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Figure S1 XRD pattern of the Sb–Ni framework. 
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Figure S2 Nitrogen adsorption/desorption isotherms (a) and pore size distribution from the desorption 

branch (b) of the Sb–Ni framework material. 
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Figure S3 Nitrogen adsorption/desorption isotherms (a) and pore size distribution from the desorption 

branch (b) of the rGO@Sb–Ni ternary framework. 
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Figure S4 SEM images of the rGO@Sb–Ni framework. 
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Figure S5 STEM-EDX elemental mappings of the rGO@Sb–Ni framework. 
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Figure S6 TEM image of the rGO–Sb–Ni composite prepared using NiCl2 instead of K2Ni(CN)4 with 

other conditions unchanged. 
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Figure S7 XRD pattern of the rGO@Sb–Ni framework after TGA. 

 

As seen from TGA curves (Figure 3f), the weight variation of rGO@Sb–Ni frameworks can be 

mainly attributed to the oxidation of Sb–Ni alloy and rGO components during TGA tests. The 

oxidation of Sb–Ni alloy leads to a weight increase, while the removal of rGO leads to a weight 

decrease of the products. Figure S7 shows the XRD pattern of the rGO@Sb–Ni framework after TGA. 

The observed crystalline phase can be indexed to tetragonal NiSb2O6 (JCPDS no. 86-0110), in 

agreement with the feeding ratios of SbCl3 and K2Ni(CN)4 reactants (molar ratio of Sb:Ni is 2:1). Thus, 

the rGO contents in these ternary frameworks can be calculated to be 26 wt% (20GO), 33 wt% (40GO), 

and 45 wt% (80GO), respectively, based on the following equation: 
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Figure S8 Coulombic efficiencies versus cycle numbers for the rGO@Sb–Ni and Sb–Ni frameworks. 

 

The Coulombic efficiencies of the rGO@Sb–Ni and Sb–Ni frameworks have been demonstrated 

(Figure S8). As can be seen, the initial Coulombic efficiency of the rGO@Sb–Ni (40GO) framework 

is 60%, higher than those of rGO@Sb–Ni (20GO) (59%), rGO@Sb–Ni (80GO) (49%), and Sb–Ni 

(54%) frameworks. Their initial capacity loss is mainly due to the irreversible formation of solid 

electrolyte interface (SEI) layer (Na+ + e- + electrolyte → SEI layer). Additionally, the average 

Coulombic efficiency of the optimal rGO@Sb–Ni (40GO) sample is 96.7% from 2 to 100 cycles, 

higher than those of rGO@Sb–Ni (20GO) (96.3%) and rGO@Sb–Ni (80GO) (96.4%) samples. 
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Figure S9 The equivalent circuit model for the fitting of impedance plots. 

 

 

 

 

 

 

 

 

 

 

Figure S10 STEM-EDX elemental mapping of the CNT@Sb–Ni framework. 
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Figure S11 STEM-EDX elemental mapping of the CB@Sb–Ni framework. 
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Figure S12 TGA curves of the CNT@Sb–Ni (curve a) and CB@Sb–Ni (curve b) framework materials. 
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Figure S13 Nyquist plots of the rGO@Sb–Ni, CNT@Sb–Ni, CB@Sb–Ni, and bare Sb–Ni 

frameworks after the first cycle at a charged state (2.5 V vs. Na+/Na).  
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Table S1. Comparison of the sodium storage performance between the rGO@Sb–Ni framework 

electrode and previously reported Sb-based anodes prepared by integrating Sb with transition-metals 

and/or carbon additives (CB, CNT, and graphene). 

 

Active materials 
Cycling stability 

(mAh g-1) 

Rate capability 

(mAh g-1) 
Ref 

rGO@Sb–Ni network 
463 at 100 mA g-1 (100 cycles) 

210 at 5000 mA g-1 (500 cycles) 

~530 at 200 mA g-1 

~498 at 500 mA g-1 

~468 at 1000 mA g-1 

This 

work 

3-D Sb/NiSb/Ni electrode 391 at 66 mA g-1 (300 cycles)  1 

3D interconnected NiSb 

hollow nanospheres 

500 at 60 mA g-1 (70 cycles) 

230 at 6000 mA g-1 (150 cycles) 

~500 at 120 mA g-1 

~400 at 600 mA g-1 
2 

Cu2Sb/Cu electrode 270 at 800 mA g-1 (200 cycles) 
288.2 at 200 mA g-1 

267.9 at 2000 mA g-1 
3 

FeSb2 electrode 440 at 300 mA g-1 (130 cycles) 
~515 at 72 mA g-1 

~490 at 300 mA g-1 
4 

Sb/acetylene black composite 473 at 100 mA g-1 (70 cycles) 
420 at 200 mA g-1 

281 at 800 mA g-1 
5 

Sb/MWCNT nanocomposite ~400 at 200 mA g-1 (120 cycles) 

449 at 200 mA g-1 

401 at 500 mA g-1 

350 at 1000 mA g-1 

6 

Sb/multilayer graphene hybrid 406 at 100 mA g-1 (200 cycles) 

456 at 200 mA g-1 

428 at 500 mA g-1 

382 at 1000 mA g-1 

7 

I-Sb/rGO nanocomposite 173 at 500 mA g-1 (150 cycles) 

243 at 200 mA g-1 

213 at 500 mA g-1 

188 at 1000 mA g-1 

8 

G@NiSb/Sb@Ni-foam 305 at 300 mA g-1 (100 cycles) 

435 at 200 mA g-1 

371 at 500 mA g-1 

315 at 1000 mA g-1 

9 

Cu2Sb–Al2O3–C ~200 at 100 mA g-1 (70 cycles) 
230 at 500 mA g-1 

215 at 1000 mA g-1 
10 

FeSb–TiC–C nanocomposite 210 at 100 mA g-1 (60 cycles) 
~190 at 500 mA g-1 

~184 at 1000 mA g-1 
11 
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Table S2. The fitting results of RΩ and RCT (Ω) of the rGO@Sb–Ni networks and Sb–Ni networks 

from EIS tests. 

 

 
rGO@Sb–Ni 

(40GO) 
rGO@Sb–Ni 

(20GO) 
rGO@Sb–Ni 

(80GO) 
Sb–Ni 

RΩ 13.2 16.3 14.4 44.8 
RCT 33.4 65.1 46.5 333.3 

 

 

 

 

 

 

Table S3. The fitting results of RΩ and RCT (Ω) of the rGO@Sb–Ni network in comparison with 

CNT@Sb–Ni, CB@Sb–Ni, and Sb–Ni networks from EIS tests. 

 

 rGO@Sb–Ni CNT@Sb–Ni CB@Sb–Ni Sb–Ni 
RΩ 13.2 17.5 23.5 44.8 
RCT 33.4 93.7 108.2 333.3 
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