde (**3p**)


Following the general procedure and workup, **3p** was obtained as a pale yellow solid in 64% yield (39 mg). Mp: 66-67 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.09 (s, 1H), 7.66 (d, *J* = 7.5 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 1H), 7.33 (d, *J* = 7.5 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -31.4 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 190.1 (s), 150.7 (t, *J* = 1.4 Hz), 139.9 (t, *J* = 287.3 Hz), 129.8 (s), 128.1 (s), 126.8 (s), 123.3 (s), 115.8 (s). IR (KBr): v 2859, 1680, 1574, 1443, 1388, 1331, 1261, 1225, 1129, 1082, 1010, 904, 775, 727, 675, 649, 536 cm⁻¹. GC-MS m/z 202 (M⁺). HR-MS (EI) m/z calcd. for C₈H₄O₂F₂S: 201.9900; found: 201.9905.

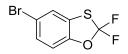
5-Chloro-2,2-difluorobenzo[*d*][1,3]oxathiole-7-carbaldehyde (**3q**)


Following the general procedure and workup, **3q** was obtained as a pale yellow solid in 99% yield (70 mg). Mp: 95-97 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.23 (s, 1H), 7.66 (s, 1H), 7.45 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -29.7 (s, 2F). ¹³C NMR (101

MHz, CDCl₃) δ 185.2 (s), 149.0 (s), 139.4 (t, J = 289.9 Hz), 130.5 (s), 126.6 (s), 126.0 (s), 125.0 (s), 121.0 (s). IR (KBr): v 1698, 1547, 1448, 1393, 1311, 1216, 1161, 1067, 904, 727, 649, 620, 520, 463 cm⁻¹. GC-MS m/z 236 (M⁺). HR-MS (EI) m/z calcd. for C₈H₃O₂F₂SCl: 235.9510; found: 235.9520.


5-Bromo-2,2-difluorobenzo[*d*][1,3]oxathiole-7-carbaldehyde (**3r**)

Following the general procedure and workup, **3r** was obtained as a pale yellow solid in 99% yield (84 mg). Mp: 98-101 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.23 (s, 1H), 7.83 (s, 1H), 7.61 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -29.6 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 185.2 (s), 149.4 (t, *J* = 1.4 Hz), 139.3 (t, *J* = 290.0 Hz), 129.3 (t, *J* = 1.6 Hz), 128.0 (s), 126.3 (s), 121.3 (s), 117.3 (s). IR (KBr): v 2986, 1694, 1606, 1476, 1387, 1298, 1235, 1156, 1122, 1070, 915, 846, 825, 718, 650, 580, 546 cm⁻¹. GC-MS m/z 281 (M⁺). HR-MS (EI): m/z calcd. for C₈H₃O₂F₂SBr: 279.9005; found: 279.9009.

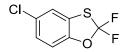

1-(5-Chloro-2,2-difluorobenzo[*d*][1,3]oxathiol-7-yl)ethanone (**3s**)

Following the general procedure and workup, **3s** was obtained as a pale yellow solid in 99% yield (75 mg). Mp: 126-128 °C. ¹HNMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 2.2 Hz, 1H), 7.40 (d, *J* = 2.1 Hz, 1H), 2.69 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -29.9 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 193.4 (s), 146.6 (t, *J* = 1.4 Hz), 138.6 (t, *J* = 288.3 Hz), 130.1 (s), 127.0 (s), 125.7 (t, *J* = 0.8 Hz), 125.3 (t, *J* = 1.6 Hz), 123.0 (s), 30.7 (s). IR (KBr): v 3080, 1686, 1593, 1569, 1430, 1364, 1313, 1253, 1230, 1157, 1091, 1057, 977, 881, 785, 716, 599, 470 cm⁻¹. GC-MS m/z 250 (M⁺). HR-MS (EI) m/z calcd. For: C₉H₅O₂F₂SCI: 249.9667; found: 249.9664.

2,2-Difluorobenzo[d][1,3]oxathiol-6-ol (3t)

Following the general procedure and workup, **3t** was obtained as a pale yellow solid in 72% yield (41 mg). Mp: 147-149 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 1H), 7.06 – 6.98 (m, 2H), -O*H* was not detected. ¹⁹F NMR (376 MHz, CDCl₃) δ -29.6 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 151.8 (s), 149.6 (s), 139.2 (t, *J* = 287.1 Hz), 121.9 (s), 121.1 (s), 118.0 (s), 106.2 (s). IR (KBr): v 2928, 1594, 1474, 1280, 1158, 1125, 1100, 1030, 902, 722, 649, 427 cm⁻¹. GC-MS: m/z 190 (M⁺). HR-MS (EI): m/z calcd. for C₇H₄O₂F₂S: 189.9900; found: 189.9899.

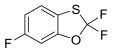
5-Bromo-2,2-difluorobenzo[*d*][1,3]oxathiole (**3u**)


Following the general procedure and workup, **3u** was obtained as a pale yellow oil in 99% yield (75 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 1.7 Hz, 1H), 7.33 (dd, *J* = 8.6, 1.5 Hz, 1H), 6.97 (d, *J* = 8.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -30.2 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 148.4 (s), 138.7 (t, *J* = 286.8 Hz), 129.6 (s), 124.4 (s), 124.3 (s), 116.5 (s), 112.5 (s). IR (KBr): v 2921, 1773, 1557, 1462, 1393, 1239, 1148, 1111, 1072, 1056, 1031, 859, 804, 749, 711, 617, 550, 527, 452 cm⁻¹. GC-MS m/z 252 (M⁺). HR-MS (EI) m/z calcd. for: C₇H₃OF₂SBr: 251.9056; found: 251.9065.

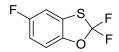
7-Bromo-2,2-difluorobenzo[*d*][1,3]oxathiole (**3v**)

Following the general procedure and workup, 3v was obtained as a pale yellow oil in 90% yield (68 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.1 Hz, 1H), 7.19 (d, J = 7.8 Hz, 1H), 7.02 (t, J = 8.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -30.0 (s, 2F).

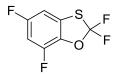
¹³C NMR (101 MHz, CDCl₃) δ 146.9 (s), 137.8 (t, J = 287.6 Hz), 132.1 (s), 130.1 (s), 125.3 (s), 120.5 (s), 104.2 (s). IR (KBr): v 2919, 1591, 1459, 1436, 1307, 1244, 1139, 1124, 1073, 1039, 877, 781, 759, 701, 649, 596, 511 cm⁻¹. GC-MS m/z 252 (M⁺). HR-MS (EI) m/z calcd. for C₇H₃OF₂SBr: 251.9056; found: 251.9064.


5-Chloro-2,2-difluorobenzo[*d*][1,3]oxathiole (**3**w)

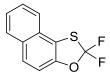
Following the general procedure and workup, **3w** was obtained as a pale yellow oil in 75% yield (47 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (s, 1H), 7.18 (d, *J* = 8.6 Hz, 1H), 7.02 (d, *J* = 8.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -30.2 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 148.0 (t, *J* = 1.3 Hz), 138.8 (t, *J* = 286.8 Hz), 129.6 (s), 126.7 (s), 124.0 (s), 121.5 (s), 112.0 (s). IR (KBr): v 2926, 1594, 1465, 1242, 1157, 1124, 1073, 1034, 903, 808, 771, 715, 650, 555, 466 cm⁻¹. GC-MS m/z 208 (M⁺). HR-MS (EI): m/z calcd. for C₇H₃OF₂SCI: 207.9561; found: 207.9568.


2,2,7-Trifluorobenzo[*d*][1,3]oxathiole (**3x**)

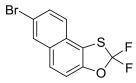
Following the general procedure and workup, **3x** was obtained as a pale yellow oil in 91% yield (52 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.07 (m, 1H), 7.06 – 6.99 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -29.9 (s, 2F), -133.4 (dd, *J* = 9.5, 4.5 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 148.5 (s), 146.0 (s), 139.1 (t, *J* = 288.3 Hz), 136.8 (d, *J* = 12.5 Hz), 124.9 (d, *J* = 6.4 Hz), 116.9 (d, *J* = 3.9 Hz), 114.3 (d, *J* = 17.1 Hz). IR (KBr): v 2926, 1618, 1483, 1454, 1269, 1145, 1072, 908, 764, 714, 701, 650, 514 cm⁻¹. GC-MS m/z 192 (M⁺). HR-MS (EI): m/z calcd. for: C₇H₃OF₃S: 191.9857; found: 191.9852.


2,2,6-Trifluorobenzo[*d*][1,3]oxathiole (**3y**)

Following the general procedure and workup, **3y** was obtained as a pale yellow oil in 83% yield (48 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.12 (m, 1H), 6.96 – 6.83 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -30.2 (s, 2F), -113.5 (td, *J* = 8.5, 5.3 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 161.6 (d, *J* = 246.0 Hz), 149.6 (d, *J* = 12.8 Hz), 139.4 (t, *J* = 286.8 Hz), 122.0 (d, *J* = 9.4 Hz), 117.4 (d, *J* = 3.5 Hz), 111.6 (d, *J* = 23.3 Hz), 100.4 (d, *J* = 28.3 Hz). IR (KBr): v 2924, 1614, 1600, 1479, 1434, 1280, 1162, 1143, 1126, 1101, 1080, 1036, 967, 907, 846, 801, 733, 699, 597, 491 cm⁻¹. GC-MS m/z 192 (M⁺). HR-MS (EI): m/z calcd. for C₇H₃OF₃S: 191.9857; found: 191.9863.


2,2,5-Trifluorobenzo[*d*][1,3]oxathiole (**3**z)

Following the general procedure and workup, **3z** was obtained as a pale yellow oil in 56% yield (32 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.08 – 6.96 (m, 2H), 6.91 (td, *J* = 8.7, 2.7 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -30.1 (s, 2F), -117.5 (td, *J* = 8.0, 4.3 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 159.1 (dt, *J* = 243.8, 1.0 Hz), 145.6 (dd, *J* = 4.0, 1.5 Hz), 138.9 (t, *J* = 286.1 Hz), 123.6 (d, *J* = 10.5 Hz), 113.3 (d, *J* = 24.5 Hz), 111.8 (d, *J* = 8.8 Hz), 109.2 (dt, *J* = 28.4, 1.6 Hz). IR (KBr): v 2922, 2852, 1613, 1597, 1476, 1311, 1248, 1157, 1090, 1031, 914, 836, 806, 717, 599, 504 cm⁻¹. GC-MS m/z 192 (M⁺). HR-MS (EI): m/z calcd. for C₇H₃OF₃S: 191.9857; found: 191.9858.

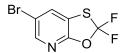

2,2,5,7-Tetrafluorobenzo[*d*][1,3]oxathiole (**3aa**)

Following the general procedure and workup, **3aa** was obtained as a pale yellow oil in 92% yield (58 mg). ¹H NMR (400 MHz, CDCl₃) δ 6.90 – 6.68 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -29.7 (s, 2F), -113.9 (dd, *J* = 7.9, 2.5 Hz, 1F), -129.2 (dd, *J* = 9.9, 2.5 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 158.6 (dd, *J* = 247.0, 9.5 Hz), 146.7 (dd, *J* = 254.2, 12.8 Hz), 139.0 (t, *J* = 289.1 Hz), 133.4 (d, *J* = 13.2 Hz), 126.2 – 124.0 (m), 104.6 (dd, *J* = 28.8, 3.4 Hz), 102.8 (dd, *J* = 27.7, 20.9 Hz). IR (KBr): v 2920, 1630, 1607, 1485, 1439, 1302, 1231, 1161, 1117, 1073, 992, 903, 842, 725, 695, 656, 600, 536, 504, 441 cm⁻¹. GC-MS m/z 210 (M⁺). HR-MS (EI) m/z calcd. for C₇H₂OF₄S: 209.9762; found: 209.9761.

2,2-Difluoronaphtho[1,2-*d*][1,3]oxathiole (**3ab**)

Following the general procedure and workup, **3ab** was obtained as a pale yellow oil in 59% yield (40 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.2 Hz, 1H), 7.74 (d, J = 8.9 Hz, 1H), 7.62 – 7.54 (m, 1H), 7.53 – 7.44 (m, 2H), 7.32 (d, J = 8.9 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -28.7 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 146.2 (t, J = 1.1 Hz), 139.7 (t, J = 286.2 Hz), 130.6 (s), 129.0 (s), 127.6 (s), 127.5 (s), 127.2 (t, J = 1.0 Hz), 125.4 (s), 123.9 (s), 116.3 (s), 111.6 (s). IR (KBr): v 3061, 2925, 1628, 1596, 1514, 1459, 1369, 1344, 1251, 1159, 1142, 1085, 1024, 969, 903, 800, 762, 738, 679, 524, 493 cm⁻¹. GC-MS m/z 224 (M⁺). HR-MS (EI) m/z calcd. for C₁₁H₆OF₂S: 224.0107; found: 224.0109.

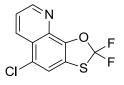
7-Bromo-2,2-difluoronaphtho[1,2-*d*][1,3]oxathiole (**3ac**)


Following the general procedure and workup, **3ac** was obtained as a pale yellow solid in 85% yield (77 mg). Mp: 117-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H),

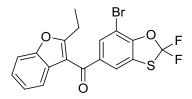
7.72 – 7.49 (m, 2H), 7.34 – 7.24 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -28.4 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 146.4 (t, *J* = 1.1 Hz), 139.5 (t, *J* = 287.1 Hz), 131.6 (s), 130.9 (s), 130.8 (s), 126.5 (s), 125.6 (t, *J* = 1.0 Hz), 125.4 (s), 119.2 (s), 116.3 7(s), 112.6 (s). IR (KBr): v 3071, 2924, 2863, 1679, 1570, 1444, 1392, 1309, 1216, 1161, 1066, 905, 724, 649, 619, 574 cm⁻¹. GC-MS m/z 301 (M⁺). HR-MS (EI) m/z calcd. for C₁₁H₅OF₂SBr: 301.9213; found: 301.9217.

2,2-Difluoro-[1,3]oxathiolo[5,4-*b*]pyridine (**3ad**)

Following the general procedure and workup, **3ad** was obtained as a pale yellow oil in 79% yield (41 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 5.0 Hz, 1H), 7.64 (d, *J* = 7.7 Hz, 1H), 7.13 (dd, *J* = 7.6, 5.1 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -31.1 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 156.6 (t, *J* = 2.6 Hz), 144.9 (s), 135.2 (t, *J* = 286.3 Hz), 130.6 (t, *J* = 1.6 Hz), 120.6 (s), 117.7 (s). IR (KBr): v 2917, 2849, 1590, 1571, 1411, 1252, 1136, 1101, 1017, 902, 785, 741, 727, 701, 642, 587, 501 cm⁻¹. GC-MS: m/z 175 (M⁺). HR-MS (EI) m/z calcd. for C₆H₃NOF₂S: 174.9903; found: 174.9904.

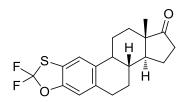

6-Bromo-2,2-difluoro-[1,3]oxathiolo[5,4-*b*]pyridine (**3ae**)

Following the general procedure and workup, **3ae** was obtained as a pale yellow oil in 98% yield (75 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 2.0 Hz, 1H), 7.77 – 7.74 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -30.5 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 155.5 (t, J = 2.8 Hz), 145.5 (s), 135.1 (t, J = 288.2 Hz), 132.9 (t, J = 1.7 Hz), 119.6 (s), 115.6 (s). IR (KBr): v 2932, 1736, 1604, 1469, 1454, 1431, 1406, 1374, 1262, 1207, 1147, 1081, 1039, 905, 798, 730, 648, 584, 487 cm⁻¹. GC-MS m/z 254 (M⁺). HR-MS (EI) m/z calcd. for C₆H₂NOF₂SBr: 252.9009; found: 252.9012.


2,2-Difluoro-[1,3]oxathiolo[4,5-*b*]pyridine (**3af**)

Following the general procedure and workup, **3af** was obtained as a pale yellow oil in 62% yield (33 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 4.6 Hz, 1H), 7.30 (d, *J* = 8.2 Hz, 1H), 7.14 (dd, *J* = 8.1, 5.0 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -28.9 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 147.0 (s), 145.2 (t, *J* = 1.0 Hz), 144.9 (s), 136.9 (t, *J* = 287.1 Hz), 121.4 (s), 117.0 (s). IR (KBr): v 2918, 1598, 1410, 1297, 1271, 1200, 1135, 1110, 1076, 1041, 788, 727, 699, 547, 495 cm⁻¹. GC-MS m/z 175 (M⁺). HR-MS (EI) m/z calcd. for C₆H₃NOF₂S: 174.9903; found: 174.9909.

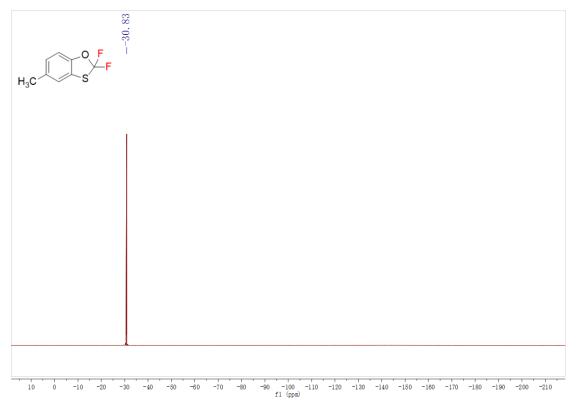
5-Chloro-2,2-difluoro-[1,3]oxathiolo[4,5-*h*]quinoline (**3ag**)


Following the general procedure and workup, **3ag** was obtained as a pale yellow solid in 85% yield (63 mg). Mp: 111-113 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.01 (d, *J* = 4.0 Hz, 1H), 8.55 (d, *J* = 8.6 Hz, 1H), 7.60 – 7.50 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -27.6 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 152.1 (s), 142.6 (t, *J* = 1.1 Hz), 139.4 (t, *J* = 289.2 Hz), 135.3 (s), 133.5 (s), 127.1 (s), 125.1 (s), 122.1 (s), 121.0 (s), 119.2 (t, *J* = 1.4 Hz). IR (KBr): v 2980, 1615, 1494, 1455, 1349, 1158, 1077, 903, 722, 648, 502 cm⁻¹. GC-MS m/z 258 (M⁺). HR-MS (EI) m/z calcd. for C₁₀H₄NOF₂SCI: 258.9670; found: 258.9674.

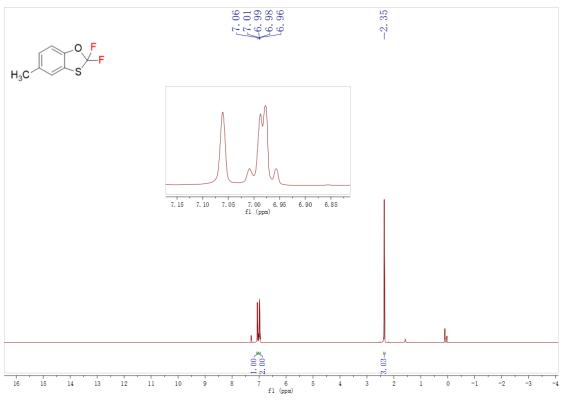
(7-Bromo-2,2-difluorobenzo[d][1,3]oxathiol-5-yl)(2-ethylbenzofuran-3-yl)methanone

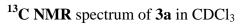
(**3ah**)

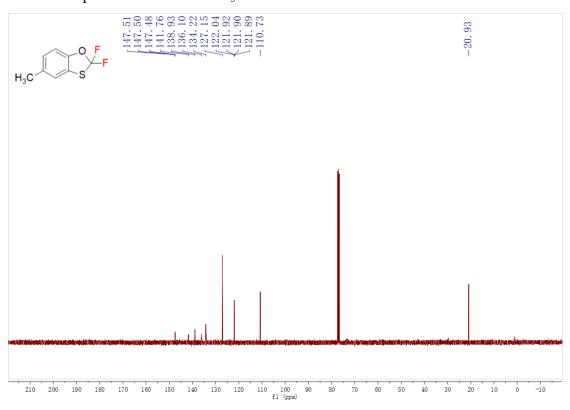
Following the general procedure and workup, **3ah** was obtained as a pale yellow solid in 99% yield (121 mg). Mp: 132-134 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.73 (s, 1H), 7.53 (d, *J* = 8.2 Hz, 1H), 7.39 (d, *J* = 7.7 Hz, 1H), 7.34 (t, *J* = 7.7 Hz, 1H), 7.28 (d, *J* = 7.7 Hz, 1H), 2.96 (q, *J* = 7.5 Hz, 2H), 1.40 (t, *J* = 7.5 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -29.2 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 188.1 (s), 167.0 (s), 153.7 (s), 149.6 (t, *J* = 1.5 Hz), 137.9 (t, *J* = 289.7 Hz), 136.9 (s), 131.9 (s), 126.4 (s), 124.8 (s), 124.0 (s), 123.9 (s), 121.5 (t, *J* = 1.4 Hz), 121.0 (s), 115.1 (s), 111.3 (s), 104.1 (s), 22.0 (s), 12.3 (s). IR (KBr): v 2978, 1648, 1573, 1452, 1281, 1257, 1150, 1090, 1043, 907, 871, 749, 731, 709, 649, 557 cm⁻¹. HR-MS (EI) m/z calcd. for C₁₈H₁₁O₃F₂SBr: 423.9580; found: 423.9585.

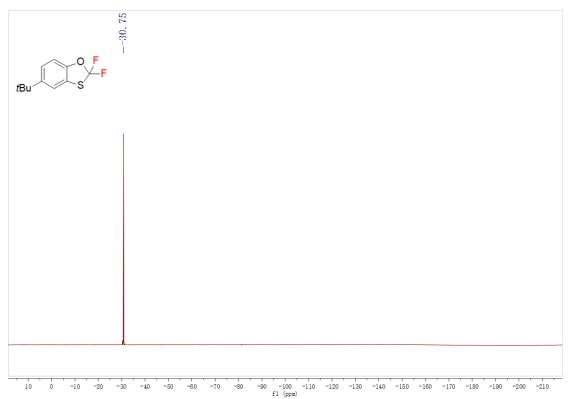


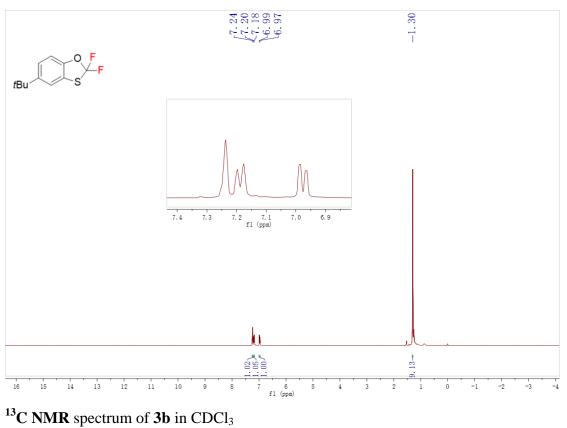
(3a*S*,3b*R*,12a*S*)-8,8-difluoro-12a-methyl-2,3,3a,3b,4,5,10b,11,12,12a-decahydro-1*H*-c yclopenta[7,8]phenanthro[3,2-*d*][1,3]oxathiol-1-one (**3ai**)

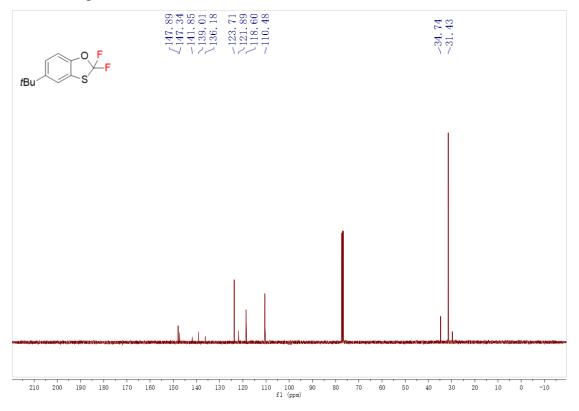

Following the general procedure and workup, **3ai** was obtained as a pale yellow oil in 50% yield (53 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.16 (d, *J* = 8.2 Hz, 1H), 6.90 (d, *J* = 8.5 Hz, 1H), 2.78 – 1.91 (m, 9H), 1.74 – 1.40 (m, 6H), 0.93 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -29.9 (d, *J* = 46.1 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 147.3 (t, *J* = 1.1 Hz), 139.1 (t, *J* = 285.5 Hz), 136.0 (s), 130.3 (t, *J* = 1.1 Hz), 123.6 (s), 121.9 (s), 108.2 (s), 50.3 (s), 47.8 (s), 44.4 (s), 43.9 (s), 37.9 (s), 35.8 (s), 31.5 (s), 28.6 (s), 26.0 (s), 25.9 (s), 21.6 (s), 13.8 (s). IR (KBr): v 3045, 1580, 1560, 1431, 1374, 1255, 1232, 1153, 1118, 1088, 1036, 898, 771, 732, 624, 555, 458 cm⁻¹. HR-MS (EI) m/z calcd. for C₁₉H₂₀O₂F₂S: 350.1152; found: 350.1151.

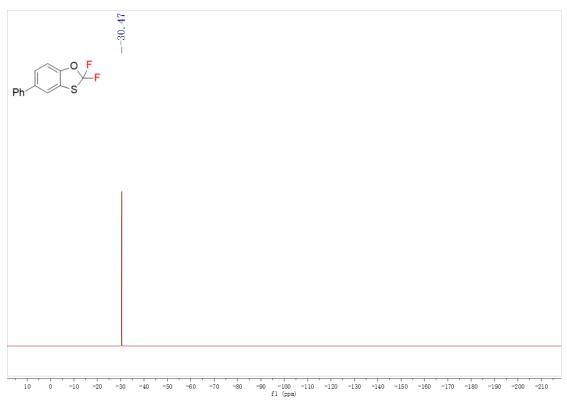

Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra

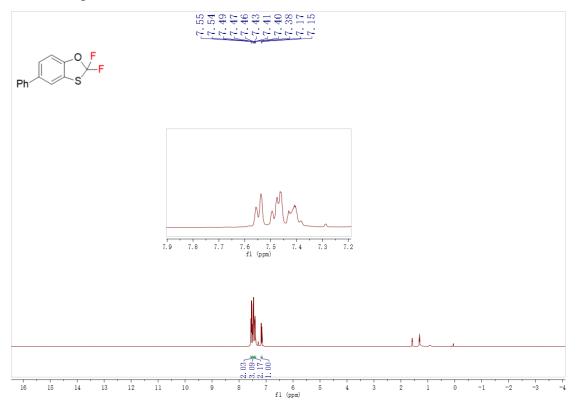

¹⁹F NMR spectrum of 3a in CDCl₃

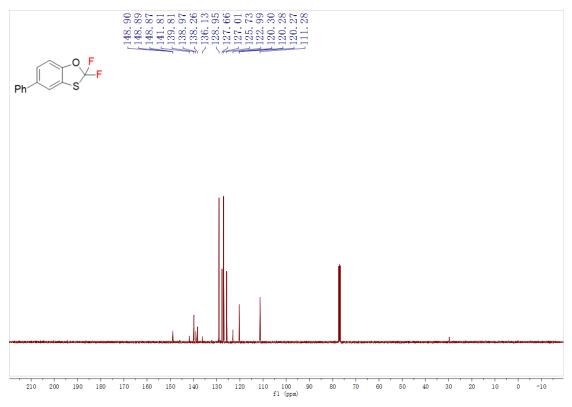

¹H NMR spectrum of **3a** in CDCl₃

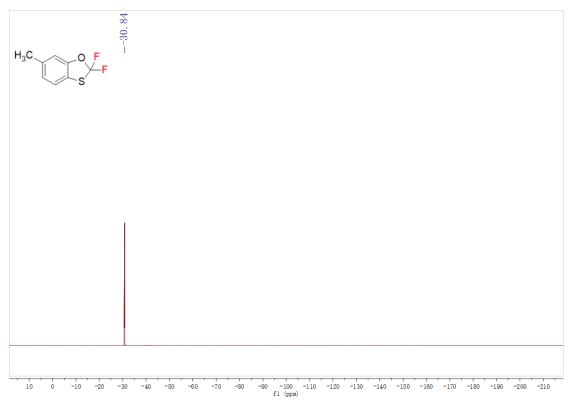


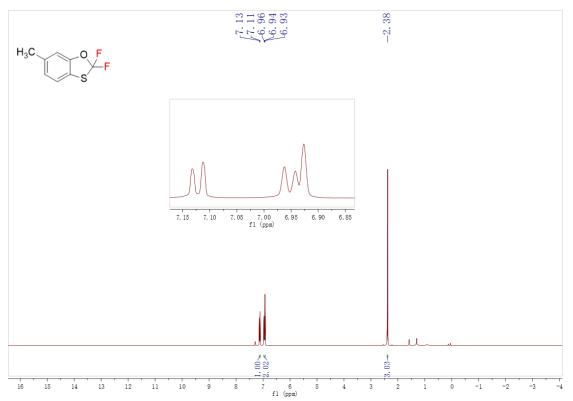

¹⁹F NMR spectrum of **3b** in CDCl₃

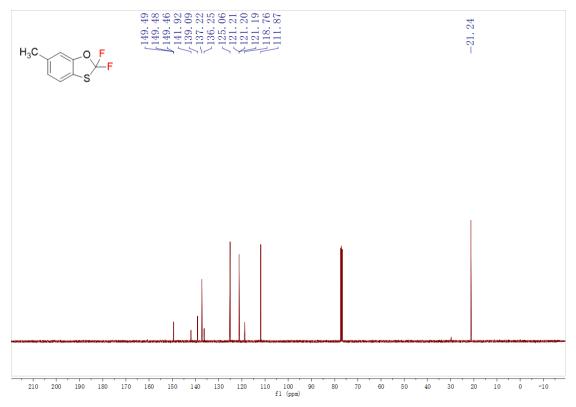

¹H NMR spectrum of **3b** in CDCl₃

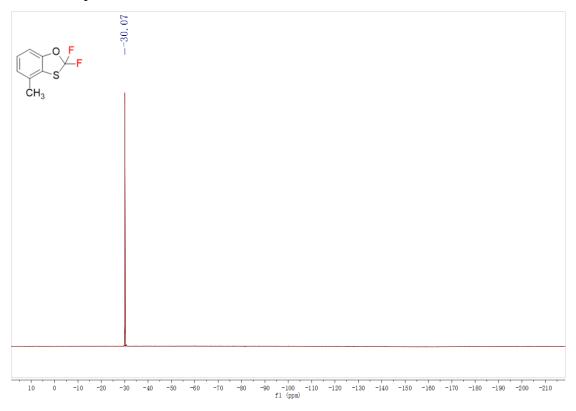

¹³C NMR spectrum of **3b** in CDCl₃

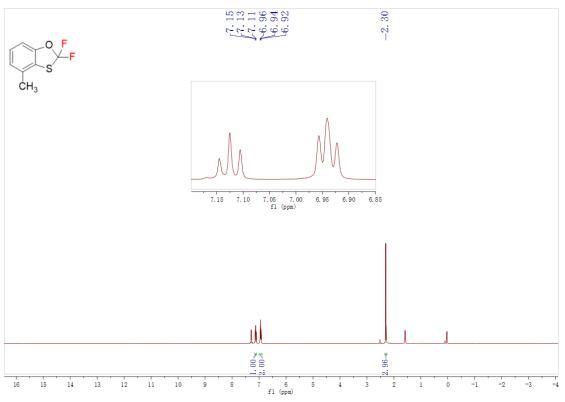

¹⁹F NMR spectrum of 3c in CDCl₃

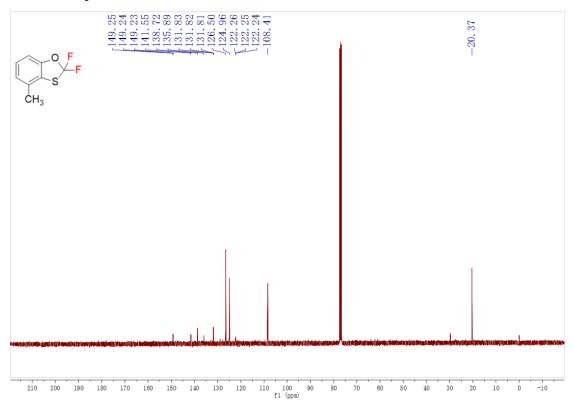

¹H NMR spectrum of 3c in CDCl₃


¹³C NMR spectrum of 3c in CDCl₃

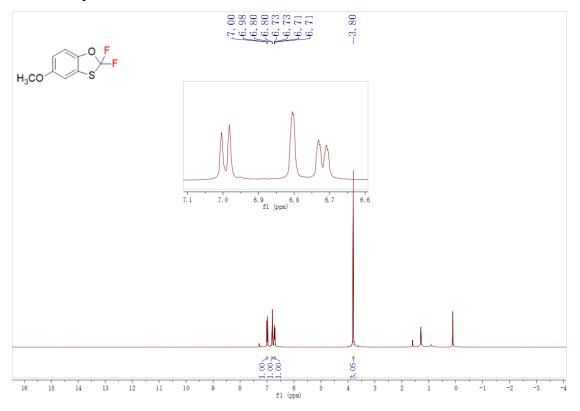

¹⁹F NMR spectrum of 3d in CDCl₃

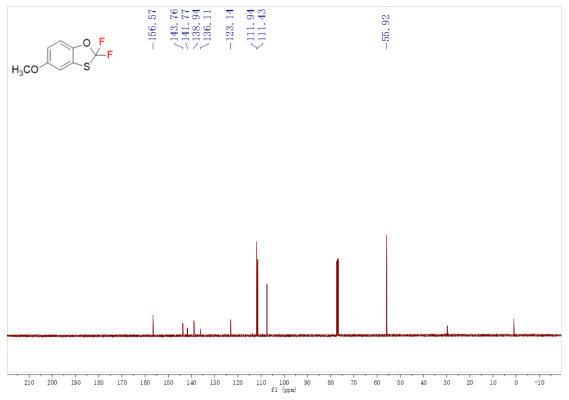

¹H NMR spectrum of **3d** in CDCl₃

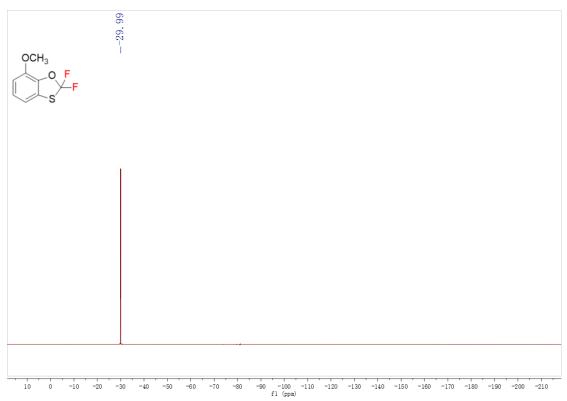

¹³C NMR spectrum of 3d in CDCl₃

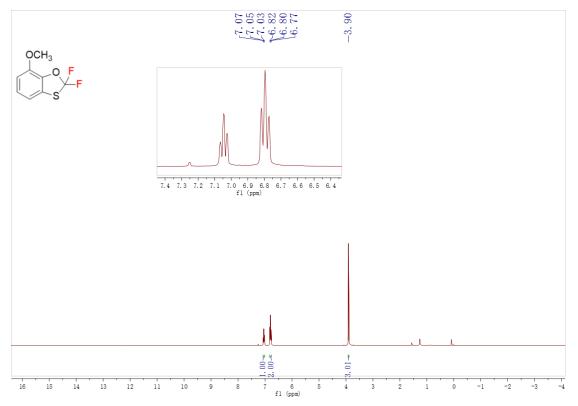

¹⁹F NMR spectrum of 3e in CDCl₃

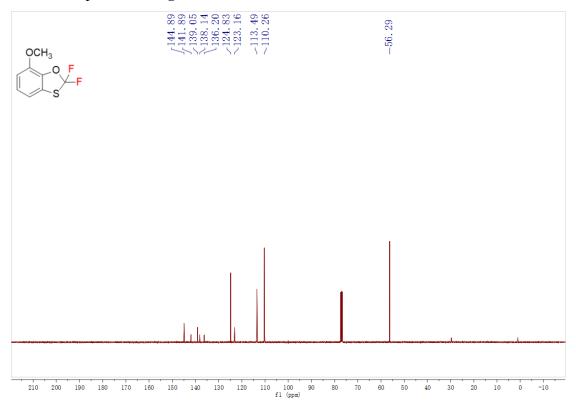

¹H NMR spectrum of 3e in CDCl₃

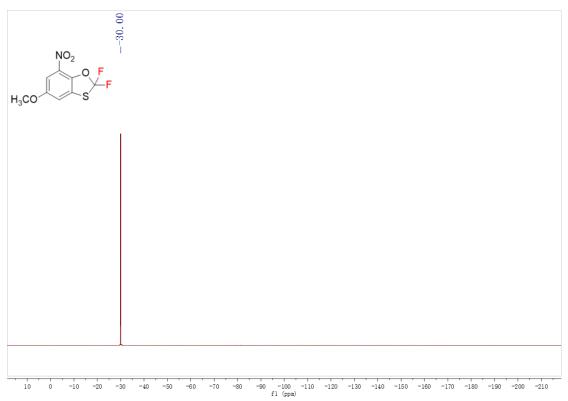

 ^{13}C NMR spectrum of 3e in CDCl_3

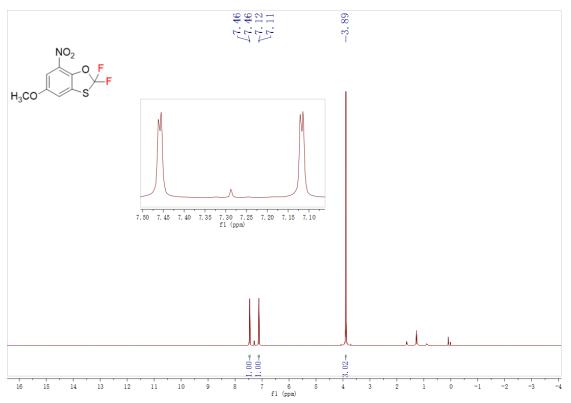

¹⁹F NMR spectrum of 3f in CDCl₃

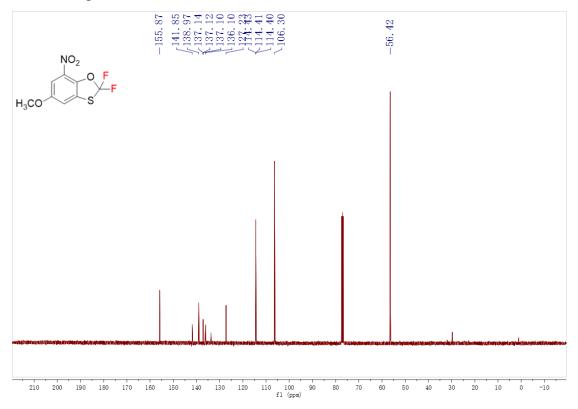

¹H NMR spectrum of **3f** in CDCl₃

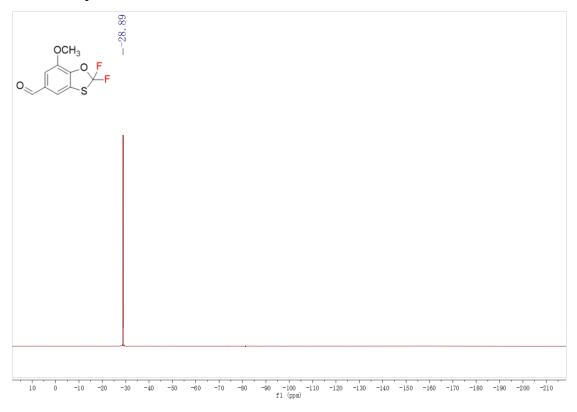

¹³C NMR spectrum of 3f in CDCl₃

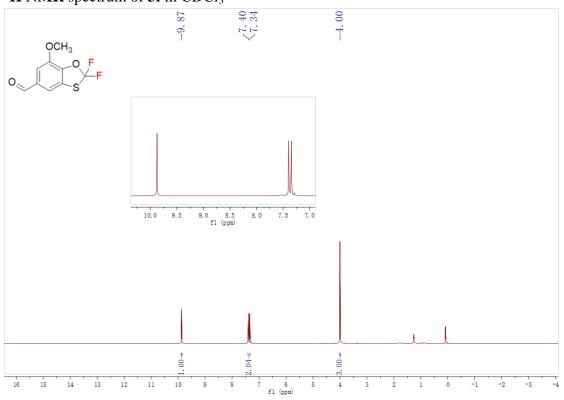

¹⁹F NMR spectrum of 3g in CDCl₃

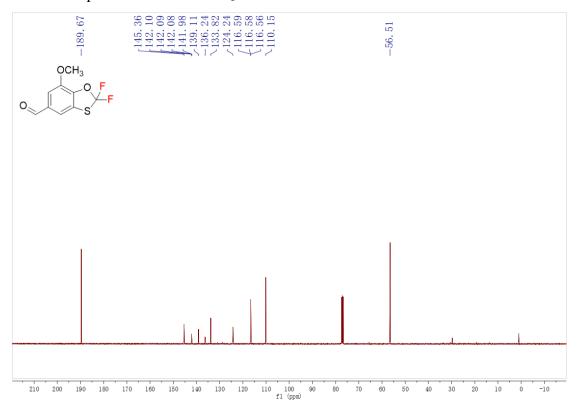

¹H NMR spectrum of 3g in CDCl₃

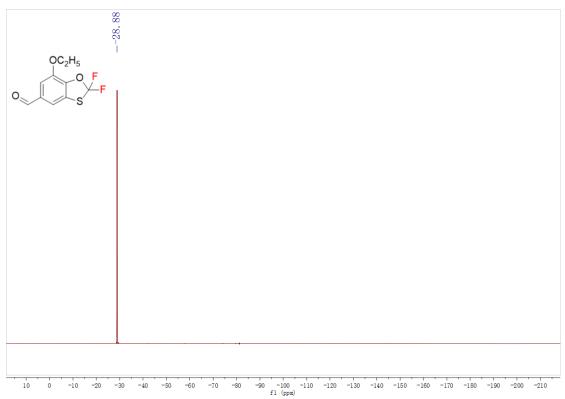

¹³C NMR spectrum of 3g in CDCl₃

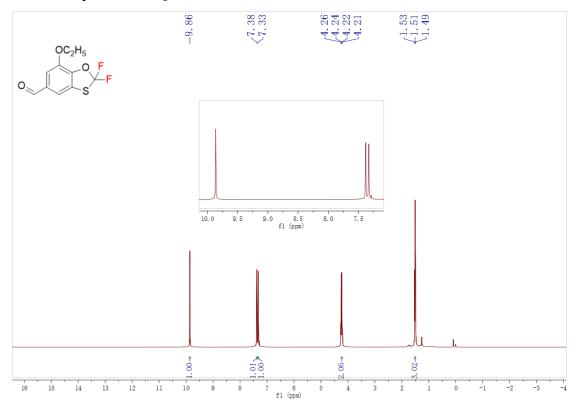

¹⁹F NMR spectrum of 3h in CDCl₃

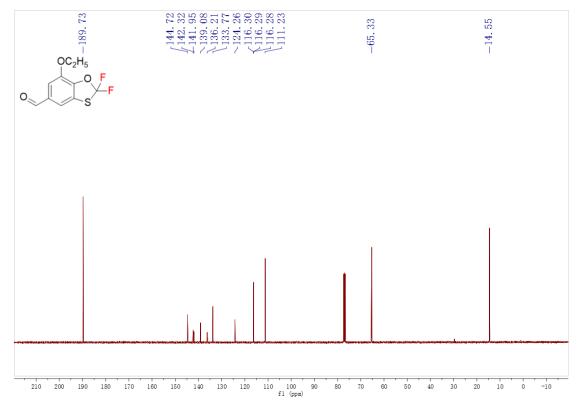

¹H NMR spectrum of **3h** in CDCl₃

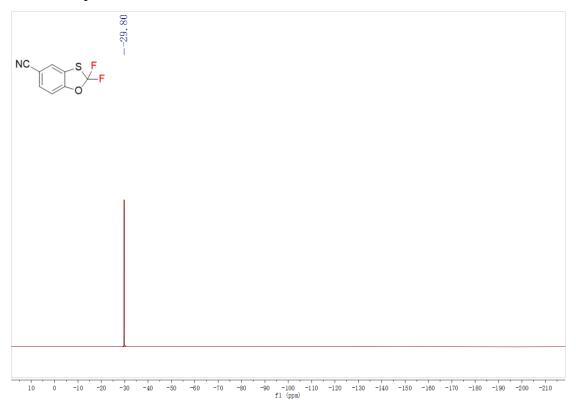

¹³C NMR spectrum of **3h** in CDCl₃

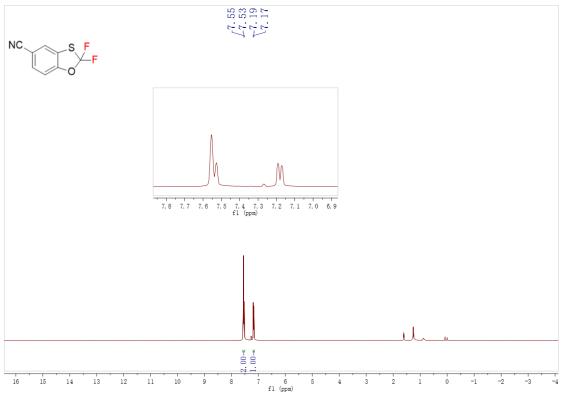

¹⁹F NMR spectrum of **3i** in CDCl₃

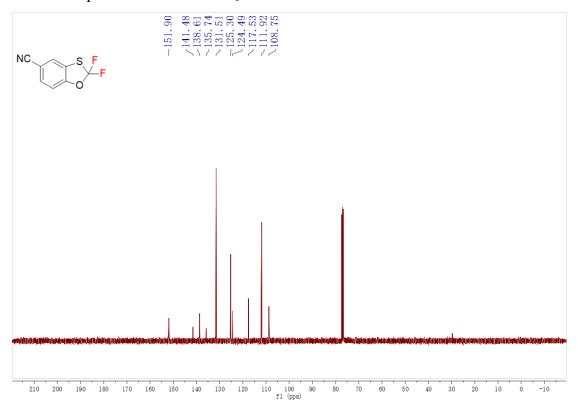

¹H NMR spectrum of **3i** in CDCl₃

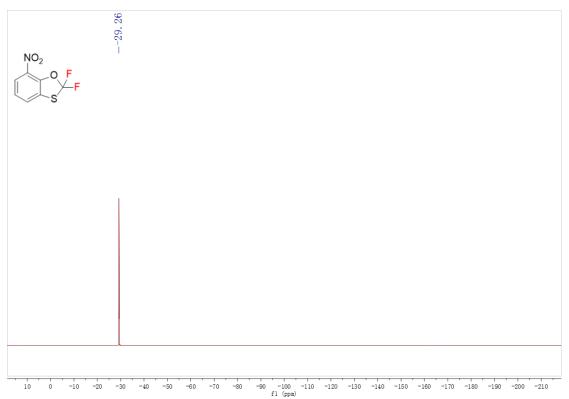

 ^{13}C NMR spectrum of 3i in CDCl_3

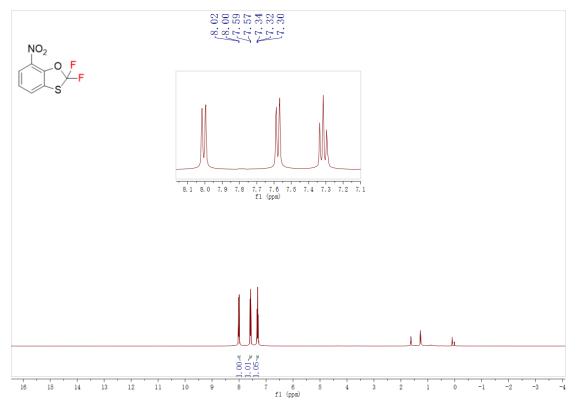

¹⁹F NMR spectrum of **3j** in CDCl₃

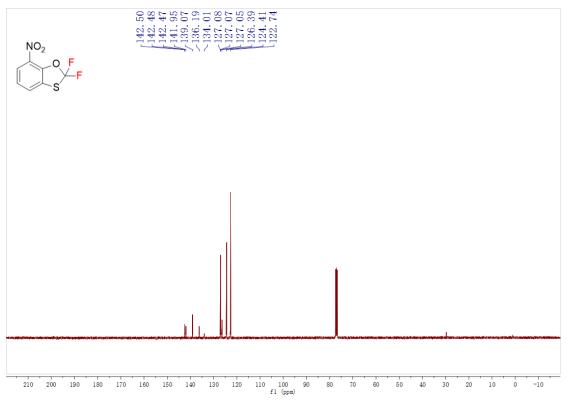

¹H NMR spectrum of 3j in CDCl₃

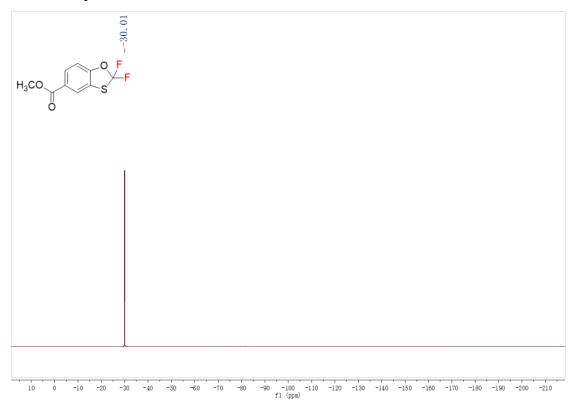

^{13}C NMR spectrum of 3j in CDCl₃

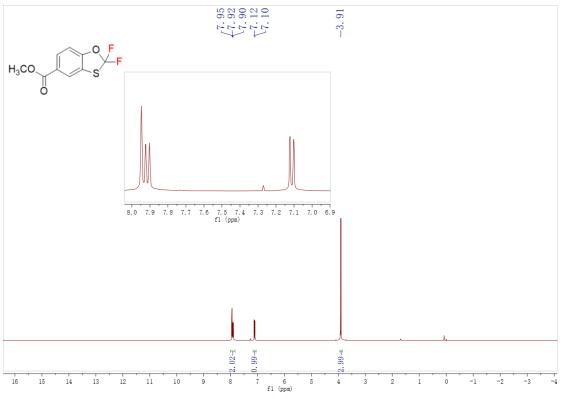

¹⁹F NMR spectrum of 3k in CDCl₃

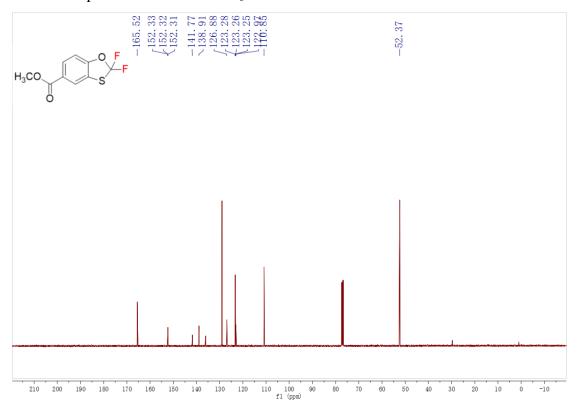

¹H NMR spectrum of 3k in CDCl₃


 ^{13}C NMR spectrum of 3k in CDCl_3

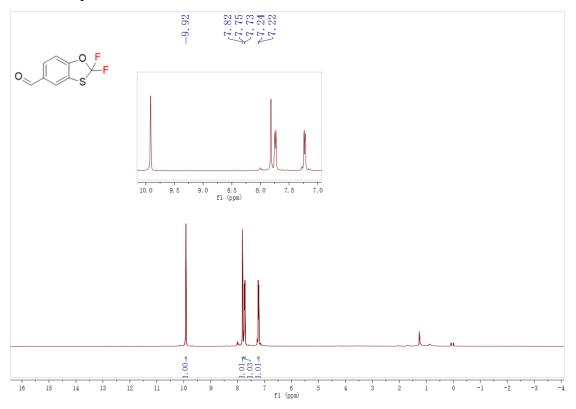

¹⁹F NMR spectrum of **3l** in CDCl₃

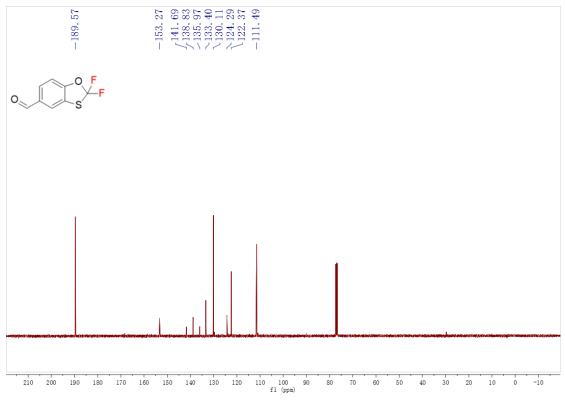

¹H NMR spectrum of **3l** in $CDCl_3$


¹³C NMR spectrum of 3l in CDCl₃

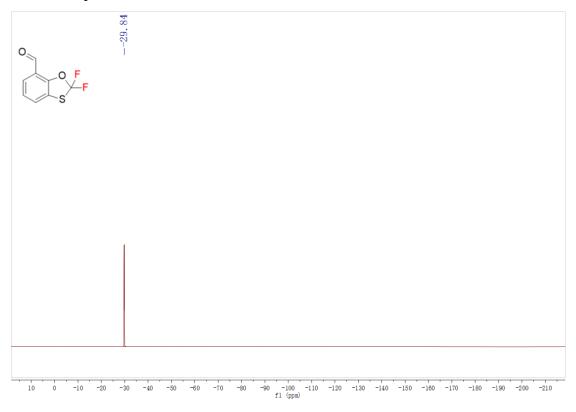

¹⁹F NMR spectrum of **3m** in CDCl₃


¹H NMR spectrum of 3m in CDCl₃

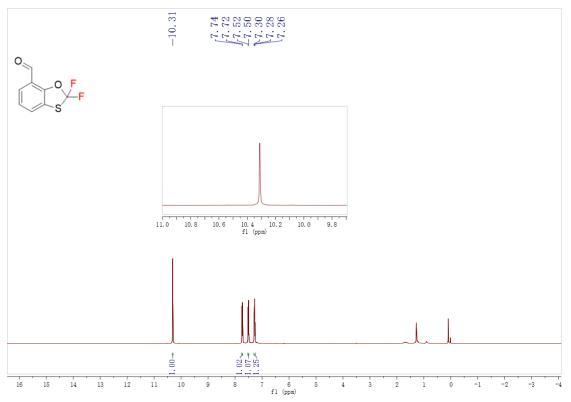

 ^{13}C NMR spectrum of 3m in CDCl_3


¹⁹F NMR spectrum of **3n** in CDCl₃

¹H NMR spectrum of **3n** in CDCl₃

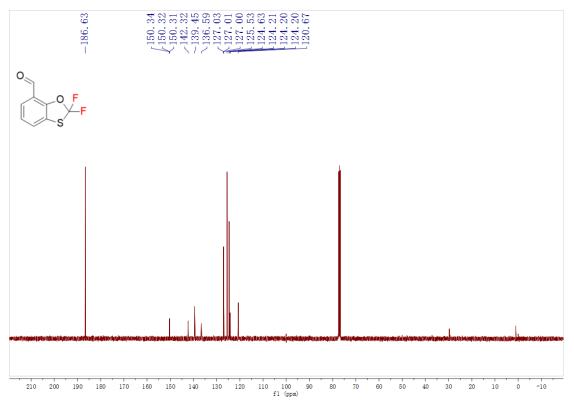


¹³C NMR spectrum of **3n** in CDCl₃

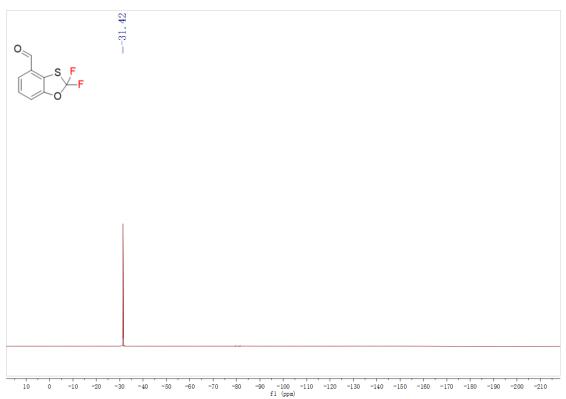


45

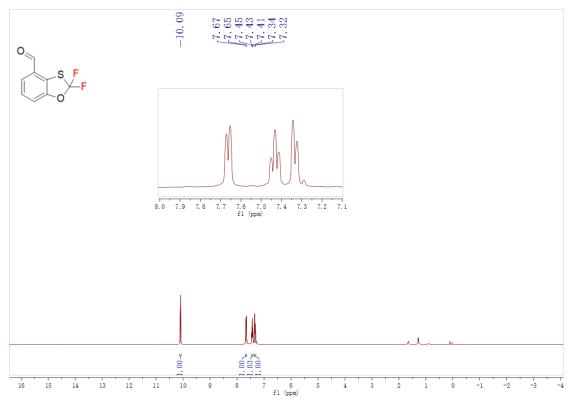
¹⁹F NMR spectrum of **30** in CDCl₃

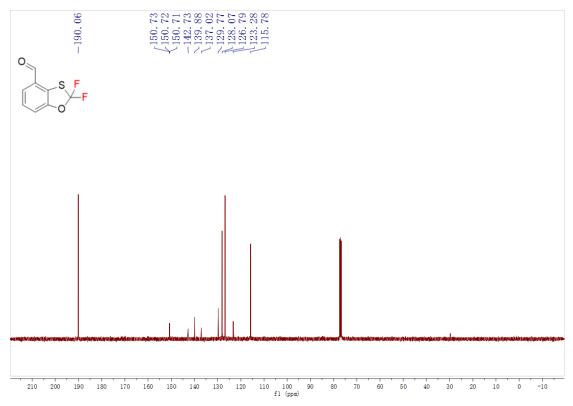


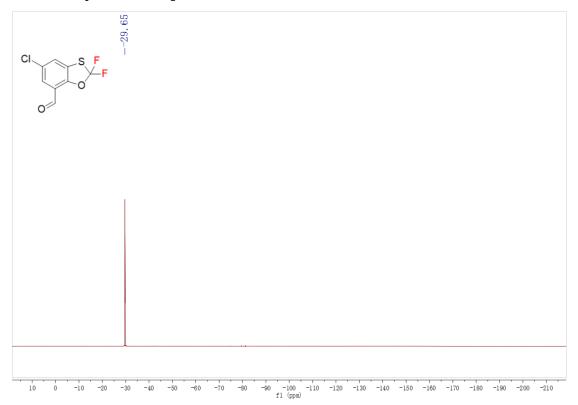
¹H NMR spectrum of **30** in CDCl₃

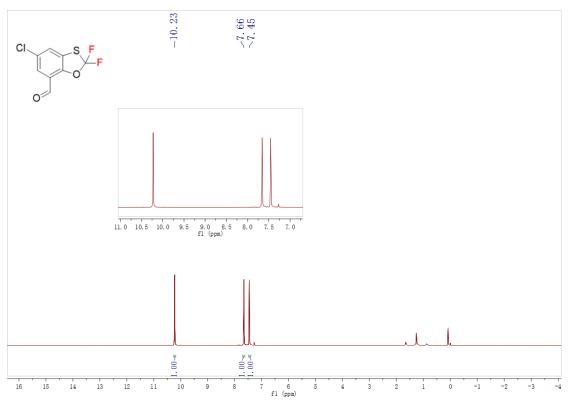


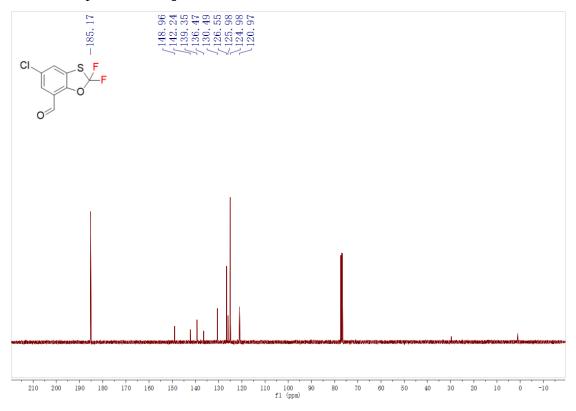
46

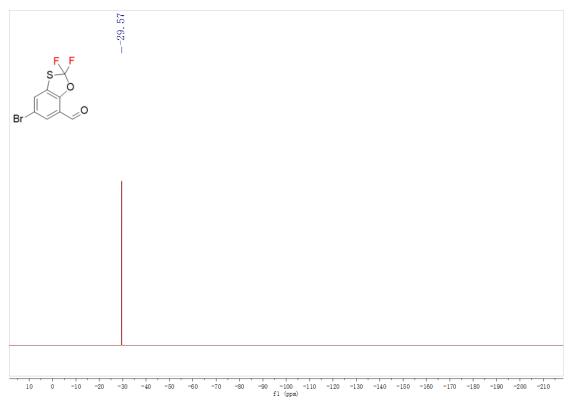

¹³C NMR spectrum of **30** in CDCl₃

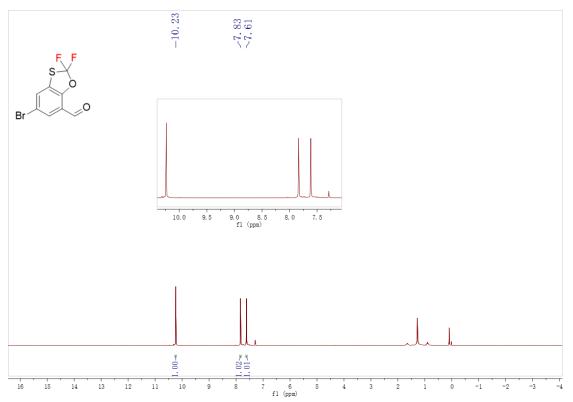

¹⁹F NMR spectrum of **3p** in CDCl₃

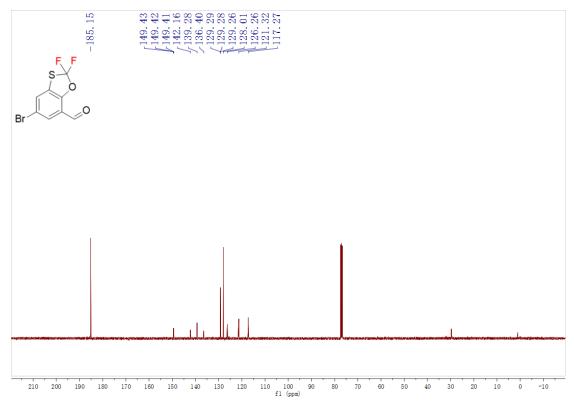

¹H NMR spectrum of **3p** in CDCl₃

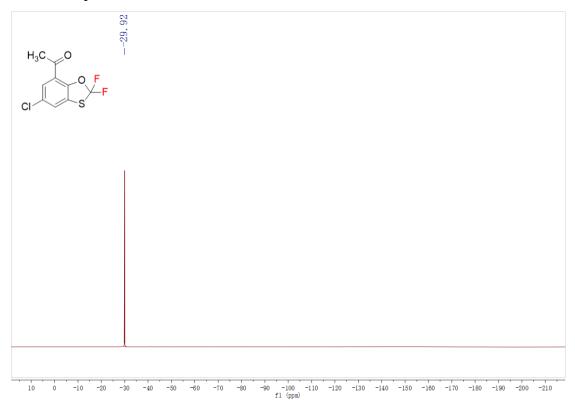

^{13}C NMR spectrum of 3p in CDCl_3

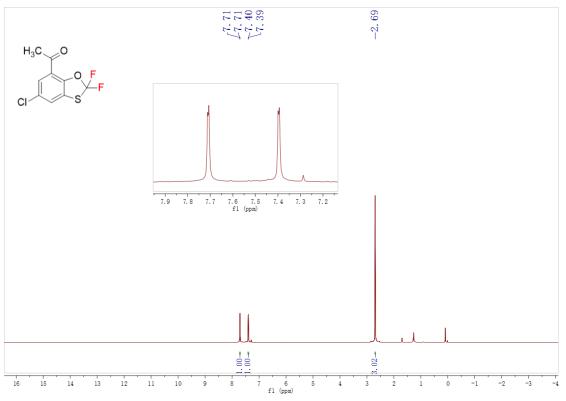

¹⁹F NMR spectrum of 3q in CDCl₃

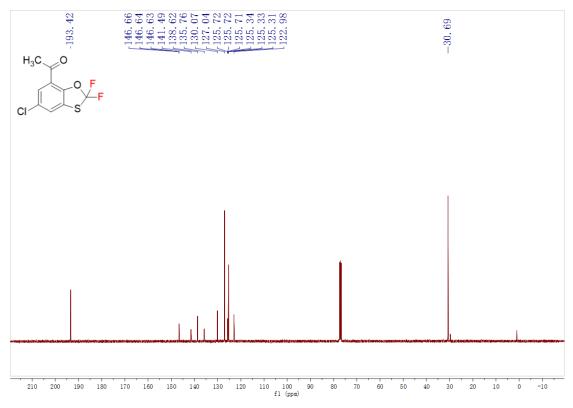

¹H NMR spectrum of 3q in CDCl₃

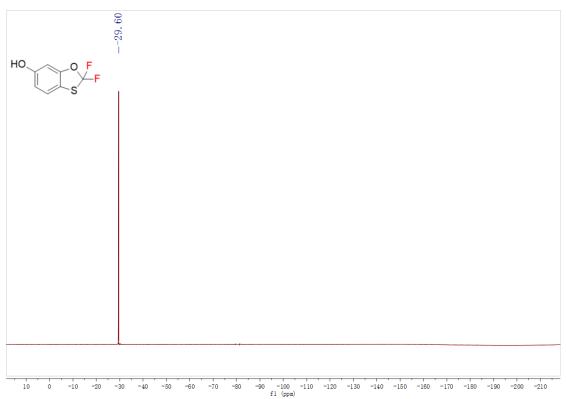

¹³C NMR spectrum of 3q in CDCl₃

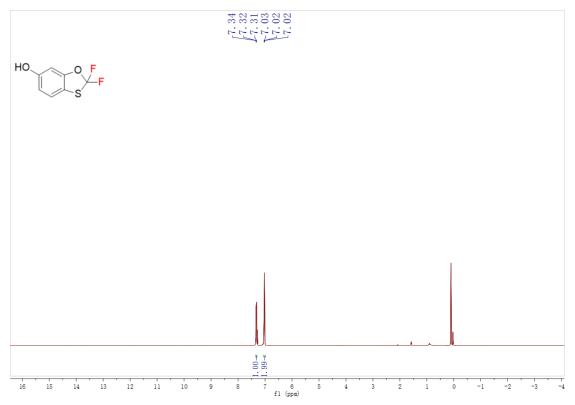

^{19}F NMR spectrum of 3r in CDCl₃

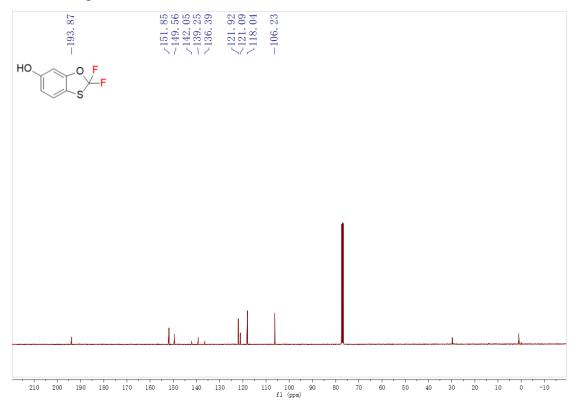

¹H NMR spectrum of 3r in CDCl₃

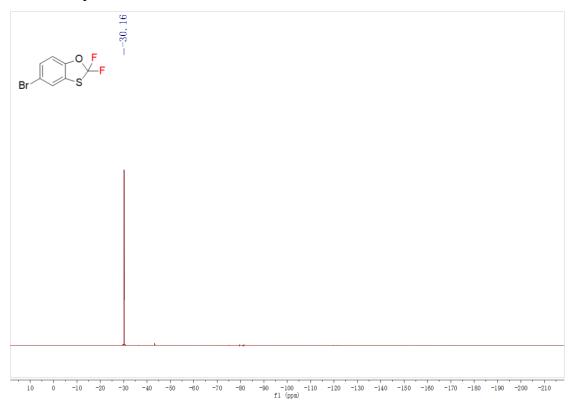

^{13}C NMR spectrum of 3r in CDCl_3

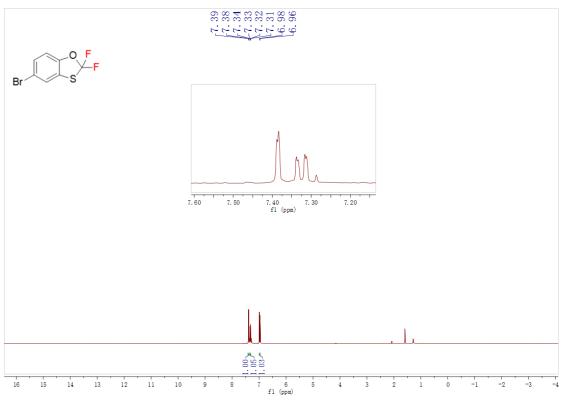

¹⁹F NMR spectrum of 3s in CDCl₃

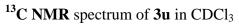

¹H NMR spectrum of 3s in CDCl₃

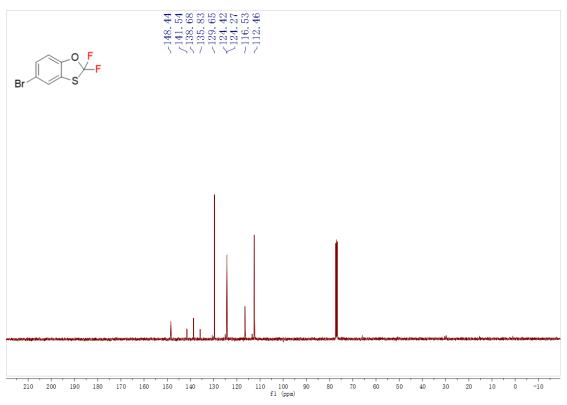

¹³C NMR spectrum of 3s in CDCl₃


¹⁹F NMR spectrum of 3t in CDCl₃

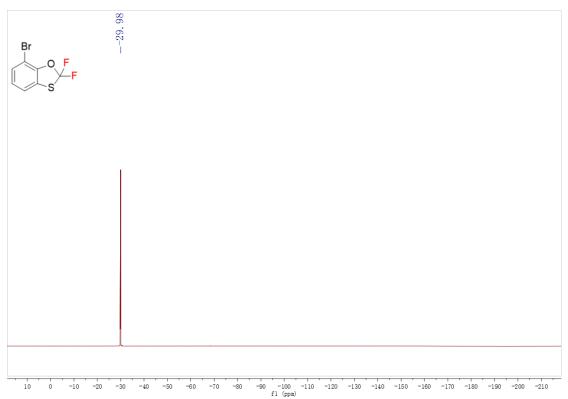

¹H NMR spectrum of **3t** in CDCl₃


^{13}C NMR spectrum of 3t in CDCl_3

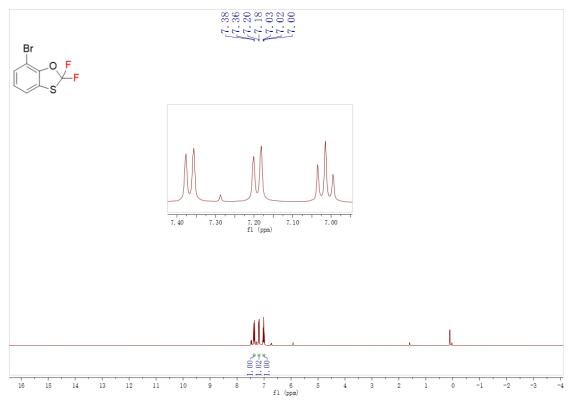

¹⁹F NMR spectrum of **3u** in CDCl₃

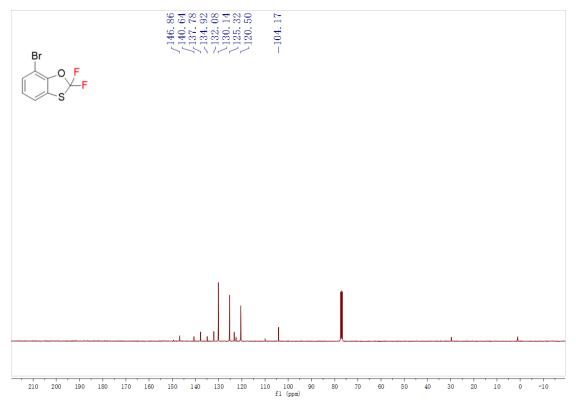


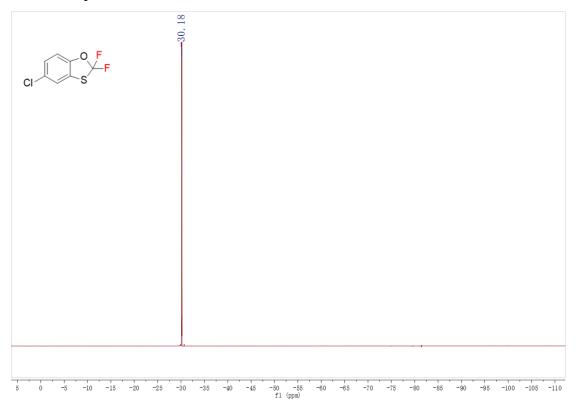
¹H NMR spectrum of 3u in CDCl₃

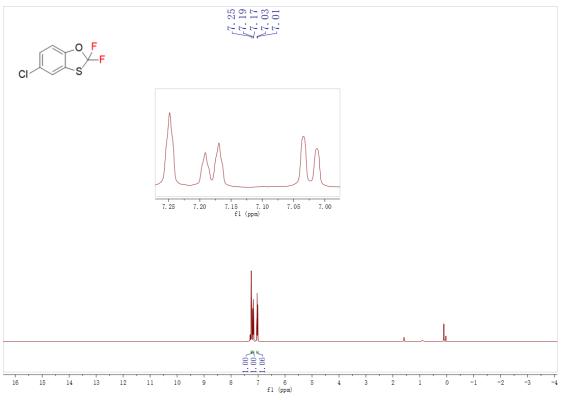


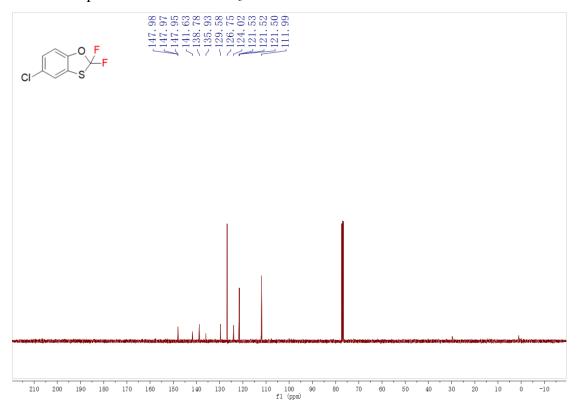
55

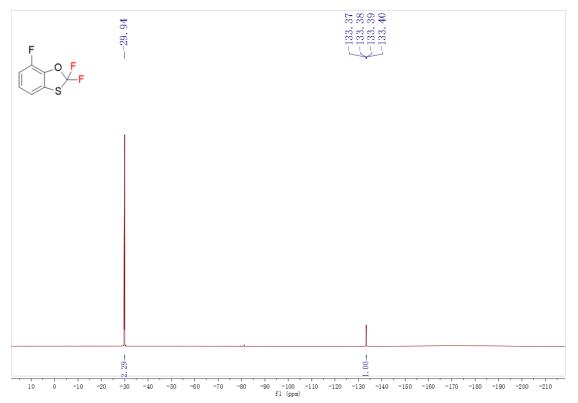


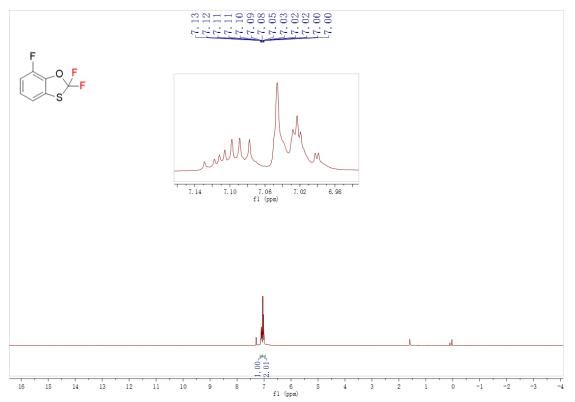

 ^{19}F NMR spectrum of 3v in CDCl₃

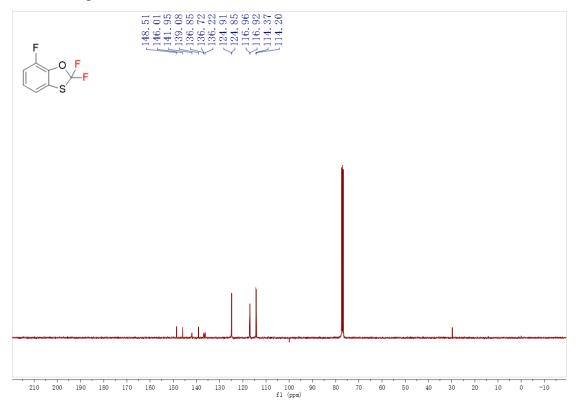

¹H NMR spectrum of **3v** in CDCl₃

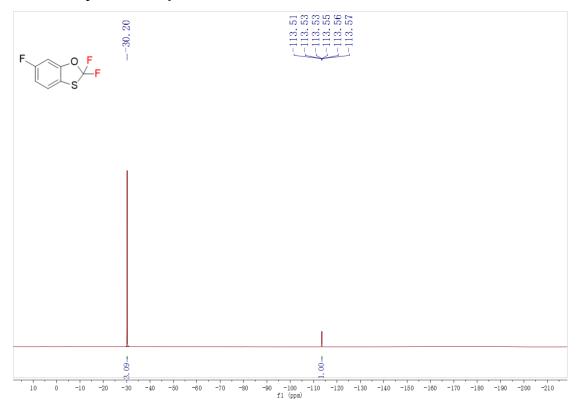

^{13}C NMR spectrum of 3v in CDCl_3

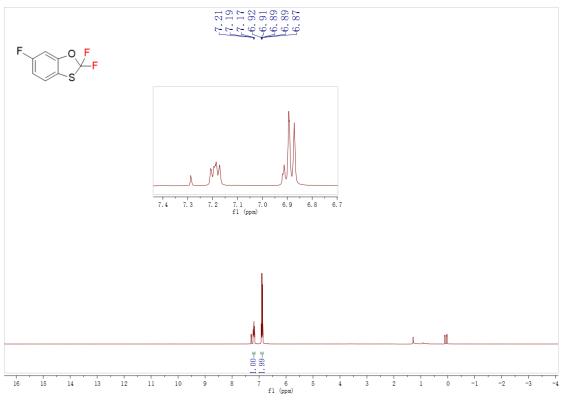

¹⁹F NMR spectrum of 3w in CDCl₃

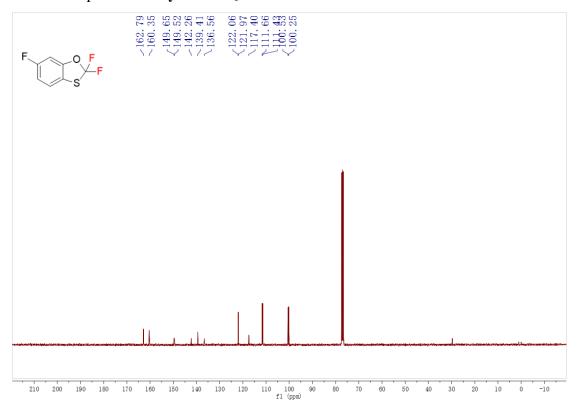

 1H NMR spectrum of 3w in CDCl $_3$

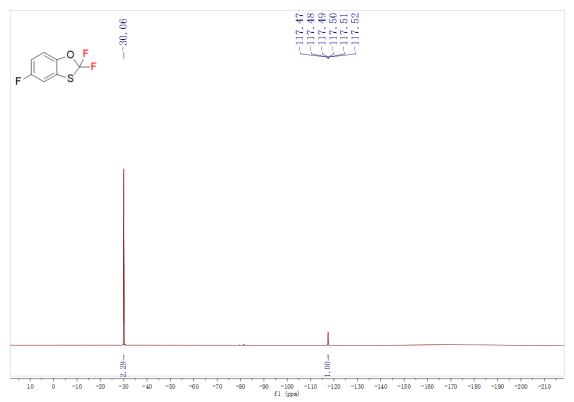

¹³C NMR spectrum of 3w in CDCl₃

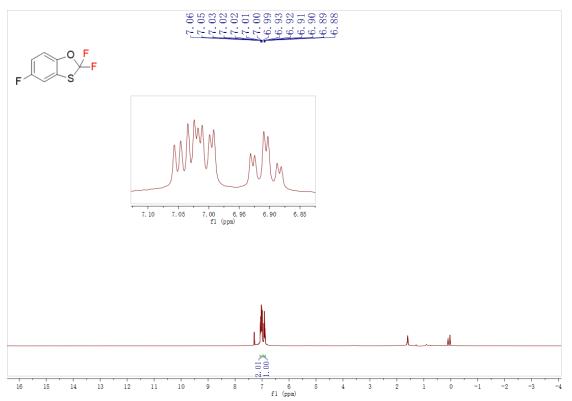

¹⁹F NMR spectrum of 3x in CDCl₃

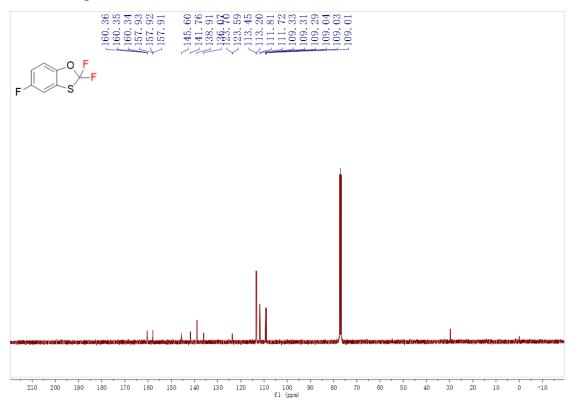

¹H NMR spectrum of **3x** in CDCl₃

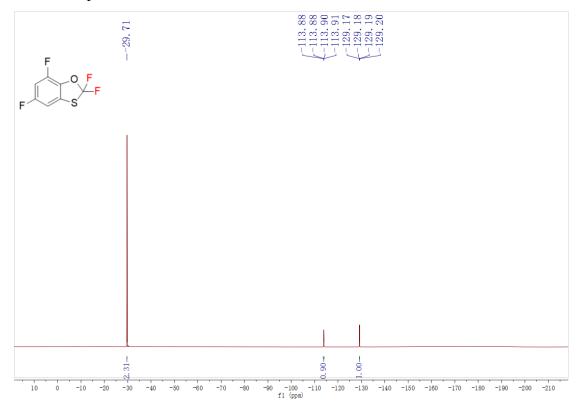

^{13}C NMR spectrum of 3x in CDCl_3

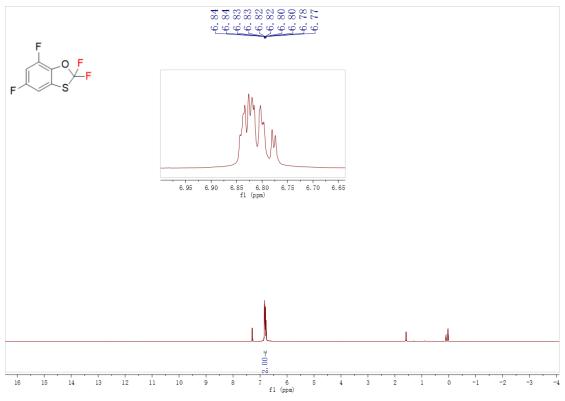

¹⁹F NMR spectrum of 3y in CDCl₃

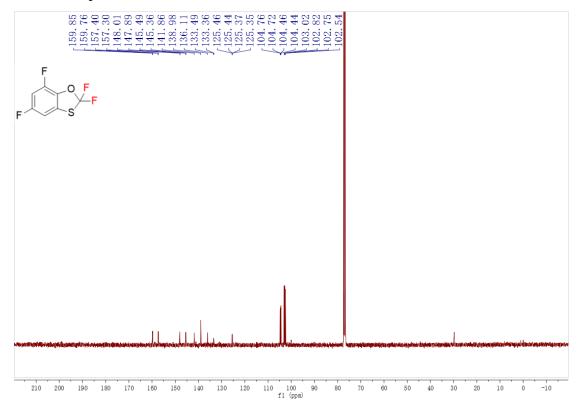

¹H NMR spectrum of 3y in CDCl₃

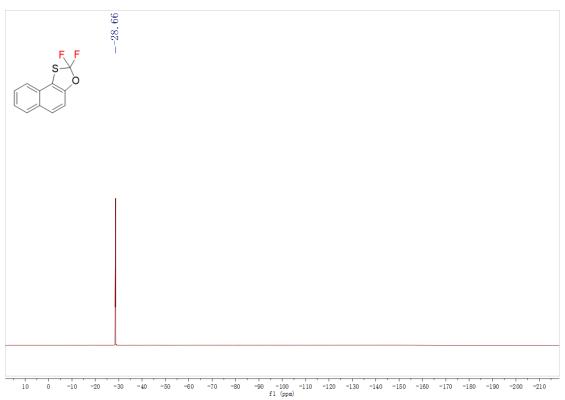

 ^{13}C NMR spectrum of 3y in CDCl_3

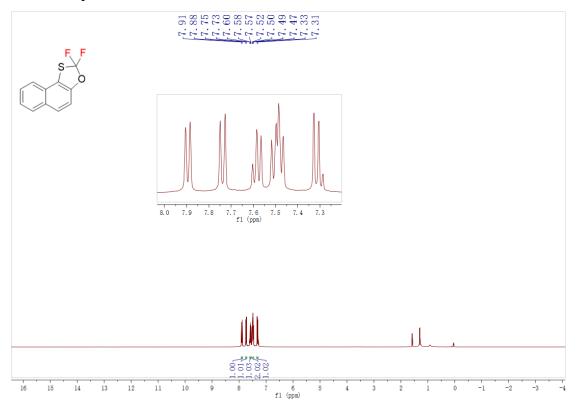

 ^{19}F NMR spectrum of 3z in CDCl $_3$

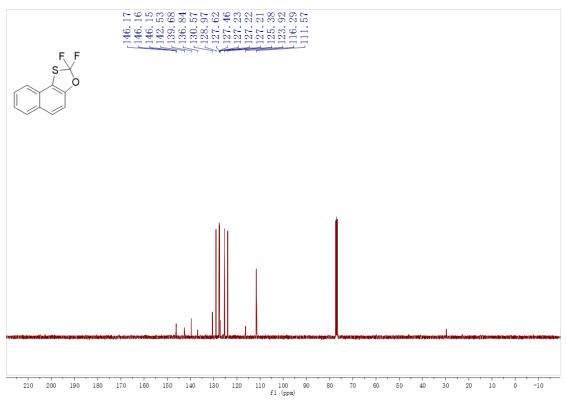

¹H NMR spectrum of **3z** in CDCl₃

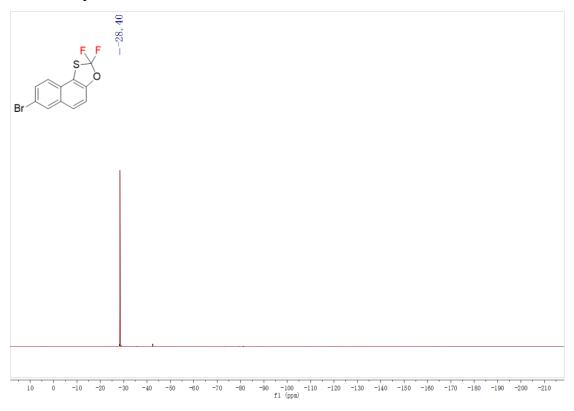

^{13}C NMR spectrum of 3z in CDCl_3

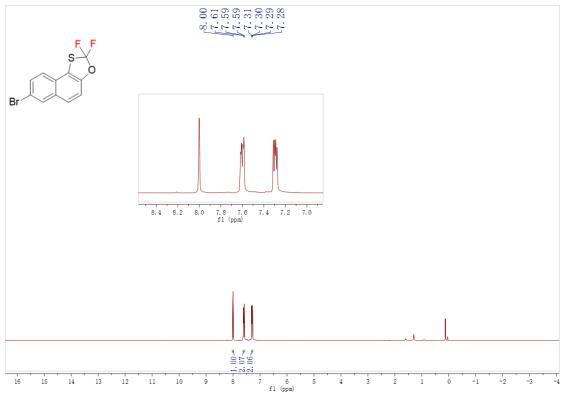

¹⁹F NMR spectrum of 3aa in CDCl₃

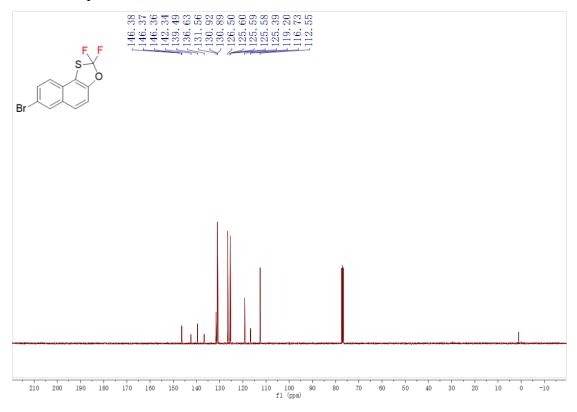

¹H NMR spectrum of **3aa** in CDCl₃

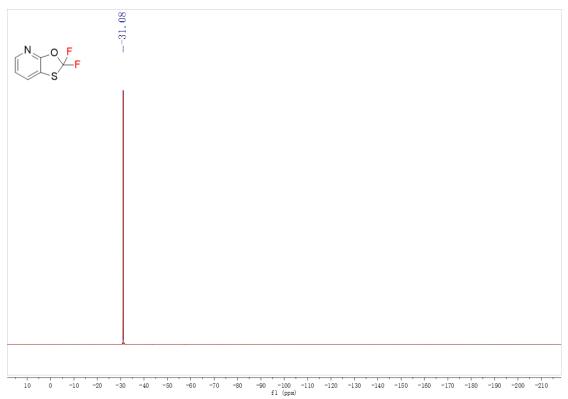

¹³C NMR spectrum of **3aa** in CDCl₃

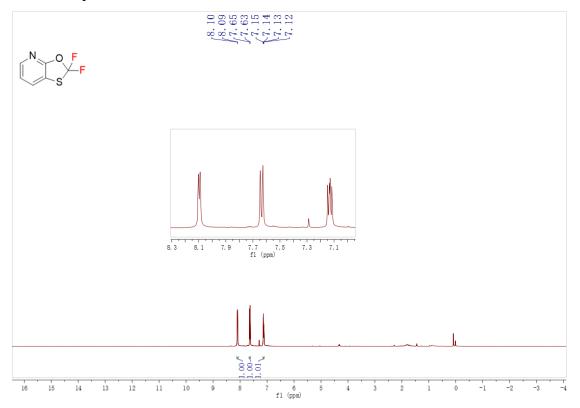

 ^{19}F NMR spectrum of 3ab in CDCl_3

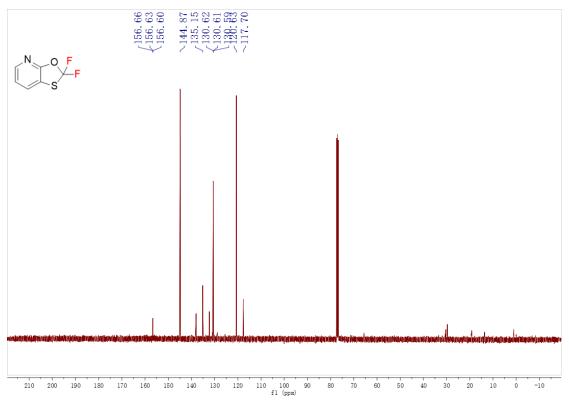

¹H NMR spectrum of **3ab** in CDCl₃

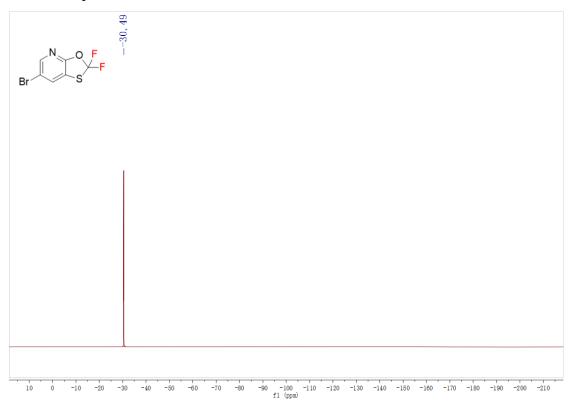

^{13}C NMR spectrum of 3ab in CDCl_3

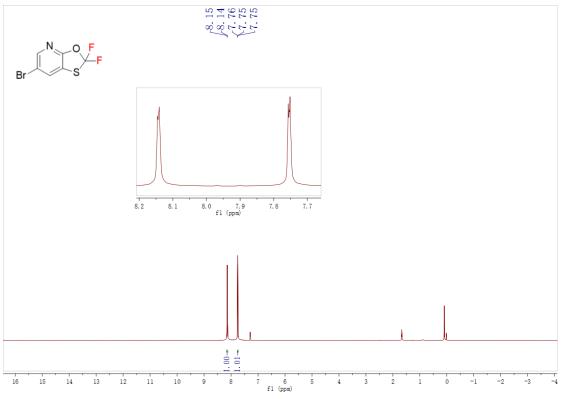

¹⁹F NMR spectrum of 3ac in CDCl₃

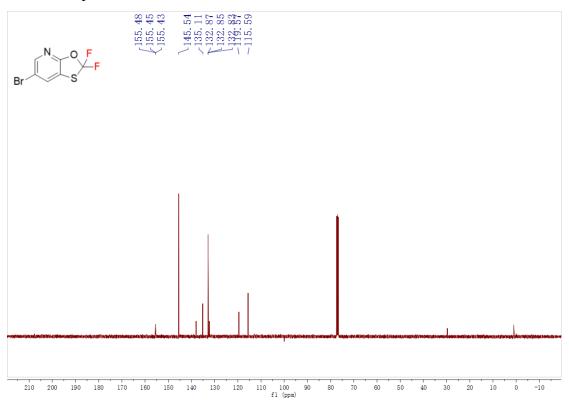

¹H NMR spectrum of **3ac** in CDCl₃

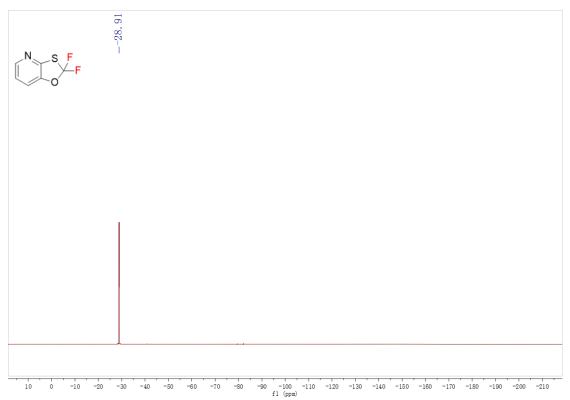

 ^{13}C NMR spectrum of 3ac in CDCl_3

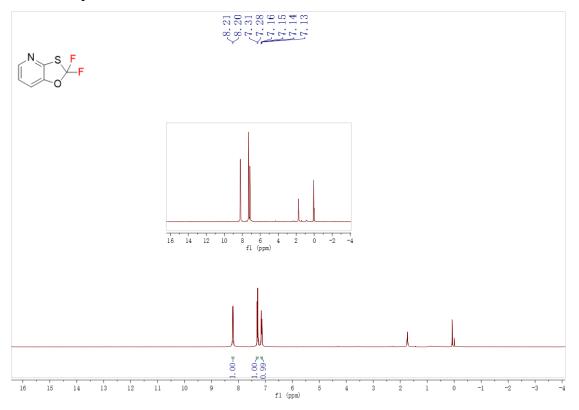

 $^{19}\mbox{F}$ NMR spectrum of 3ad in CDCl_3

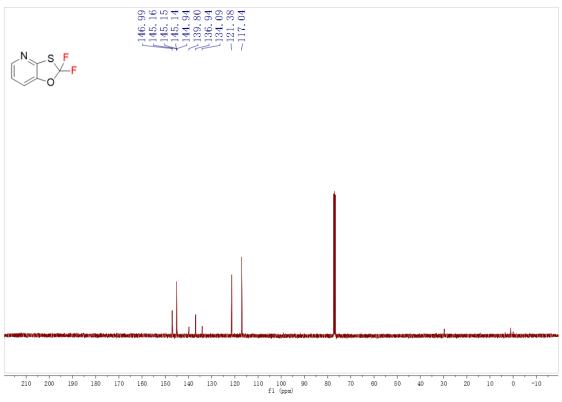

¹H NMR spectrum of **3ad** in CDCl₃

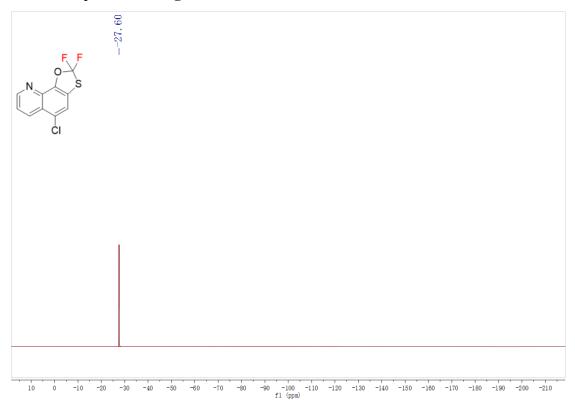

¹³C NMR spectrum of 3ad in CDCl₃

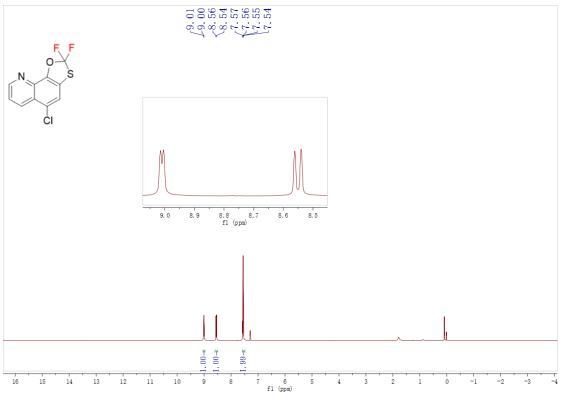

¹⁹F NMR spectrum of 3ae in CDCl₃

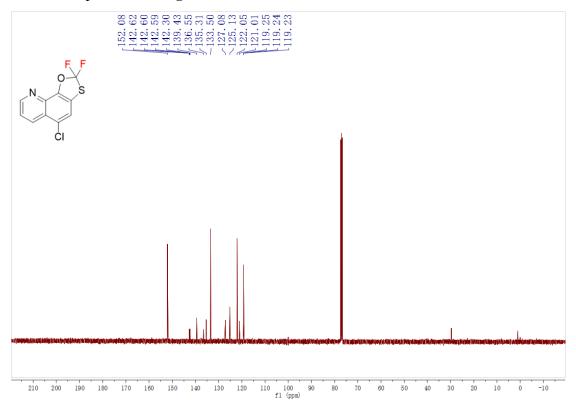

¹H NMR spectrum of **3ae** in CDCl₃

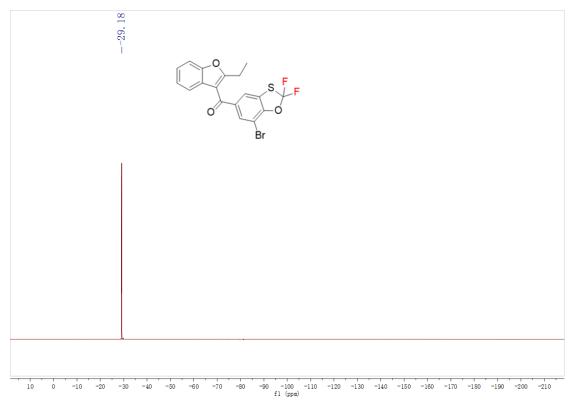

 ^{13}C NMR spectrum of 3ae in CDCl_3

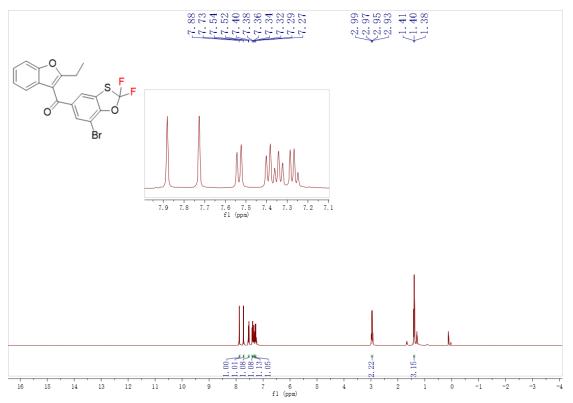

 ^{19}F NMR spectrum of 3af in CDCl_3 $\,$

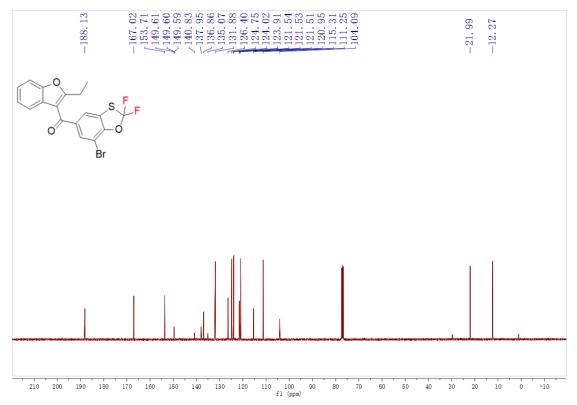

¹H NMR spectrum of **3af** in CDCl₃

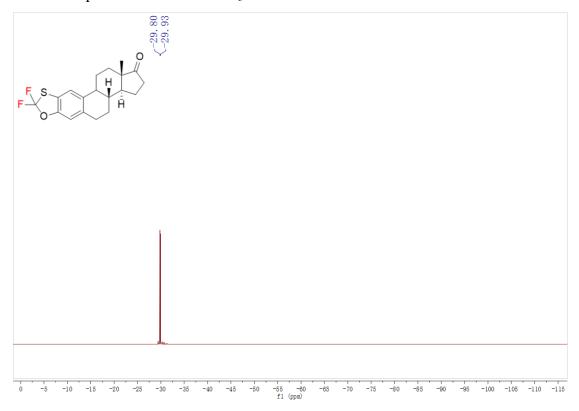

¹³C NMR spectrum of **3af** in CDCl₃


¹⁹F NMR spectrum of 3ag in CDCl₃

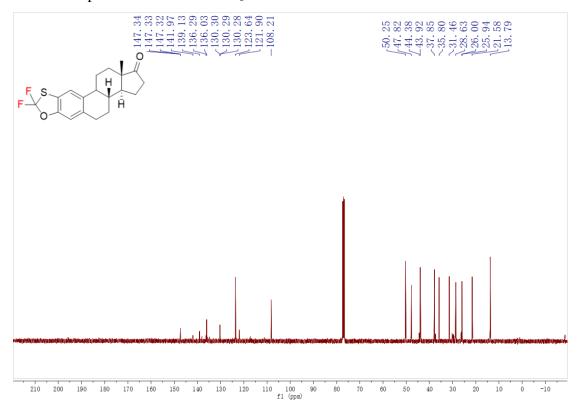

¹H NMR spectrum of 3ag in CDCl₃

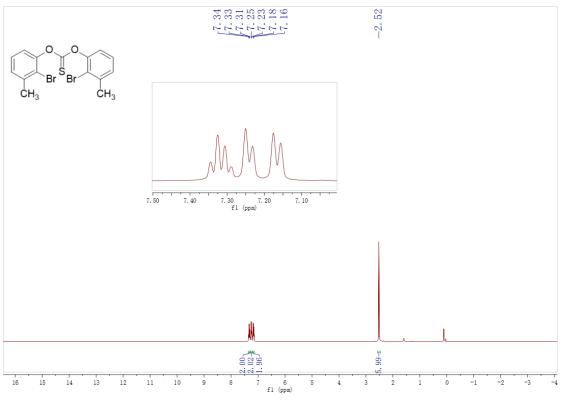

¹³C NMR spectrum of 3ag in CDCl₃

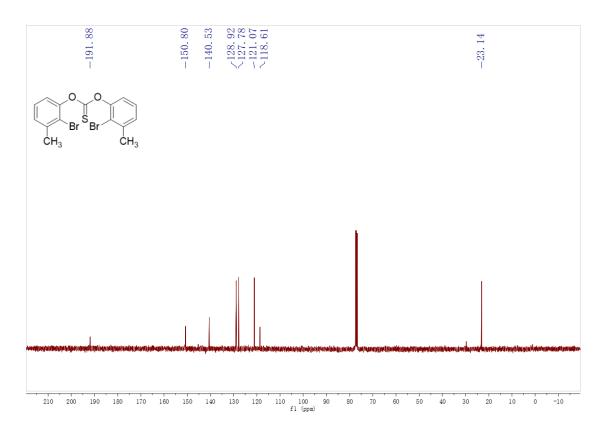

¹⁹F NMR spectrum of **3ah** in CDCl₃


¹H NMR spectrum of **3ah** in CDCl₃

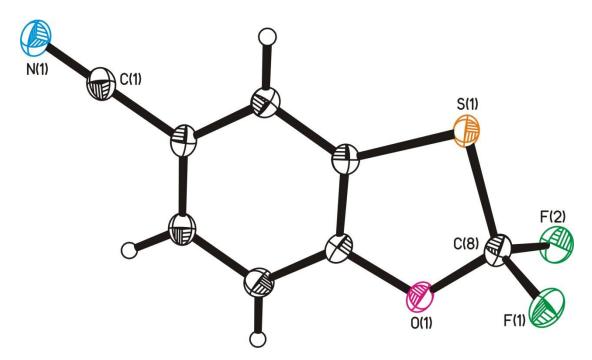
¹³C NMR spectrum of **3ah** in CDCl₃


¹⁹F NMR spectrum of **3ai** in CDCl₃

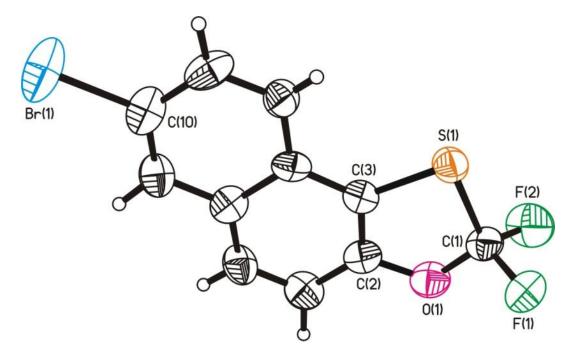

 ^1H NMR spectrum of 3ai in CDCl_3


¹³C NMR spectrum of **3ai** in CDCl₃

¹H NMR spectrum of II in $CDCl_3$



¹³C NMR spectrum of II in CDCl₃



Crystal structure analyses.

The suitable crystals of **3k** (CCDC1584864) and **3ac** (CCDC1564419) were mounted on quartz fibers and X-ray data collected on a Bruker AXS APEX diffractometer, equipped with a CCD detector at -50 °C, using MoK α radiation (λ 0.71073 Å). The data was corrected for Lorentz and polarisation effect with the **SMART** suite of programs and for absorption effects with SADABS.⁶ Structure solution and refinement were carried out with the SHELXTL suite of programs.⁶ The structure was solved by direct methods to locate the heavy atoms, followed by difference maps for the light non-hydrogen atoms.

ORTEP diagram of compound 3k. Thermal ellipsoids are drawn at 40% probability.

ORTEP diagram of compound **3ac.** Thermal ellipsoids are drawn at 40% probability.

Refenences:

(1) Weng, Z.; He, W.; Chen, C.; Lee, R.; Tan, D.; Lai, Z.; Kong, D.; Yuan, Y.; Huang, K.-W. Angew. Chem. Int. Ed. 2013, 52, 1548.

(2) Zhang, Y.; Gan, K.; Weng, Z. Org. Process Res. Dev. 2016, 20, 799.

(3) Tyrra, W.; Naumann, D.; Hoge, B.; Yagupolskii, Y. L. J. Fluorine Chem. **2003**, *119*, 101.

(4) Chen, A. Y.; Lee, A. J.; Jiang, X.-R.; Zhu, B. T. J. Med. Chem. 2007, 50, 5372.

(5) Xu, C.; Ma, B.; Shen, Q. Angew. Chem. Int. Ed. 2014, 53, 9316.

(6) SHELXTL version 5.03; Bruker Analytical X-ray Systems, Madison, WI, 1997.