Supporting Information

Laser Printed In-plane Micro-supercapacitors: From Symmetric to

Asymmetric Structure

Gui-Wen Huang,^a Na Li,^a Yi Du,^{a,c} Qing-Ping Feng,^{a,*} Hong-Mei Xiao,^{a,*} Xing-Hua

Wu,^{a, c} and Shao-Yun Fu^b

^{*a*}Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing 100190, P. R. China

^bCollege of Aerospace Engineering, Chongqing University, Chongqing 400044, China

^cUniversity of Chinese Academy of Sciences

* Q. P. Feng. E-mail: fengqp@mail.ipc.ac.cn. * H. M. Xiao. E-mail: hmxiao@mail.ipc.ac.cn.

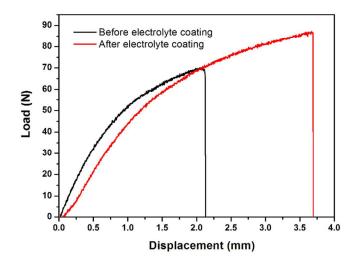


Figure S1. Tensile tests of the paper-based MSCs before and after electrolyte coating.

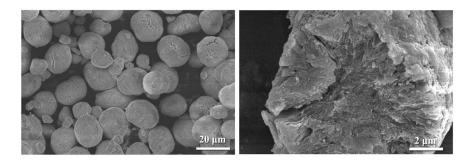
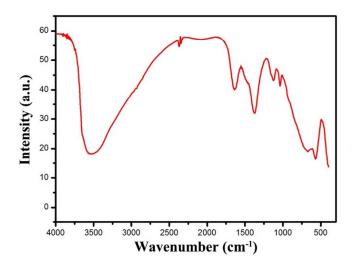
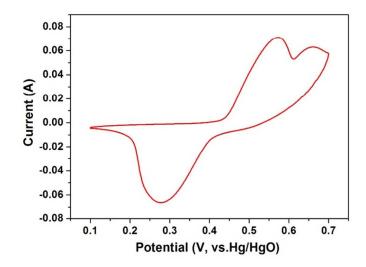
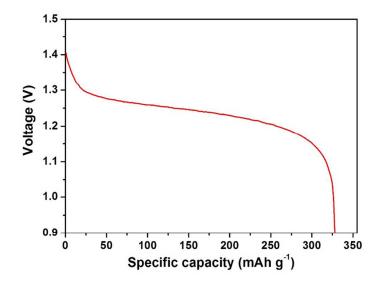
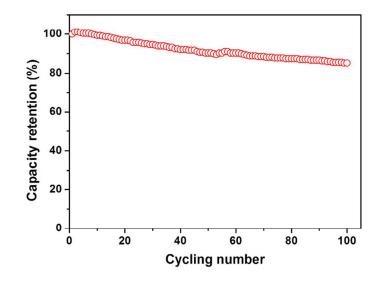


Figure S2. SEM images of the α -Ni(OH)₂ particles (left) and the internal structure of one particle (right).


Figure S3. FTIR spectrum of the synthesized a-Ni(OH)₂.

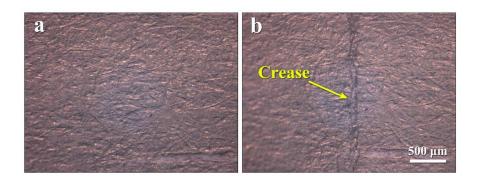

Figure S4. Cyclic voltammetry curves of the synthesized a-Ni(OH)₂ with scan rate of 1 mV S⁻¹.

Figure S5. Typical discharge curve of the a-Ni(OH)₂ with hydrogen storage alloy as counter electrode at discharge current density of 30 mA g⁻¹.

Figure S6. Cycling stability of the α -Ni(OH)₂ investigated at an applied current density of 300 mA g⁻¹.

Figure S7. Optical microscopy image of the Ag-NW circuit before (a) and after (b) folding.

Electrode materials	Capacity	Power density	Energy density	Reference
RuO _x	12.6 mF cm ⁻²	0.75 mW cm^{-2}	12.5 W h kg^{-1}	[41]
Graphene quantum dots	0.535 mF cm^{-2}	$7.5 \ \mu W \ cm^{-2}$	$0.074 \ \mu W \ h \ cm^{-2}$	[42]
CNT	0.43 mF cm^{-2}	10 mW cm ⁻²	$0.5 \ \mu W \ h \ cm^{-2}$	[43]
rGO	5.5 mF cm^{-2}	0.45 mW cm^{-2}	$0.388 \ \mu W \ h \ cm^{-2}$	This work
Ni(OH) ₂ /rGO	8.6 mF cm^{-2}	0.73 mW cm^{-2}	$0.669 \ \mu W \ h \ cm^{-2}$	This work

Table S1. Capacity, power density and energy density comparisons of in-plane micro-supercapacitors.