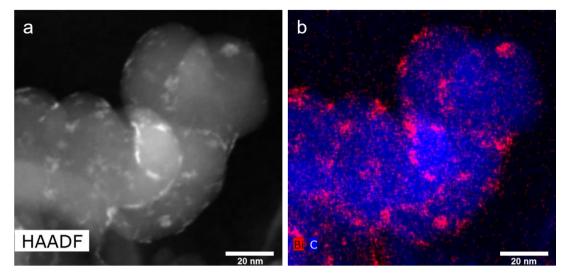
Supporting Information

Selective Electrochemical Production of Formate from Carbon Dioxide with Bismuth-Based Catalysts in an Aqueous Electrolyte


Chan Woo Lee,^{†,§} Jung Sug Hong,[†] Ki Dong Yang,[†] Kyoungsuk Jin,[†] Jun Ho Lee,[†] Hyo-Yong Ahn,[†] Hongmin Seo,[†] Nark-Eon Sung,[‡] and Ki Tae Nam^{*,†}

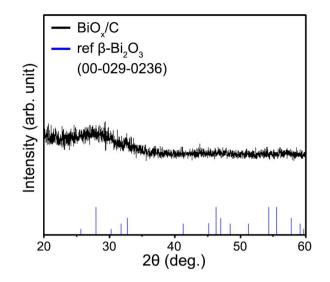
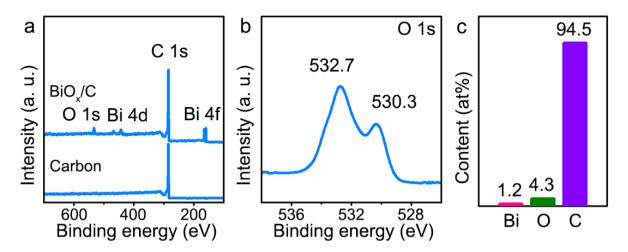
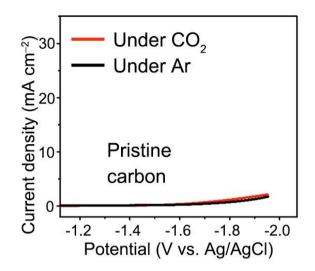
[†]Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea

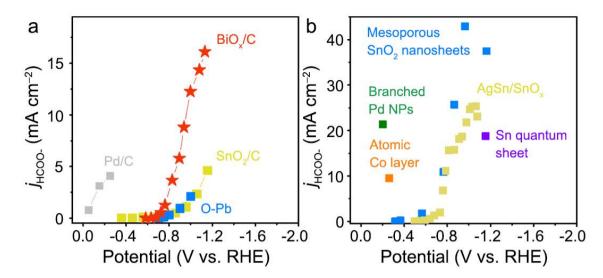
[‡]Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea [§]Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro

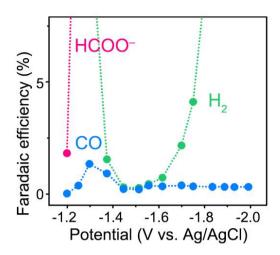
14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea

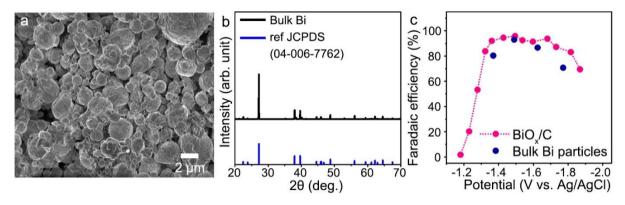
*Correspondence to: nkitae@snu.ac.kr

Figure S1. (a) STEM image and (b) EDS elemental mapping of the synthesized BiO_x/C.


Figure S2. The XRD patterns of the synthesized BiO_x/C .


Figure S3. (a) Survey XPS and (b) O 1s spectra of the BiO_x/C . (c) Atomic percentages of Bi, O, and C measured by XPS.


Figure S4. Cathodic linear sweep voltammetric scans of carbon black on glassy carbon plate electrode at 50 mV s⁻¹ in 0.5 M NaHCO₃/0.5 M NaClO₄ under CO₂ and Ar.

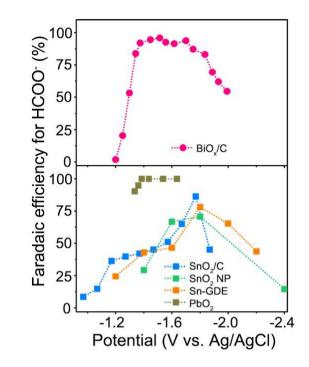

Figure S5. Comparison with reported HCOO⁻ catalysts. Data of the reported catalysts were extracted or collected from the previous literatures. The Figure S5(a) includes Pd/C, SnO₂/C and PbO₂ particle film for the comparison. The Figure S5(b) includes the current state of the art catalysts for HCOO⁻ production.

Figure S6. An enlarged view of potential dependence of faradaic efficiencies for $HCOO^-$, H_2 and CO production.

Figure S7. (a) Typical FESEM images and (b) XRD patterns of bulk Bi particles. (c) The faradaic efficiency of bulk Bi particles for HCOO⁻ at various potentials.

Figure S8. Potential dependence of faradaic efficiency for $HCOO^-$ and comparison with SnO_2/C , SnO_2 NP, Sn-GDE and PbO₂. Data were extracted or collected from the previous literatures.

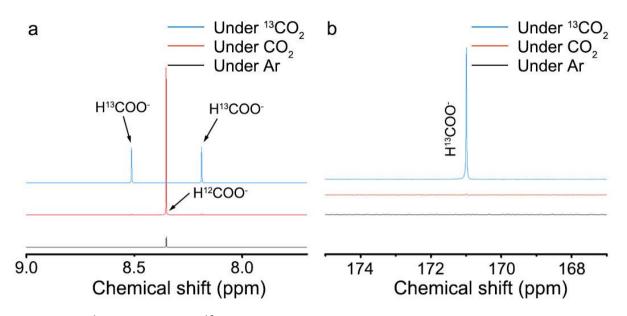
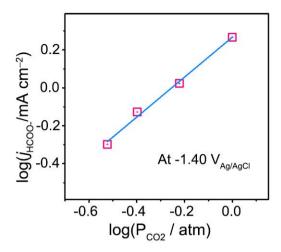
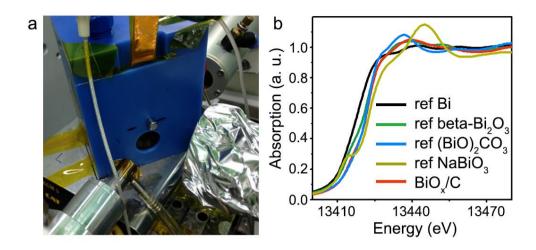
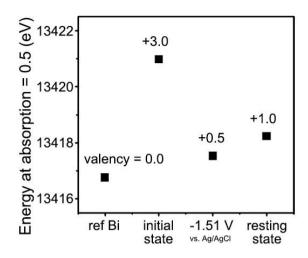
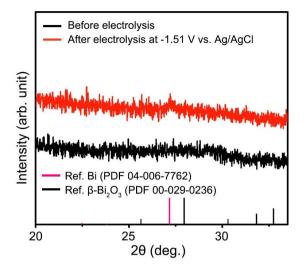
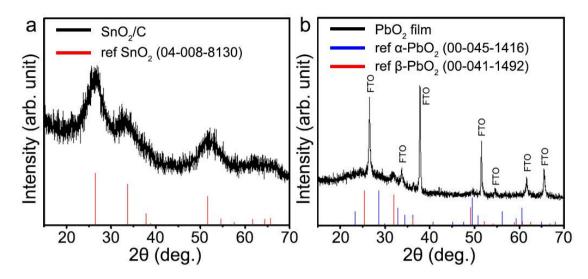
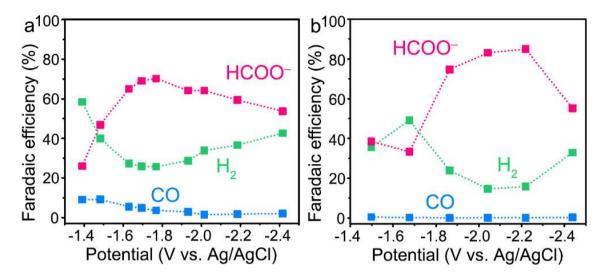




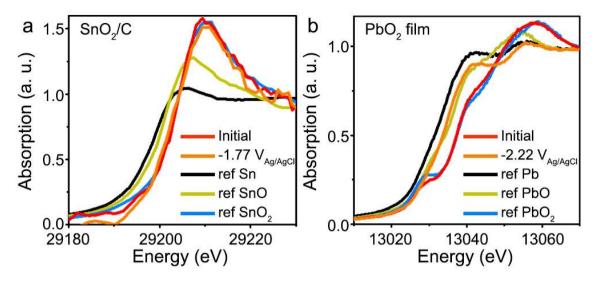
Figure S9. (a) ¹H NMR and (b) ¹³C NMR spectra of the resultant solutions after bulk electrolysis at


-1.51 V vs. Ag/AgCl under CO₂, Ar and ¹³CO₂ flow.


Figure S10. Plot of the partial current density for HCOO⁻ as a function of the CO₂ partial pressure at the fixed potential. The CO₂ partial pressure was controlled by changing the ratio of the CO₂ and Ar flows (20 cc min⁻¹ in total).


Figure S11. (a) A picture of in situ XANES cell. (b) Normalized Bi L₃-edge XANES spectra of reference Bi, β -Bi₂O₃, Bi₂O₂CO₃, NaBiO₃ and BiO_x/C.


Figure S12. Average Bi valencies of Bi metal and BiO_x/C at the initial state, -1.51 V vs. Ag/AgCl and resting state.


Figure S13. XRD patterns of BiO_x/C before and after electrolysis at -1.51 V vs. Ag/AgCl. Bar graphs at the bottom represent the referenced XRD patterns of Bi metal (pink) and β -Bi₂O₃ (black).

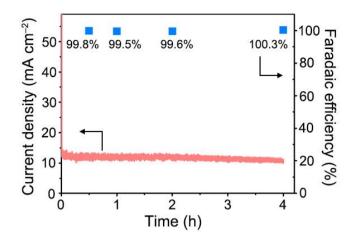

Figure S14. XRD patterns of (a) SnO₂/C powder and (b) PbO₂ film which were synthesized using the experimental methods reported from previous literatures. For XRD analysis, the PbO₂ film was electrodeposited on FTO glass. Bar graphs at the bottom represent the referenced XRD patterns of SnO₂, α -PbO₂ and β -PbO₂.

Figure S15. Potential dependence of Faradaic efficiencies for $HCOO^-$, H_2 , and CO production in CO₂-saturated 0.1 M NaHCO₃/0.9 M NaClO₄ on (a) SnO₂/C and (b) PbO₂ film electrodes. The SnO₂/C was dispersed in ethanol with Nafion and drop-coated on a glassy carbon plate. The PbO₂ film was directly electrodeposited on a glassy carbon plate electrode.

Figure S16. (a) Normalized Sn K-edge XANES spectra of ref Sn, ref SnO₂, ref SnO₂, and SnO₂/C at the initial state and -1.77 V vs. Ag/AgCl. (b) Normalized Pb L3-edge XANES spectra of ref Pb, ref PbO₂, ref PbO₂, and PbO₂ film at the initial state and -2.22 V vs. Ag/AgCl. The electrolysis was conducted at the potentials achieving a maximum faradaic efficiency for HCOO⁻.

Figure S17. Total current densities and Faradaic efficiencies for $HCOO^-$ as a function of time at -1.65 V vs. Ag/AgCl in 0.5 M NaCl.

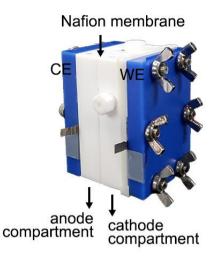


Figure S18. A picture of CO_2 reduction cell used in this study. The cell consists of cathode and anode compartments with a piece of Nafion membrane. The working and counter electrodes are inserted between white and blue plates. The separator is inserted between two compartments.