Supporting Information for: Fabrication of

 Supramolecular Chirality from Achiral Molecules at the Liquid/Liquid Interface Studied by Second Harmonic GenerationLu Lin, ${ }^{\dagger, \ddagger}$ Zhen Zhang, ${ }^{\ddagger}$ Yuan Guo, ${ }^{*, \ddagger, \pi}$ and Minghua Liu ${ }^{*, \ddagger}$
\dagger National Center for Nanoscience and Technology, Beijing 100190, P. R. China \ddagger Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
【University of Chinese Academy of Sciences, Beijing 100049, P. R. China

E-mail: guoyuan@iccas.ac.cn; liumh@iccas.ac.cn

Fresnel Coefficients

In eq $1, a_{i}(i=1-7)$ denote the Fresnel coefficients, which can be expressed as:

$$
\begin{align*}
& a_{1}=L_{y y}(2 \omega) L_{z z}(\omega) L_{y y}(\omega) \sin \beta \\
& a_{2}=-2 L_{x x}(2 \omega) L_{z z}(\omega) L_{x x}(\omega) \cos ^{2} \beta \sin \beta \\
& a_{3}=L_{z z}(2 \omega) L_{x x}(\omega) L_{x x}(\omega) \cos ^{2} \beta \sin \beta \\
& a_{4}=L_{z z}(2 \omega) L_{z z}(\omega) L_{z z}(\omega) \sin ^{3} \beta \tag{1}\\
& a_{5}=L_{z z}(2 \omega) L_{y y}(\omega) L_{y y}(\omega) \sin \beta \\
& a_{6}=2 L_{x x}(2 \omega) L_{z z}(\omega) L_{y y}(\omega) \cos \beta \sin \beta \\
& a_{7}=2 L_{y y}(2 \omega) L_{z z}(\omega) L_{x x}(\omega) \cos \beta \sin \beta
\end{align*}
$$

with

$$
\begin{align*}
L_{x x}\left(\omega_{i}\right) & =\frac{2 n_{1}\left(\omega_{i}\right) \cos \gamma}{n_{1}\left(\omega_{i}\right) \cos \gamma+n_{2}\left(\omega_{i}\right) \cos \beta} \\
L_{y y}\left(\omega_{i}\right) & =\frac{2 n_{1}\left(\omega_{i}\right) \cos \beta}{n_{1}\left(\omega_{i}\right) \cos \beta+n_{2}\left(\omega_{i}\right) \cos \gamma} \tag{2}\\
L_{z z}\left(\omega_{i}\right) & =\frac{2 n_{2}\left(\omega_{i}\right) \cos \beta}{n_{1}\left(\omega_{i}\right) \cos \gamma+n_{2}\left(\omega_{i}\right) \cos \beta}\left(\frac{n_{1}\left(\omega_{i}\right)}{n^{\prime}\left(\omega_{i}\right)}\right)^{2}
\end{align*}
$$

In the above equations, n_{1} and n_{2} are the refractive indices of water and organic phase, n^{\prime} is the refractive index of the interfacial layer, β is the incident angle, and γ is the refracted angle. Here we choose $n_{1}(\omega)=1.329, n_{1}(2 \omega)=1.339$ and $n_{2}(\omega)=n_{2}(2 \omega)=1.445$. According to Zhuang et al. (Phys. Rev. B 1999, 59, 12632), $n^{\prime}=n_{1} \sqrt{\frac{n_{2}^{2}\left(n_{2}^{2}+5\right)}{4 n_{2}^{2}+2}}$.

Calculation of the Orientational Angle

The tensor elements $\chi_{z z z}, \chi_{z x x}, \chi_{x x z}$ and $\chi_{y x z}$ can be obtained by fitting the SHG curves. The fitting results are listed in Table S1.

We use $\chi_{z z z}, \chi_{z x x}$ and $\chi_{x x z}$ to calculate the orientational angle. By assuming $\beta_{c a a}=0$,

Table 1: Fitting results of the tensor elements.

Concentration (mM)	$\chi_{z z z}$	$\chi_{z x x}$	$\chi_{x x z}$	$\chi_{y x z}$
0.005	123.84	25.05	24.84	0.01
0.010	140.11	31.74	31.45	0.09
0.025	243.33	61.98	57.85	0.91
0.035	312.64	87.68	81.42	2.88
0.060	369.98	91.36	83.90	2.56
0.075	565.86	109.30	102.86	1.88
0.100	682.75	122.00	113.74	1.03
0.150	721.19	126.58	116.89	0.37
0.300	782.09	130.60	126.99	0.32

$\chi_{z x x}$ should be equal to $\chi_{x x z}$. As shown in Table S1, the values of $\chi_{z x x}$ are close to that of $\chi_{x x z}$. Therefore, it is reasonable to neglect $\beta_{c a a}$ for calculating the orientational angle. To minimize the error, we suppose:

$$
\begin{equation*}
\frac{\chi_{z z z}}{\chi_{z z z}+\chi_{z x x}+\chi_{x x z}} \approx \frac{\left\langle\cos ^{3} \theta\right\rangle}{\left\langle\cos ^{3} \theta\right\rangle+\left\langle\sin ^{2} \theta \cos \theta\right\rangle} \tag{3}
\end{equation*}
$$

Assuming θ has a very narrow distribution, we have:

$$
\begin{equation*}
\theta=\arccos \left(\sqrt{\frac{\chi_{z z z}}{\chi_{z z z}+\chi_{z x x}+\chi_{x x z}}}\right) \tag{4}
\end{equation*}
$$

We shall assess the error of the calculation. By assuming a narrow distribution of θ, we have:

$$
\begin{equation*}
\frac{\chi_{z z z}}{\chi_{z z z}+\chi_{z x x}+\chi_{x x z}}=\frac{\cos ^{2} \theta+\frac{\beta_{c a a}}{\beta_{c c c}} \sin ^{2} \theta\left\langle\cos ^{2} \psi\right\rangle}{1+\frac{\beta_{c a a}}{2 \beta_{c c c}}} \tag{5}
\end{equation*}
$$

The ratio of $\beta_{c a a}$ and $\beta_{c c c}$ can be estimated as:

$$
\begin{equation*}
\frac{\beta_{c a a}}{\beta_{c c c}} \approx \frac{\chi_{z x x}-\chi_{x x z}}{\left(\chi_{z x x}+\chi_{x x z}\right) \sin ^{2} \theta} \leq 0.15 \tag{6}
\end{equation*}
$$

At lower concentrations, ψ is randomly distributed. With increasing concentration, ψ approaches zero. It is thus reasonable to suggest $\frac{1}{2} \leq\left\langle\cos ^{2} \psi\right\rangle \leq 1$. Let $\theta=33^{\circ}$, then the
calculated value for θ lies between 33.4° and 34.7°. Therefore, the error of the calculated orientation is less than 2°.

Langmuir Fitting of Adsorption

According to the Langmuir adsorption model, we have

$$
\begin{equation*}
\frac{\chi_{z z z}}{\cos ^{3} \theta} \approx N_{s} \beta_{c c c}=A \frac{K c}{1+K c} \tag{7}
\end{equation*}
$$

where c is the bulk concentration, A and K are constants. The values of A and K can be obtained by fitting. Then the coverage can be calculated as $\frac{\chi_{z z z}}{A \cos ^{3} \theta}$.

