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Supplementary Experimental Section: 

Chemicals and reagents. 4-Phenoxyphenol (POP, ≥98%) was obtained from Aladdin 

(Shanghai, China). 5-Tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO, 

99%), horseradish peroxidase (POD, 99%), N,N-diethyl-p-phenylenediamine sulfate 

(DPD, 98%) and 2-chlorophenol (2-CP, ≥99%) were purchased from Sigma-Aldrich 

(St. Louis, USA). Bisphenol A (BPA, ≥99%) was obtained from Acros (Geel, 

Belgium). Hydrogen peroxide (H2O2, 30%, w/w), graphite powder (99.85%) and all 

of the other chemicals (analytical grade) were purchased from Sinopharm Chemical 

Reagent Co. (Shanghai, China). Deionized water was used throughout this study. 

 

Synthesis of GO. Graphene oxide (GO) was prepared by a modified Hummers 

method through oxidation of graphite powder.
1, 2

 Typically, 5.0 g graphite was placed 

into 115 mL of cold concentrated H2SO4 solution in an ice bath below 0 °C. Then, 

25.0 g NaNO3 was added to the solution, which was magnetically stirred for 30 min. 

KMnO4 (15.0 g) was then gradually added to the above mixture under stirring, and the 

temperature of the mixture was kept below 0 °C for 3.0 h. The mixture was then 

transferred to a water bath and magnetically stirred at 38 °C for 30 min. After that, 

250 mL deionized water was slowly added to the mixture under stirring, and the 

temperature of the mixture was raised to 95 °C. After reacting for 1.0 h, 50 mL H2O2 

(30 wt%) was added into the above solution to quench the reaction and produce a 

golden-brown solution. The sample was subsequently washed with diluted HCl 

solution and deionized water dozens of times via centrifugation until the pH of the 

washing solution was ~6. Finally, the product was dried at 70 °C to obtain the solid 

GO sample. 
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Characterization. Powder X-ray diffraction (XRD) patterns of all samples were 

recorded in the range of 5−90°(2θ) on a Scintag-XDS-2000 diffractometer with Cu 

Kα radiation (λ = 1.540598 Å) operating at 40 kV and 40 mA. The structure and 

morphology of POP-rGO NSs were observed by high-resolution transmission electron 

microscopy (HRTEM, JEOL-2010), using an acceleration voltage of 200 kV. IR 

spectra of the samples, as KBr pellets, were recorded in the range of 4000-400 cm
−1

 

using a Nicolet 8700 FTIR spectrophotometer (Thermo Fisher Scientific Inc., USA). 

Raman spectra were recorded on a LabRAM HR Evolution (HORIBA, France) 

equipped with a CCD detector using a laser source at an excitation line of 532 nm. 

X-ray photoelectron spectroscopy (XPS) data were recorded on an AXIS-Ultra 

instrument using monochromatic Al Kα radiation (225 W, 15 mA, 15 kV) and 

low-energy electron flooding for charge compensation. The binding energies were 

calibrated using the C1s hydrocarbon peak at 284.8 eV. Electron paramagnetic 

resonance (EPR) spectra of the solid samples were obtained using a Bruker model 

A300-10/12 electron paramagnetic resonance spectrometer. The solid-state 
13

C direct 

single pulse magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra 

were recorded on a JNM-ECZ600R NMR spectrometer. The samples were packed 

into a 3.2 mm rotor and spun at 12 kHz using 5 s relaxation delays. 

 

Detection of 

OH and O2

−
 EPR signals. BMPO-trapped EPR signals were detected 

in different air-saturated methanol/aqueous dispersions of the corresponding samples 

using a Bruker A300-10/12 EPR spectrometer at room temperature. Typically, in the 

absence of H2O2, 0.05 g of the prepared powder sample was added to 1 mL of water 

(for detecting 

OH) or water/methanol (10:90, v/v, for detecting O2

−
). Then, 20 μL of 

BMPO (250 mM) was added, and the solution was allowed to stand for 5 min. The 



S4 

 

solution was then sucked into a capillary for detection. In the presence of H2O2, 0.01 g 

of the prepared powder sample was added to 1 mL of water (for detecting 

OH) or 

methanol (for detecting O2
−

). Then, 90 μL of the above suspension, 5 μL of BMPO 

(250 mM), and 5 μL of H2O2 (30%, w/w) were mixed and allowed to stand for 5 min. 

The solution was than sucked into a capillary tube to carry out EPR detection. 

 

DFT calculations. The models of different graphene fragments with an O atom 

located in different positions were created using GaussView 5.0. The dangling bonds 

of the edge atoms were terminated with H atoms to obtain a neutral cluster. All 

calculations were performed with the Gaussian 09 program. The B3LYP/6-31g(d) 

method was used to optimize the models. The ESP distributions were constructed 

with GaussView 5.0 on the basis of the B3LYP/6-31g(d)-optimized results. Due to the 

size and edge effects, the properties estimated with the finite-size model may vary 

from those of the real system to some extent. However, it can be expected that the 

results obtained with the current model would be qualitatively reliable in predicting 

the local chemical properties. 
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Supplementary Figures: 
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Figure S1. Structure of 4-phenoxyphenol (POP, p-hydroxydiphenyl ether), 

2-chlorophenol (2-CP) and bisphenol A (BPA). 
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Figure S2. Effect of (a) catalyst concentration and (b) H2O2 dosage on 2-CP 

degradation in the POP-rGO NSs suspension. Reaction conditions: initial pH 6.5, 

initial 2-CP 10 ppm, initial H2O2 10 mM (for a), catalyst 0.4 g L
-1

 (for b). 
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Figure S3. TEM images of POP-rGO NSs. (a) and (b) low magnifications. (c) and (d) 

high magnifications. The inset is the resultant SAED pattern. 
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Figure S4. XRD patterns of the prepared samples. 
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Figure S5. XPS spectra in (a) O1s and (b) C1s of GO; in (c) O1s and (d) C1s of rGO. 
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Figure S6. (a) O1s XPS spectra of POP-rGO NSs. (b) O1s and (c) C1s XPS spectra of 

condensation polymer of POP (POP-CP). 
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Figure S7. Schematic structure of C-O-C of (a) rGO and (b) POP-rGO NSs. 
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Figure S8. FTIR spectra of POP and the condensation polymer of POP (POP-CP). 
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Figure S9. Illustrations for synthesis routes of GO, rGO and POP-rGO NSs and their 

model structures (The graphene substrate is an infinitely extended structure. The 

connection between graphene and POP in the illustration does not represent the edge 

modification). 
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Figure S10. Electric charges for the O and C atoms of POP-rGO NSs via DFT 

calculations. 
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Table S1. HOMO, LUMO, and HOMO–LUMO energy gap of α electrons and β 

electrons for POP molecule, graphene (with -OH) and POP-rGO NSs (Unit/eV) 
a
 

Model fragment POP molecule Graphene (-OH) POP-rGO NSs 

Electrons α β α β α β 

HOMO –5.90 –5.90 –4.08 –6.09 –4.90 –5.95 

LUMO –0.30 –0.30 –0.21 –2.21 –1.36 –2.73 

HOMO–LUMO gap 5.60 5.60 3.87 3.88 3.54 3.22 

a
 HOMO–LUMO gap is the difference between LUMO and HOMO energy levels. 

  



S16 

 

 

 

 

Figure S11. The complexation forms of the electron-poor site C in C-O-C of 

POP-rGO NSs with water and pollutants. 
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Figure S12. The obtained H2O2 absorbing models on the graphene (with surface ether 

C-O-C) through DFT calculation. 
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Figure S13. EPR spectra of the (a) rGO and (b) POP-rGO NSs solid samples before 

and after reaction with H2O2. 
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Figure S14. BMPO spin-trapping EPR spectra for (a)
 

OH in the rGO aqueous 

suspensions with H2O2 and pollutants, and (b) HO2

/O2

−
 in the rGO methanol 

dispersions with H2O2 and pollutants. 
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Figure S15. The kinetic curves of 2-CP degradation in various suspensions. Reaction 

conditions: initial pH 6.5, initial 2-CP 10 ppm, initial H2O2 10 mM, catalyst 0.4 g L
−1
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Figure S16. TOC removal curves during 2-CP degradation. Reaction conditions: 

initial pH 6.5 (nature pH), 2-CP 10 ppm, initial H2O2 10 mM, catalyst 0.4 g L
−1
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Figure S17. Effect of initial pH values for 2-CP degradation. Reaction conditions: 

2-CP 10 ppm, initial H2O2 10 mM, catalyst 0.4 g L
−1
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Figure S18. Reusability of POP-rGO NSs for 2-CP degradation. Reaction conditions: 

initial pH 6.5 (nature pH), 2-CP 10 ppm, initial H2O2 10 mM, catalyst 0.4 g L
−1

. 
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Supplementary Note: 

Calculation of utilization efficiency of H2O2. The complete mineralization of one 

mole 2-CP and BPA will theoretically consume 13 and 36 moles of H2O2, 

respectively (eqs. 1 and 2). 

C6H5OCl+13H2O2→6CO2+15H2O+HCl   (eq. 1) 

C15H16O2+36H2O2→15CO2+44H2O      (eq. 2) 

By measuring the TOC change in the pollutant solutions, the amounts of the 

mineralized organic pollutants were obtained, and the value of the stoichiometric 

H2O2 consumption ([ΔH2O2]S) for the mineralization of pollutants was calculated on 

the basis of eq. 1 and 2. The actual H2O2 consumption ([ΔH2O2]A) at different 

reaction time was measured using the DPD method.
3
 According to the reported 

method,
4
 The utilization efficiency of H2O2 (η) is defined as the ratio of the 

stoichiometric H2O2 consumption ([ΔH2O2]S) for the mineralization of pollutants to 

the actual H2O2 consumption ([ΔH2O2]A) in the Fenton-like reaction and is expressed 

in eq. 3: 

η= [ΔH2O2]S / [ΔH2O2]A                (eq. 3) 
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