Supporting Information

Unravelling the Electronic State of NO₂ Product in Ultrafast Photodissociation of Nitromethane

Shunsuke Adachi[†], Hiroshi Kohguchi[‡], Toshinori Suzuki^{†,*}

[†]Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

[‡]Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-

3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan

Corresponding Author: suzuki@kuchem.kyoto-u.ac.jp

Time profiles of photoelectron intensity for the lower eBE region: Figure S1 shows time profiles of photoelectron intensity observed at eBE = 5.4, 6.5, and 8.1 eV. From calculated vertical excitation energies¹ for $S_3 \leftarrow S_0$, $S_2 \leftarrow S_0$, and $S_1 \leftarrow S_0$, the signal at eBE = 5.4 eV is assigned to be the S₃ state, while the other two are attributed to the S₂ and/or S₁ states.

Figure S1. Time profiles of photoelectron intensity at eBE = 5.4, 6.5, and 8.1 eV.

¹ M. Isegawa, F. Liu, S. Maeda, and K. Morokuma, J. Chem. Phys. 140, 244310 (2014).

Pump-probe photoelectron spectra for negative and positive delays: Figure S2 shows pumpprobe photoelectron spectra in the higher eBE region averaged for negative ($-1400 \sim -400$ fs, black) and positive (+1000 fs, red) time delays. These two represent a photoelectron spectrum before and after the dissociation, respectively, and dissociation probability is evaluated to be 1.0% from them.

Figure S2. Photoelectron spectra averaged for negative $(-1400 \sim -400 \text{ fs}, \text{ black})$ and positive (+1000 fs, red) time delays.

Reproduced spectra by simpler models: The experimental spectrum was reproduced using the full (NM, CH₃, NO₂(X), and NO₂(A)) and two simpler (NM, CH₃, and NO₂(X); NM, CH₃, and NO₂(A)) models in Fig. S3. It was found that the full model fits the experimental spectrum much better ($R^2 = 0.97$) than the simpler models assuming three species ($R^2 = 0.84$ for NM, CH₃, and NO₂(X); $R^2 = 0.93$ for NM, CH₃, and NO₂(A)).

Figure S3. Reproduced spectra by full and simpler models.

Goodness of the fit: In Fig. S4, the goodness of the fit was evaluated by the root mean square (RMS) error, as fixed the dissociation time constant τ_{diss} to various values. The RMS error increases monotonically for $\tau_{diss} > 50$ fs, and therefore τ_{diss} is reasonably considered to be ≤ 50 fs.

Figure S4. Goodness of the fit.