Supplementary Information

Cyanogel-Enabled Homogeneous Sb–Ni–C Ternary Framework Electrodes for Enhanced Sodium Storage

Ping Wu,^{†,‡} Anping Zhang,[‡] Lele Peng,[†] Fei Zhao,[†] Yawen Tang,[‡] Yiming Zhou,[‡] and Guihua Yu,^{*,†}

[†]Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States

[‡]Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

*E-mail: <u>ghyu@austin.utexas.edu</u> (G.Y.).

Figure S1 XRD pattern of the Sb–Ni framework.

Figure S2 Nitrogen adsorption/desorption isotherms (a) and pore size distribution from the desorption branch (b) of the Sb–Ni framework material.

Figure S3 Nitrogen adsorption/desorption isotherms (a) and pore size distribution from the desorption branch (b) of the rGO@Sb–Ni ternary framework.

Figure S4 SEM images of the rGO@Sb–Ni framework.

Figure S5 STEM-EDX elemental mappings of the rGO@Sb-Ni framework.

Figure S6 TEM image of the rGO–Sb–Ni composite prepared using NiCl₂ instead of K₂Ni(CN)₄ with other conditions unchanged.

Figure S7 XRD pattern of the rGO@Sb-Ni framework after TGA.

As seen from TGA curves (Figure 3f), the weight variation of rGO@Sb–Ni frameworks can be mainly attributed to the oxidation of Sb–Ni alloy and rGO components during TGA tests. The oxidation of Sb–Ni alloy leads to a weight increase, while the removal of rGO leads to a weight decrease of the products. Figure S7 shows the XRD pattern of the rGO@Sb–Ni framework after TGA. The observed crystalline phase can be indexed to tetragonal NiSb₂O₆ (JCPDS no. 86-0110), in agreement with the feeding ratios of SbCl₃ and K₂Ni(CN)₄ reactants (molar ratio of Sb:Ni is 2:1). Thus, the rGO contents in these ternary frameworks can be calculated to be 26 wt% (20GO), 33 wt% (40GO), and 45 wt% (80GO), respectively, based on the following equation:

$$rGO(wt\%) = 100 - Sb-Ni(wt\%)$$

= 100 - 100 × $\frac{\text{molecular weight of 2Sb and Ni}}{\text{molecular weight of NiSb_2O_6}}$ × $\frac{\text{final weight of NiSb_2O_6}}{\text{initial weight of rGO@Sb-Ni}}$

Figure S8 Coulombic efficiencies versus cycle numbers for the rGO@Sb-Ni and Sb-Ni frameworks.

The Coulombic efficiencies of the rGO@Sb–Ni and Sb–Ni frameworks have been demonstrated (Figure S8). As can be seen, the initial Coulombic efficiency of the rGO@Sb–Ni (40GO) framework is 60%, higher than those of rGO@Sb–Ni (20GO) (59%), rGO@Sb–Ni (80GO) (49%), and Sb–Ni (54%) frameworks. Their initial capacity loss is mainly due to the irreversible formation of solid electrolyte interface (SEI) layer (Na⁺ + e⁻ + electrolyte \rightarrow SEI layer). Additionally, the average Coulombic efficiency of the optimal rGO@Sb–Ni (40GO) sample is 96.7% from 2 to 100 cycles, higher than those of rGO@Sb–Ni (20GO) (96.3%) and rGO@Sb–Ni (80GO) (96.4%) samples.

Figure S9 The equivalent circuit model for the fitting of impedance plots.

Figure S10 STEM-EDX elemental mapping of the CNT@Sb–Ni framework.

Figure S11 STEM-EDX elemental mapping of the CB@Sb–Ni framework.

Figure S12 TGA curves of the CNT@Sb–Ni (curve *a*) and CB@Sb–Ni (curve *b*) framework materials.

Figure S13 Nyquist plots of the rGO@Sb–Ni, CNT@Sb–Ni, CB@Sb–Ni, and bare Sb–Ni frameworks after the first cycle at a charged state (2.5 V *vs.* Na⁺/Na).

Table S1. Comparison of the sodium storage performance between the rGO@Sb–Ni framework electrode and previously reported Sb-based anodes prepared by integrating Sb with transition-metals and/or carbon additives (CB, CNT, and graphene).

Active materials	Cycling stability (mAh g ⁻¹)	Rate capability (mAh g ⁻¹)	Ref
rGO@Sb–Ni network	463 at 100 mA g ⁻¹ (100 cycles) 210 at 5000 mA g ⁻¹ (500 cycles)	~530 at 200 mA g ⁻¹ ~498 at 500 mA g ⁻¹ ~468 at 1000 mA g ⁻¹	This work
3-D Sb/NiSb/Ni electrode	391 at 66 mA g ⁻¹ (300 cycles)		1
3D interconnected NiSb hollow nanospheres	500 at 60 mA g ⁻¹ (70 cycles) 230 at 6000 mA g ⁻¹ (150 cycles)	~500 at 120 mA g ⁻¹ ~400 at 600 mA g ⁻¹	2
Cu ₂ Sb/Cu electrode	270 at 800 mA g ⁻¹ (200 cycles)	288.2 at 200 mA g ⁻¹ 267.9 at 2000 mA g ⁻¹	3
FeSb ₂ electrode	440 at 300 mA g ⁻¹ (130 cycles)	\sim 515 at 72 mA g ⁻¹ \sim 490 at 300 mA g ⁻¹	4
Sb/acetylene black composite	473 at 100 mA g ⁻¹ (70 cycles)	420 at 200 mA g ⁻¹ 281 at 800 mA g ⁻¹	5
Sb/MWCNT nanocomposite	~400 at 200 mA g ⁻¹ (120 cycles)	449 at 200 mA g ⁻¹ 401 at 500 mA g ⁻¹ 350 at 1000 mA g ⁻¹	6
Sb/multilayer graphene hybrid	406 at 100 mA g ⁻¹ (200 cycles)	456 at 200 mA g ⁻¹ 428 at 500 mA g ⁻¹ 382 at 1000 mA g ⁻¹	7
I-Sb/rGO nanocomposite	173 at 500 mA g ⁻¹ (150 cycles)	243 at 200 mA g ⁻¹ 213 at 500 mA g ⁻¹ 188 at 1000 mA g ⁻¹	8
G@NiSb/Sb@Ni-foam	305 at 300 mA g ⁻¹ (100 cycles)	435 at 200 mA g ⁻¹ 371 at 500 mA g ⁻¹ 315 at 1000 mA g ⁻¹	9
Cu ₂ Sb-Al ₂ O ₃ -C	~200 at 100 mA g ⁻¹ (70 cycles)	230 at 500 mA g ⁻¹ 215 at 1000 mA g ⁻¹	10
FeSb–TiC–C nanocomposite	210 at 100 mA g ⁻¹ (60 cycles)	~190 at 500 mA g ⁻¹ ~184 at 1000 mA g ⁻¹	11

Table S2. The fitting results of R_{Ω} and R_{CT} (Ω) of the rGO@Sb–Ni networks and Sb–Ni networks from EIS tests.

	rGO@Sb-Ni (40GO)	rGO@Sb-Ni (20GO)	rGO@Sb-Ni (80GO)	Sb–Ni
R_{Ω}	13.2	16.3	14.4	44.8
R CT	33.4	65.1	46.5	333.3

Table S3. The fitting results of R_{Ω} and R_{CT} (Ω) of the rGO@Sb–Ni network in comparison with CNT@Sb–Ni, CB@Sb–Ni, and Sb–Ni networks from EIS tests.

	rGO@Sb-Ni	CNT@Sb-Ni	CB@Sb-Ni	Sb–Ni
R_{Ω}	13.2	17.5	23.5	44.8
R CT	33.4	93.7	108.2	333.3

References

- Lee, C. W.; Kim, J. C.; Park, S.; Song, H. J.; Kim, D. W. Highly Stable Sodium Storage in 3-D Gradational Sb–NiSb–Ni Heterostructures. *Nano Energy* 2015, *15*, 479–489.
- (2) Liu, J.; Yang, Z.; Wang, J.; Gu, L.; Maier, J.; Yu, Y. Three-Dimensionally Interconnected Nickel– Antimony Intermetallic Hollow Nanospheres as Anode Material for High-Rate Sodium-Ion Batteries. *Nano Energy* 2015, *16*, 389–398.
- (3) Wang, L. B.; Wang, C.; Zhang, N.; Li, F.; Cheng, F.; Chen, J. High Anode Performance of in Situ Formed Cu₂Sb Nanoparticles Integrated on Cu Foil via Replacement Reaction for Sodium-Ion Batteries. ACS Energy Lett. 2017, 2, 256–262.
- (4) Darwiche, A.; Toiron, M.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Performance and Mechanism of FeSb₂ as Negative Electrode for Na-Ion Batteries. *J. Power Sources* 2015, 280, 588–592.
- (5) Hou, H.; Yang, Y.; Zhu, Y.; Jing, M.; Pan, C.; Fang, L.; Song, W.; Yang, X.; Ji, X. An Electrochemical Study of Sb/Acetylene Black Composite as Anode for Sodium-Ion Batteries. *Electrochim. Acta* 2014, 146, 328–334.
- (6) Zhou, X.; Dai, Z.; Bao, J.; Guo, Y. G. Wet Milled Synthesis of an Sb/MWCNT Nanocomposite for Improved Sodium Storage. J. Mater. Chem. A 2013, 1, 13727–13731.
- (7) Hu, L.; Zhu, X.; Du, Y.; Li, Y.; Zhou, X.; Bao, J. A Chemically Coupled Antimony/Multilayer Graphene Hybrid as a High-Performance Anode for Sodium-Ion Batteries. *Chem. Mater.* 2015, 27, 8138–8145.
- (8) Wan, F.; Lu, H. Y.; Zhang, X. H.; Liu, D. H.; Zhang, J. P.; He, X.; Wu, X. L. The in-Situ-Prepared Micro/Nanocomposite Composed of Sb and Reduced Graphene Oxide as Superior Anode for Sodium-Ion Batteries. J. Alloys Compd. 2016, 672, 72–78.
- (9) Ding, Y. L.; Wu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. Graphene-Protected 3D Sbbased Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage. *Small* 2015, *11*, 6026–6035.
- (10)Kim, I. T.; Allcorn, E.; Manthiram, A. High-Performance M_xSb–Al₂O₃–C (M=Fe, Ni, and Cu) Nanocomposite-Alloy Anodes for Sodium-Ion Batteries. *Energy Technol.* 2013, *1*, 319–326.
- (11)Kim, I. T.; Allcorn, E.; Manthiram, A. High-Performance FeSb–TiC–C Nanocomposite Anodes for Sodium-Ion Batteries. *Phys. Chem. Chem. Phys.* 2014, *16*, 12884–12889.