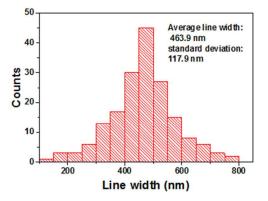
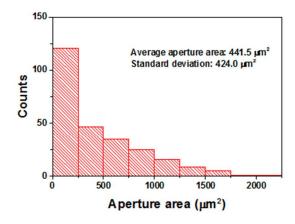
## **Supporting Information**

## High-Performance Transparent Conducting Metal Network Electrodes for Perovksite Photodetectors

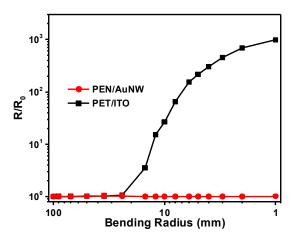
*Jie Yang*<sup> $\dagger$ ‡</sup>, *Chunxiong Bao*<sup> $\delta$ ‡</sup>, *Kai Zhu*<sup> $\dagger$ </sup>, *Tao Yu*<sup> $\delta$ </sup> and *Qingyu Xu*<sup> $\dagger$ </sup>, *S*<sup> $\dagger$ </sup>


<sup>†</sup>School of Physics, Southeast University, Nanjing 211189, China

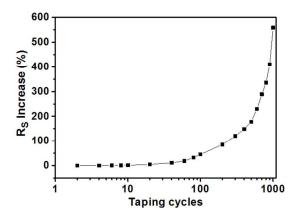
<sup>§</sup>National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093,


China

<sup>‡</sup>These authors contributed equally to the work.


\* Address correspondence to xuqingyu@seu.edu.cn




*Figure S1* The line width distribution of the Au network with the average width 463.9 nm and the standard deviation 117.9 nm.



*Figure S2* The Au network aperture distribution with the average aperture area 441.5  $\mu$ m<sup>2</sup> and the standard deviation 424.0  $\mu$ m<sup>2</sup>.



*Figure S3 Resistance increase of the Au network/PEN and ITO/PET transparent electrodes under different bending radii.* 



*Figure S4 The adhesion of the Au/Ti network on the PEN substrate.* 



**Figure S5** a) the cross profile of the Au network based CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> photodetector and b) Top-view SEM image of the CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> film on Au network transparent electrode.

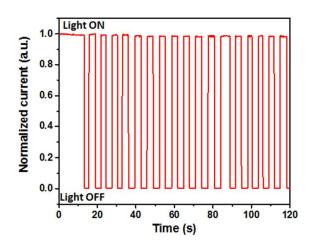



Figure S6 The stability of the Au network electrode based perovskite photodetector when exposed with chopped light for 120 s.