Supporting Information

Deep Eutectic Solvents as suitable electrolytes for Electrochromic Devices.

Hugo Cruz*, Noémi Jordão, Patrícia Amorim, Madalena Dionísio and Luís C. Branco*.

E-mail: hg.cruz@fct.unl.pt; l.branco@fct.unl.pt Fax: +351 212948550; Tel.: +351 212948300 LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Monte de Caparica, Portugal.

Table of content

1.	Cyclic Voltammetry in a 3-electrode configuration	2
2.	Cyclic Voltammetry in a 2-electrode configuration cell	3
3.	RGB coordinates	7
4.	DSC/DRS measurements	8

1. Cyclic Voltammetry in a 3-electrode configuration

Figure S1. Overlap of the I-E response for both electron transfer for the MVCl2 (15mM) in DES as electrolyte.

Figure S2: Overlap of the I-E response for 1st electron transfer for the MVCl₂ (15mM) in DES as electrolyte.

Figure S3: I-E response for 1st electron transfer for the Cc (15mM) in DES LiOTf:6PEG as electrolyte.

Figure S4: I-E response for 1st and 2nd electron transfer for the TTF (15mM) in DES LiOTf:6PEG as electrolyte.

Figure S5: I-E response for 1st electron transfer for the TTF (15mM) in DES LiOTf:6PEG as electrolyte.

Figure S6: Overlap of the I-E response for the electron transfer of Fc (15mM) in DES as electrolyte.

2. Cyclic Voltammetry in a 2-electrode configuration cell

Figure S7: I-E response for the CV overlapping of electrolyte LiNTf₂:4EG (blue) and the MVCl₂, 15mM in the same electrolyte (1st cycle in orange and 2nd cycle in gray) in electrochemical window (0/-3/3/0) at a scan rate of 20 mV/s.

Figure S8: I-E response for the CV overlapping of electrolyte LiOTf:4EG (blue) and the $MVCl_2$, 15mM in the same electrolyte (1st cycle in orange and 2nd cycle in gray) in electrochemical window (0/-3/3/0) at a scan rate of 20 mV/s.

Figure S9: I-E response for the CV overlapping of electrolyte LiOTf:6EG (blue) and the $MVCl_2$, 15mM in the same electrolyte (1st cycle in orange and 2nd cycle in gray) in electrochemical window (0/-3/3/0) at a scan rate of 20 mV/s.

Figure S10: I-E response for the CV overlapping of electrolyte LiOTf:10EG (blue) and the MVCl₂, 15mM in the same electrolyte (1st cycle in orange and 2^{nd} cycle in gray) in electrochemical window (0/-3/3/0) at a scan rate of 20 mV/s.

Figure S11: I-E response for the CV overlapping of electrolyte LiOTf:6PEG (blue) and the $MVCl_2$, 15mM in the same electrolyte (1st cycle in orange and 2nd cycle in gray) in electrochemical window (0/-3/3/0) at a scan rate of 20 mV/s.

Figure S12: I-E response for the CV overlapping of electrolyte NaOTf:6EG (blue) and the MVCl₂, 15mM in the same electrolyte (1^{st} cycle in orange and 2^{nd} cycle in gray) in electrochemical window (0/-3/3/0) at a scan rate of 20 mV/s.

Figure S13: I-E response for the CV overlapping of electrolyte LiAcO:3Gly (blue) and the $MVCl_2$, 15mM in the same electrolyte (1st cycle in orange and 2nd cycle in gray) in electrochemical window (0/-3/3/0) at a scan rate of 20 mV/s.

Figure S14: I-E response for the CV overlapping of 1^{st} cycle in blue for electrolyte NaOTf:6EG and the $(C_5O_2)_2$ bpyI₂, 15mM in electrochemical window (0/-2/2/0) at a scan rate of 20 mV/s.

Figure S15: I-E response for the CV of 1^{st} cycle in blue for electrolyte LiOTf:6PEG and the (C₅O₂)₂bpyI₂, 15mM in electrochemical window (0/-2/2/0) at a scan rate of 20 mV/s.

Figure S16: I-E response for the CV of 1^{st} cycle in blue for electrolyte LiOTf:10EG and the $(C_5O_2)_2$ bpyI₂, 15mM in electrochemical window (0/-2/2/0) at a scan rate of 20 mV/s.

Figure S17: overlap of all the I-E response for the CV all electrolytes MVCl2 15mM in electrochemical window (0/-3/3/0) at a scan rate of 20 mV/s.

3. RGB coordinates

Figure S18: Coloration gradient for the DESs studied with MVCl₂.

Figure S18b: Coloration gradient for the DESs studied with MVCl₂.

Figure S19: Coloration gradient for the DESs studied with $[(C_5O_2)_2bpy]I_2$.

4. DSC/DRS measurements

Figure S20: (a) Heat flow thermogram for PEG400 at 10°C min ⁻¹ (1st cycle - dash dot; 2nd cycle – full line). (b) Heat flow thermogram for PEG400 at 20°C min ⁻¹ (1st cycle - dash dot; 2nd cycle – full line).

Figure S21: (a) Heat flow thermogram for LiOTf:6PEG at 10°C min ⁻¹ (1st cycle - dash dot; 2nd cycle – full line). (b) Real part of complex conductivity for LiOTf:6PEG and PEG400.

Figure S22: (a) Heat flow thermogram for EG at 10°C min ⁻¹ (1st cycle - dash dot; 2nd cycle – full line). (b) Heat flow thermogram for LiNTf₂:4EG, LiOTf:4EG, LiOTf:6EG, LiOTf:10EG at 10°C min ⁻¹ after a thermal treatment up to 100°C (except in NaOTf:6EG up to 120°C and LiNTf₂:4EG up to 150°C).

Figure S23: (a) Real part of complex conductivity for LiOTf:4EG, LiOTf:6EG, LiOTf:10EG and (b) for NaOTf:6EG and LiOTf:6EG.