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S1 Analytic solution of the Poisson-Boltzmann equation

We describe the analytic solution of

εε0
d2ψ

dz2
= −e

∑
i

qic
b
i e
−qieψ/kBT−αiθ(z∗−z) for 0 < z, (S1)

with boundary conditions dψ/dz|z=0 = 0 and ψ(z → ∞) = 0. For the case of two ionic

species (i = +,−) the analytic solution is given by

ψ(z) =
2kBT

e
ln

1 + e−κ(z−z∗) tanh(Ψ∗/4)

1− e−κ(z−z∗) tanh(Ψ∗/4)
for z > z∗, (S2)

and

ψ(z) =
kBT

e

[
ln

1 + σdn(x(z)|m)

1− σdn(x(z)|m)
+ ∆Ψ

]
for 0 < z < z∗, (S3)

where κ =
√
e2(cb

+ + cb
−)/εε0kBT , Ψ∗ = eψ(z∗)/kBT , ∆Ψ = −(α+ − α−)/2, σ = sgn(α+ −

α−),

x(z) = − κ(z − z∗)
e(α++α−)/4

√
m

+ dn−1

(∣∣∣∣1− eΨ∗−∆Ψ

1 + eΨ∗−∆Ψ

∣∣∣∣) , (S4)

m =

[
cosh2

(
Ψ∗ −∆Ψ

2

)
− e

α++α−
2 sinh2

(
Ψ∗

2

)]−1

, (S5)

and dn(x|m) denotes the Jacobian elliptic function.S1 The boundary condition dψ/dz|z=0 = 0

leads to

x(0) = K(m), (S6)

which determines Ψ∗, where K(m) is the complete elliptic function of the first kind.S1 For

the case with more than two ionic species, we use the same analytic solution and define

cb
i -dependent α±. For example, for four species we obtain

α+ = − ln

(
cb

Nae−αNa + cb
coue−αcou

cb
Na + cb

cou

)
, (S7)

S2



and

α− = − ln

(
cb

Cle
−αCl + cb

impe−αimp

cb
Cl + cb

imp

)
. (S8)

S2 Calculation of the surface tension

S2.1 Derivation of the integral formula for the surface tension

First, we consider a planar system of height L with a single surface of area a. The Gibbs-

Duhem relation for such a system reads

adγ = −
∑
i

Nidµi + V dp− SdT, (S9)

where γ is the surface tension, µi is the chemical potential of the i-th ion, Ni is the number

of the i-th ion, V = La is the system volume, p is the pressure, S is the entropy, and T is

the temperature.

We introduce laterally averaged concentration profiles ci(z), and we rewrite eq S9 by using

ci(z). When we do not consider variation of pressure (dp = 0) and temperature (dT = 0),

we obtain

dγ = −
∑
i

[∫ L

0

ci(z)dz

]
dµi. (S10)

For a bulk system, the Gibbs-Duhem relation reads

∑
i

cb
i dµi = dp− sbdT = 0, (S11)

where sb = Sb/V is the bulk entropy density. Subtracting eq S11 from eq S10, we obtain

dγ = −
∑
i

[∫ L

0

(ci(z)− cb
i )dz

]
dµi. (S12)

If we consider L→∞ and define the surface excess as Γi =
∫∞

0
(ci(z)− cb

i )dz, we obtain the
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Gibbs isotherm as

dγ = −
∑
i

Γidµi. (S13)

In our Poisson-Boltzmann model, the solution is considered ideal and the differential bulk

chemical potential follows as dµi = (kBT/c
b
i )dc

b
i . By integration of eq S13, we obtain

γ = −kBT
∑
i

∫ cbi

0

Γi
c̃b
i

dc̃b
i . (S14)

S2.2 Derivation of the grand potential formula for the surface ten-

sion

We derive an alternative formula for the surface tension which is needed to obtain the scaling

law. This derivation follows Ref. S2. To derive the grand potential formula for the surface

tension, we start with the grand potential Ω

Ω(µ, T, V, a) = −pV + γa. (S15)

From this we derive

γ =
1

a
(Ω + pV ) =

∫ ∞
0

(ω(z) + p)dz, (S16)

where ω(z) is the grand potential density. For the bulk phase, we find from the grand-

canonical equation of state

ω(z →∞) =
Ω

V
= −p. (S17)

Thus,

γ =

∫ ∞
0

[ω(z)− ω(∞)] dz. (S18)

In our mean-field model, the grand potential density is given by

ω(z) = f(z)−
∑
i

µici(z), (S19)
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where

f(z) = kBT
∑
i

ci(z) [ln(ci(z))− 1 + Ui(z)] +
εε0

2
(∇ψ)2, (S20)

and

µi =
df

dci
= kBT [ln(ci(z)) + Ui(z)] + qieψ(z). (S21)

Therefore we obtain

ω(z) = −kBT
∑
i

ci(z) +
εε0

2
(∇ψ)2 − ρ(z)ψ(z). (S22)

We substitute eq S22 into eq S18 and integrate using the boundary conditions

dψ

dz

∣∣∣∣
z=0

= 0, and ψ(z →∞) = 0, (S23)

leading to

γ = −kBT
∑
i

Γi −
∫ ∞

0

εε0

2
(∇ψ)2dz. (S24)

S3 Derivation of asymptotic scaling laws for ∆γ

First, we derive asymptotic scaling laws for low salinity. If the adsorption energy of the

impurity ion is much larger than that of any other ionic species, αimp � −1 � αi|i 6=imp,

impurities dominate the surface charge density at z = z∗, denoted by σ∗, which is given by

σ∗ ≈ eqimpΓimp, (S25)

where Γimp ≈ z∗cb
impe−qimpΨ∗−αimp . On the other hand, from Gouy-Chapman theory σ∗ =

2
√
εε0kBT

∑
i c

b
i sinh(Ψ∗/2)S3 where the sum includes the impurity component. If we assume

|Ψ∗| � 1, then

Ψ∗ ≈ 2qimp

3
ln

[
ez∗cb

impe−αimp√
εε0kBT

∑
i c

b
i

]
(S26)
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Figure S1: Surface tension ∆γ as a function of added electrolyte concentration, comparison
between scaling laws and the full solution of the Poisson-Boltzmann model. We use z∗ =
0.5 nm, αNa = 1.16, αCl = 0.98, αcou = 1.07, cb

imp = 2.8 nM, and qimp = −1. We consider
impurity surface affinities αimp = −15.1 (red lines), αimp = −18.0 (blue lines), and αimp =
−21.0 (green lines). The solid lines are full solutions of the Poisson-Boltzmann equation,
whereas the colored broken lines are the heuristic scaling forms, eq S40. The black broken
lines are the scaling laws for αimp = −21.0, eqs S33, S34, and S38, which have slopes −1,
−1/3, and 1 in the double-logarithmic plot, respectively.
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and

Γimp ≈ A

(∑
i c

b
i

2

)1/3

, (S27)

where

A =

(
2εε0kBTz

∗cb
impe−αimp

e2

)1/3

. (S28)

The charge neutrality condition, given by
∑

i qiΓi = 0, shows that Γimp is compensated for

by other ionic components. For example, for a negatively charged impurity and sodium as

the counterion the compensation would be due to ΓNa. Because the two excess adsorptions

Γimp and ΓNa dominate the surface tension increment in eq S24, we arrive at

γ({cb
i }) ≈ −2AkBT

(∑
i c

b
i

2

)1/3

. (S29)

When we consider the four-component system (Na+, Cl−, impurities, and their counterion),

the surface tension without added salt follows from eq S29 as

γ(cb
salt = 0, cb

imp) ≈ −2AkBTc
b
imp

1/3. (S30)

We define the surface tension difference due to added salt by

∆γ(cb
salt) = γ(cb

salt, c
b
imp)− γ(cb

salt = 0, cb
imp), (S31)

which is zero at cb
salt = 0 by definition. From eq S29, we obtain

∆γ(cb
salt) = −2AkBT

[(
cb

imp + cb
salt

)1/3 − cb
imp

1/3
]
. (S32)

For cb
salt � cb

imp, ∆γ is

∆γ(cb
salt) ≈ −

2AkBT

3

cb
salt

cb
imp

2/3
, (S33)
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which is linear in cb
salt. For cb

salt � cb
imp, we obtain

∆γ(cb
salt) ≈ γ(cb

salt, c
b
imp) ≈ −2AkBTc

b
salt

1/3
, (S34)

which exhibits a characteristic power law with exponent 1/3. Note that the same exponent

has been derived in the context of nanotube conductivity, based on the same mechanism.S4

Next, we consider the limit of high salinity. Here, a Donnan potential is created in the

interfacial layer. Assuming that αNa and αCl are the adsorption energies of the added salt,

the potential in the interfacial layer becomes

ψ(z) ≈ −
(
αNa − αCl

2

)
kBT

e
for 0 < z < z∗, (S35)

where we used the charge neutrality condition

cb
salt

∑
i=Na,Cl

qie
−qiψ(z)/kBT−αi ≈ 0 (S36)

and we neglect the contributions due to charged impurities. Thus, the surface excesses of

Na+ and Cl− ions are

ΓNa ≈ ΓCl ≈ z∗cb
salt

(
e−(αNa+αCl)/2 − 1

)
. (S37)

If we neglect the electrostatic energy contribution to the surface tension in eq S24, we obtain

∆γ(cb
salt) ≈ γ(cb

salt, c
b
imp) ≈ 2BkBTc

b
salt, (S38)

where

B = z∗
[
1− e−(αNa+αCl)/2

]
. (S39)

Adding eqs S32 and S38, we obtain a globally valid heuristic scaling form for the surface
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tension due to charged impurities

∆γ(cb
salt) ≈ −2AkBT

[
(cb

imp + cb
salt)

1/3 − cb
imp

1/3
]

+2BkBTc
b
salt. (S40)

Figure S1 shows the surface tension ∆γ as a function of added electrolyte for the four-

component system consisting of Na+, Cl−, impurities, and their counterion (denoted as

model 1). For αimp we take the exemplary values αimp = −15.1 (red lines), αimp = −18.0

(blue lines), and αimp = −21.0 (green lines). The colored solid lines are full solutions of the

Poisson-Boltzmann equation, whereas the colored broken lines are the heuristic scaling form

eq S40. For αimp = −15.1 (red), the agreement between the solid and broken lines is good

only for very low salt concentration (cb
salt < 1µM), whereas for αimp = −21.0 (green), we find

overall good agreement. The three black broken lines are the scaling laws for αimp = −21.0,

eqs S33, S34, and S38.

S4 Extraction of z∗, αNa, and αCl

In Ref. S5, potentials of mean force for sodium and chloride ions at the air/water interface

have been extracted from classical molecular dynamics simulation which employed optimized

non-polarizable force fields for ions and SPC/E water. The fit expressions to the potentials

of mean force were reported in the form of

kBTUi(z) = a1

[
(e−a2(z−a3) + 1)2 − 1

]
+ b1e−b2(z−b3)2

−c1(z − c2)e−c3(z−c4)2 , (S41)

of which the parameter values are shown in Table S1. The potentials of mean force for

sodium and chloride ions are plotted in Figure S2. We choose z∗ = 0.5 nm denoted by the

black broken line in Figure S2, which is close to the position where the potentials of mean
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Figure S2: Potential of mean force for sodium (blue line) and chloride (red line) ions at the
air/water interface from molecular dynamics simulations.S5 The Gibbs dividing surface of
water is located at z = 0. We choose z∗ = 0.5 nm (black broken line) for the interfacial layer
thickness. The colored broken lines denote αNa = 1.16 and αCl = 0.98, respectively.

Table S1: Fit parameters for potential of mean force eq S41 from simulation data.S5

Na+ Cl−

a1 (kJ·mol−1) 0 0.0504
a2 (nm−1) - 3.891
a3 (nm) - 0.51978
b1 (kJ·mol−1) 185.37 2.7232
b2 (nm−2) 1.50 14.64
b3 (nm) −1.4493 0.06995
c1 (kJ·mol−1·nm−1) 0 11.227
c2 (nm) - 0.24253
c3 (nm−2) - 23.63
c4 (nm) - −0.064528
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force start to deviate from zero. We extract αNa and αCl by requiring the surface excess to

be identical to the simulated value in the dilute limit, which is equivalent to the equation

(e−αi − 1)z∗ =

∫ 0

−∞
e−Ui(z)dz +

∫ ∞
0

(e−Ui(z) − 1)dz. (S42)

This gives the values αNa = 1.16 and αCl = 0.98, which are denoted by colored broken lines

in Figure S2.

S5 Fitting method for αH3O, αOH, αHCO3, αSDS and αDDAC

We use the values αNa = 1.16, αCl = 0.98, which are the values extracted by the use of eq S42.

We calculate full solutions of the Poisson-Boltzmann equation to fit the experimental data

plotted in Figure 2a in the main text, and obtain αH3O = −0.9, αOH = 1.6, αHCO3 = −0.4

up to the first decimal figure.

Similarly, we derive analytic solutions of the Poisson-Boltzmann equation for ionic sur-

factants (αSDS or αDDAC) and their respective counterion (αNa or αCl). For fitting αSDS and

αDDAC in Figure 2b in the main text, we only use the data well below the critical micelle

concentrations, equal to 9mM for SDS and 16mM for DDAC.S6 The resultant adsorption

energies for the ionic surfactant are αSDS = −15.6 and αDDAC = −14.5. Such a large adsorp-

tion energy can be understood using a surface-area argument for the transfer free energy of

alkanes to the water phase.S7 We approximate a dodecane (C12H26) molecule as a cylinder

with radius r = 0.2 nm (van der Waals radius of methane) and length l = 11 × 0.1275 nm

(0.1275 nm is the C-C distance of an alkane chain). Assuming the surface energy of typ-

ical alkanes to be 40mN/m, and the surface area S = 4πr2 + 2πrl = 90 nm2, we obtain

the transfer energy ∆G ≈ 21kBT , which agrees with the literature value 22kBT .S8 These

transfer energies are somewhat larger than our mean fit value 15.1kBT , which makes sense

since a surfactant molecule that adsorbs to the air-water interface will not be completely

surrounded by air but rather lie flat on the surface.
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S6 Fitting method for cb
imp

First, we fix αimp = (αSDS +αDDAC)/2 = −15.1 and αcou = (αNa +αCl)/2 = 1.07. We adjust

cb
imp(= cb

cou) to fit cb,∆γ=0
salt = 6.5mM (which is the average of the experimental data as shown

in Figure S3a), where cb,∆γ=0
salt is the added electrolyte concentration at which the surface

tension increment vanishes, ∆γ = 0. When we increase cb
imp, the depth of the minimum

in ∆γ and the concentration at which the minimum occurs become larger, as shown in

Figure S3a. We obtain the best fit value concentration cb
imp = 2.8 nM. When we choose a

different impurity surface affinity value αimp = −9.0 and keep αcou = 1.07, we obtain the

best fit value cb
imp = 1.8µM, as shown in Figure S3b. The shape of the curves ∆γ(cb

salt)

for different cb
imp is very similar between Figures S3a,b. We thus conclude that we cannot

independently determine αimp and cb
imp by a fit to experimental data, rather, for any given

value of αimp we find an optimal value of cb
imp that describes the experimental data equally

well.

To make this more concrete, we show in Figure S4 the contour line in the plane spanned

by αimp and cb
imp on which cb,∆γ=0

salt = 6.5mM (black line). We also plot the contour line

on which the minimum of ∆γ is located at a concentration of cb,min
salt = 1mM (red line) and

where the depth at the minimum is ∆γmin = −0.01mN/m (blue line). All these characteristic

values are taken from the experimental data in Figure S3. These three lines are close to each

other, meaning that our model reproduces the experimental surface tension data accurately

for an entire range of fit parameters. We also show the contour line of cb
impe−αimp = const.

(broken line), which indicates the underlying scaling derived in Section S3.

We have checked that ∆γ(cb
salt, c

b
imp) calculated by eq S14

∆γ(cb
salt, c

b
imp) = −kBT

∫ cbsalt

0

(
Γ+ + Γ−
c̃b

salt

)
dc̃b

salt, (S43)

is the same as γ(cb
salt, c

b
imp)− γ(cb

salt = 0, cb
imp) calculated by eq S24.
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Figure S3: Surface tension ∆γ as a function of added electrolyte concentration. We use
z∗ = 0.5 nm, αNa = 1.16, αCl = 0.98, αcou = 1.07, qimp = −1, and (a) αimp = −15.1 and (b)
αimp = −9.0. We show curves for different values of cb

imp. The black solid line shows the best
fit value.
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αcou = 1.07, and qimp = −1.
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S7 Fitting different experimental data sets

After the first measurements by Jones and Ray,S9 the Jones-Ray effect has been reproduced

in other labs.S10–S13 While the measurements by Jones and Ray where done using the capillary

rise method, different techniques have been used in later measurements, namely the twin-

ring method,S10 the bubble pressure method,S11,S12 and the Wilhelmy plate method.S13 The

concentration of charged impurities is not precisely controlled in experiments, therefore there

is no reason why the impurity concentration or the impurity type should be the same in

different experiments. Here, we fit our theory to different experimental data sets.

Figure S5 shows ∆γ(cb
salt) for NaCl solutions. The capillary and bubble method data

exhibit similar cb,∆γ=0
salt , thus we use the mean cb,∆γ=0

salt = 3.3mM to fit our theoretical curve.

We use z∗ = 0.5 nm, αNa = 1.16, αCl = 0.98, αcou = 1.07, αimp = −15.1 and qimp = −1 and

obtain cb
imp = 1.4 nM (black solid line), which agrees nicely with the capillary and bubble

method data. The plate data consist of two measurements using H2O and D2O.S13 Because

the data for positive surface tension ∆γ > 0 are not provided, we adjust cb
imp to fit the data

points for the largest salt concentration cb
salt. We obtain cb

imp = 25 nM (red solid line) for the

plate method data employing H2O and cb
imp = 48 nM (blue solid line) for the plate method

data employing D2O. The agreement between theory and experimental data is acceptable.

The impurity concentrations for the plate method data are larger than that for the capillary

and bubble method data, but still less than 100 nM which is the concentration of water

autodissociated ions at pH = 7.

Figure S6 shows ∆γ(cb
salt) for KCl solutions. The capillary and bubble method data

exhibit similar values of cb,∆γ=0
salt , thus we use the mean value cb,∆γ=0

salt = 5.1mM to fit the

theory. We use z∗ = 0.5 nm, αNa = 1.16, αCl = 0.98, αcou = 1.07, αimp = −15.1, and qimp =

−1. Because the slope of the surface tension data with respect to the salt concentration,

d∆γ/dcb
salt, of KCl solutions for high salinity is similar to that of NaCl solutions,S14 we use

the affinity αNa = 1.16 also for K+. We obtain cb
imp = 2.1 nM (red solid line) as a best

fit for the capillary and bubble method data. The ring method data are characterized by

S14



cb,∆γ=0
salt = 12mM, from which we obtain cb

imp = 5.0 nM (blue solid line), which agrees quite

well with the experimental data except for a few data points for low salt concentration.

The agreement between the different experimental data sets and the theoretical curves is

good, provided that the impurity concentration is adjusted for each data set. Since there is no

reason why different measurements should be described be the same impurity concentration

or the same impurity type, this supports the idea that the Jones-Ray effect is caused by

impurities.

In fact, the Jones-Ray effect disappears in the bubble pressure method when the bubble

creation frequency exceeds 1/(15 sec).S11 This time scale is of the order of the time it takes

an impurity molecule to diffuse from the bulk to the surface, which further supports the

impurity scenario.

10
-3

10
-2

10
-1

10
0

10
1

3.3 mM

c
b
imp = 1.4 nM

c
b
imp = 25 nM

c
b
imp = 48 nM

NaCl, Capillary

NaCl, Bubble, powder

NaCl, Bubble, single crystal

NaCl, Plate

NaCl, Plate, D2O

∆
γ 

[ 
m

N
/m

 ]

-10
-3

-10
-2

-10
-1

-10
0

10
-4

10
-3

10
-2

10
-1

10
0

10
1

c
b
salt [ M ]

Figure S5: Comparison of different experimental data sets for the surface tension of NaCl
solutions. The experimental data are obtained by the capillary rise method,S15 the bubble
pressure method,S11 and the Wilhelmy plate methodS13 using either H2O or D2O as solvent.
The bubble pressure method has been used with NaCl solutions from single crystals or
powder. The solid lines are the theory curves obtained by adjusting cb

imp. We use z∗ = 0.5 nm,
αNa = 1.16, αCl = 0.98, αcou = 1.07, αimp = −15.1 and qimp = −1 in all fits.
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Figure S6: Comparison of different experimental data set for the KCl surface tension. The ex-
perimental data are obtained by the capillary rise method,S16 the bubble pressure method,S12
and the twin-ring method.S10 The solid lines are the theory curves obtained by adjusting
cb

imp. We use z∗ = 0.5 nm, αNa = 1.16, αCl = 0.98, αcou = 1.07, αimp = −15.1, and qimp = −1
in all fits.
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S8 Water ions and bicarbonate ions do not cause the

Jones-Ray effect

Water contains hydronium and hydroxide ions due to autodissociation according to the

reaction

2H2O −−⇀↽−− H3O+ + OH−, (S44)

where the reaction constant is given by Kw = cb
H3O · cb

OH = 10−14 M2. If water is in contact

with ambient air, atmospheric carbon dioxide dissolves in the water according toS17

CO2(gas) −−⇀↽−− CO2(aq), (S45)

with a Henry constant Hcp = cb
CO2

/pCO2 = 3.5 × 10−2 M/atm,S17 which is equivalent to

the equilibrium condition cb
CO2

/cair
CO2

= 0.86. The partial pressure of carbon dioxide in the

atmosphere is pCO2 = 3.9 × 10−4 atm,S17 which is equivalent to cair
CO2

= 1.6 × 10−5 M. In

water, carbon dioxide forms carbonic acid, bicarbonate and carbonate ions according to the

reactionsS17

CO2(aq) + H2O −−⇀↽−− H2CO3(aq), (S46)

H2CO3(aq) + H2O −−⇀↽−− HCO−3 + H3O+, (S47)

HCO−3 + H2O −−⇀↽−− CO2−
3 + H3O+, (S48)

where the equilibrium constants are K = cb
H2CO3

/cb
CO2

= 2.6 × 10−3, Ka1 = cb
HCO3

·

cb
H3O/c

b
H2CO3

= 1.7× 10−4 M, and Ka2 = cb
CO3
· cb

H3O/c
b
HCO3

= 4.7× 10−11 M, respectively.S17

We neglect the reaction eq S48 because the carbonate concentration is very low. All ion

concentrations are determined by chemical-equilibrium equations and the charge neutrality

condition in bulk,
∑

i qic
b
i = 0. If we neglect the effect of carbon dioxide, we obtain cb

H3O =

cb
OH = 10−7 M. If we include the effect of carbon dioxide, we obtain in bulk cb

H3O = 10−5.6 M,
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cb
OH = 10−8.4 M, and cb

HCO3
≈ 10−5.6 M.
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Figure S7: Effect of H3O+ adsorption on the surface tension of the air/water interface as a
function of added electrolyte concentration. We use z∗ = 0.5 nm, αNa = 1.16, αCl = 0.98,
αOH = 1.6, cb

H3O = cb
OH = 10−7 M, and cb

HCO3
= cb

imp = cb
cou = 0. We vary αH3O. The black

line is αH3O = −0.9 extracted from the fit of the experimental HCl surface tension data.

Figure S7 shows the effect of hydronium surface adsorption on the surface tension in the

absence of impurities and carbon dioxide. We use z∗ = 0.5 nm, αNa = 1.16, αCl = 0.98,

αOH = 1.6, cb
H3O = cb

OH = 10−7 M, and cb
HCO3

= cb
imp = cb

cou = 0. For αH3O = −0.9 (black

line), which follows from fitting the experimental surface tension data of HCl as shown in

Figure 2a in the main text, the effect due to the surface adsorption of hydronium is almost

negligible. When we set αH3O ≤ −10.0, we obtain a minimum of the surface tension which is

similar to the experimental data. However, this value of αH3O ≤ −10.0 gives rise to a surface

tension of HCl solutions which intensely disagrees with the experimental data, as shown by

the red broken line in Figure S8.

We now include hydronium, hydroxide and carbon dioxide in the absence of impurities.

For the bulk concentrations cb
H3O = 10−5.6 M, cb

OH = 10−8.4 M, and cb
HCO3

= cb
H3O − cb

OH, we

obtain the surface tension curves in Figure S9. For the realistic value αHCO3 ≤ −0.4 the

effect of bicarbonate surface adsorption is almost negligible. For a value of αHCO3 ≤ −7.0
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Figure S8: Experimental surface tension data of HCl and NaHCO3 solutions (data points).
In the modeling we use z∗ = 0.5 nm. For HCl, we use (αH3O, αCl) = (−0.9, 0.98) (red solid
line) and (−10.0, 0.98) (red broken line). For NaHCO3, we use (αNa, αHCO3) = (1.16,−0.4)
(green solid line) and (1.16,−7.0) (green broken line). In all calculations, we do not consider
impurities, water ions or carbon dioxide.
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Figure S9: Effect of HCO−3 adsorption on the surface tension of the air/water interface as
a function of added electrolyte concentration. We use z∗ = 0.5 nm, αNa = 1.16, αCl = 0.98,
αH3O = −0.9, αOH = 1.6, cb

H3O = 10−5.6 M, cb
OH = 10−8.4 M, and cb

HCO3
≈ 10−5.6 M, and

cb
imp = cb

cou = 0. Different lines are for different values of αHCO3 as indicated. The black line
is for αHCO3 = −0.4 which is the value extracted from the fit to the experimental surface
tension data for varying NaHCO3 concentration.
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we obtain a minimum in the surface tension and the experimental data is reproduced for

αHCO3 = −9.0. However, such strongly negative values of αHCO3 stand in intense contrast to

the experimental surface tension data of NaHCO3 solutions, as demonstrated in Figure S8.

S9 Combined effects of impurities and water ions and

bicarbonate ions

We now check whether the effect of impurities on the surface tension is significantly modified

in the presence of water ions and carbon dioxide. We consider three models: in model 1

we consider added electrolyte, i.e. Na+ and Cl− ions, charged impurities and their coun-

terions (imp and cou); in model 2 we consider added electrolyte, charged impurities, their

counterions, and in addition water ions, i.e. H3O+ and OH−; in model 3 we consider added

electrolyte, charged impurities, their counterions, water ions, and in addition bicarbonate

ions, i.e. HCO−3 . In model 2, we assume that the bulk pH = 7 is independent of cb
salt, and in

model 3, we assume that the bulk pH = 5.6 is independent of cb
salt.

Figure S10a shows the results for the absolute surface tension γ (not for ∆γ) using models

1, 2, and 3. In the calculations we use αimp = −15.1 and αcou = 1.07, as in the main text.

For extremely low cb
salt, we observe plateaus in the surface tension curves. The red horizontal

lines are the values of γ(cb
salt = 0, cb

imp) for model 1, 2, and 3, respectively, which follow from

eq S29 with cb
salt = 0. The red lines quantitatively agree with the plateau values predicted

by models 1 and 2, but deviate slightly from the plateau value of model 3.

Figure S10b shows the impurity surface concentrations csurf
imp ≡ cimp(z = 0) (black lines)

and the surface potentials (green lines) as a function of added electrolyte concentration.

When we add electrolyte, the impurity surface concentration increases. However, the maxi-

mum of the surface impurity concentration does not exceed csurf
imp = 10mM and thus is quite

dilute.

In a slab of height L, the fraction of surface-adsorbed impurities, compared to the total
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Figure S10: (a) Absolute surface tension of the air/water interface γ (not ∆γ) as a function
of added electrolyte concentration. The black solid line corresponds to results from model 1,
the black broken line is for model 2, and the black dotted line is for model 3. The impurity
concentration is cb

imp = 2.8 nM. We use z∗ = 0.5 nm, αNa = 1.16, αCl = 0.98, αH3O = −0.9,
αOH = 1.6, αHCO3 = −0.4, αcou = 1.07, αimp = −15.1, and qimp = −1. The red horizontal
lines denote eq S29 with cb

salt = 0 for model 1, 2, and 3, respectively. (b) Impurity surface
concentration csurf

imp = cimp(z = 0) (black lines, right axis) and surface potential (green lines,
left axis) for models 1, 2, and 3 with cb

imp = 2.8 nM, respectively, as a function of electrolyte
concentration.

S21



amount of impurities, is z∗csurf
imp/Lc

b
imp. For a surface impurity concentration of csurf

imp = 10mM

and a bulk concentration of cb
imp = 2.8 nM we see that half of all impurities are surface-

adsorbed for L = 3mm. Therefore, we need a sub phase larger than L� 3mm in order to

consider the bulk phase as a reservoir.

In Figure S10b we see that the surface potential depends sensitively on the total ionic

concentration and reaches a finite value of the order of 100mV for vanishing bulk electrolyte

concentration.

In Figures S11a,b, we compare all three models with experimental surface tension data

for the same impurity concentration cb
imp = 2.8 nM. The differences between the three models

are most pronounced at low concentrations. When we individually fit cb
imp to model 2 and

3, respectively, we obtain cb
imp = 3.2 nM for model 2 and cb

imp = 4.3 nM for model 3. In

Figures S11c,d, we compare all three models with experimental surface tension data for the

individually fitted impurity concentrations cb
imp. The depth of the minimum does not vary,

but for model 2, and more so for model 3, the comparison with experimental data is improved

at low concentrations.

S10 Comparison with Onsager-Samaras theory

Onsager and Samaras considered the ionic surface excess due to the screened image interac-

tion potentialS18

Ui(z) =
lB
4z

e−2κz, (S49)

where lB = e2/4πεε0kBT , from which they calculated the surface tension. If we include this

potential into the Poisson-Boltzmann equation, the electrostatic potential vanishes, ψ(z) = 0,

because there is no surface interaction difference between cations and anions. The resultant

surface tension increment according to Onsager-Samaras theory is

∆γ(cb
salt) = − kBT

2πl2B

∞∑
n=1

nn

n!n!

hn+1

n+ 1
(lnh+ gn) , (S50)
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Figure S11: Comparison between the experimental data and the three different models for the
surface tension of the air/water interface as a function of added electrolyte concentration.
We use z∗ = 0.5 nm, αNa = 1.16, αCl = 0.98, αH3O = −0.9, αOH = 1.6, αHCO3 = −0.4,
αcou = 1.07, αimp = −15.1, and qimp = −1. The three different models are denoted by solid
(model 1), broken (model 2), and dotted (model 3) lines. The impurity concentration is fixed
at cb

imp = 2.8 nM in (a) and (b), whereas it is fitted in (c) and (d). We obtain cb
imp = 3.2 nM

for model 2 and cb
imp = 4.3 nM for model 3. (a) and (c) are double-logarithmic plots whereas

(b) and (d) are linear plots.
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where h =
√

2πl3Bc
b
salt,

gn = lnn+
n

n+ 1
+ 2C − 2

n∑
m=1

1

m
, (S51)

and C is Euler’s constant. In the limit of cb
salt → 0, the derivative d∆γ/dcb

salt diverges.

The leading term for low concentration (n = 1) is

∆γ(cb
salt) = − kBT

2πl2B

h2

2
(lnh+ g1)

= const.× cb
salt ln

(
const.

cb
salt

)
. (S52)
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Figure S12: Comparison between Onsager-Samaras theory and our Poisson-Boltzmann-based
model for the surface tension of the air/water interface as a function of added electrolyte
concentration. We use z∗ = 0.5 nm, αNa = 1.16, αCl = 0.98, αcou = 1.07, αimp = −15.1,
and qimp = −1. The black solid line denotes model 1 in the presence of impurities of
concentration cb

imp = 2.8 nM. The solid red line corresponds to the infinite series of OS
theory, eq S50, whereas the broken red line is the leading term of OS theory, eq S52. (a) is
a double-logarithmic plot whereas (b) is a linear plot.

Figure S12 shows a comparison between our Poisson-Boltzmann model, the Onsager-

Samaras (OS) theory, and experiments. Note that the leading term deviates from the infinite

series only for high salt concentrations cb
salt > 100mM. For cb

salt < 10mM, OS theory strongly

deviates from the experimental data, since it does not capture the Jones-Ray effect. In the

linear plot (b), the difference between OS theory and the experimental data comes out more

clearly. Note that the diverging slope of the OS theory for very low added salt concentration
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is not visible in the plots. Our theory (model 1) agrees with the experimental data over the

entire concentration range.

S11 Impurities in salts

We now consider the scenario where the salt, rather than the water, contains charged surface-

active impurities. We assume qimp = −1, and the impurity fraction in the added electrolyte

is denoted by ν, so that the fraction of sodium and chloride ions is given by 1− ν.

Figure S13 shows the calculated surface tension as a function of cb
salt. We use z∗ = 0.5 nm,

αNa = 1.16, αCl = 0.98, αcou = 1.07, qimp = −1, αimp = −15.1 (a), and αimp = −9.0 for (b).

In these calculations we do not consider additional impurities in the water, we also do not

include the effects due to water ions, or bicarbonate ions.

When we require cb,∆γ=0
salt = 6.5mM, as seen in the experimental data, we obtain ν =

3.8 × 10−7 for αimp = −15.1 and ν = 1.66 × 10−4 for αimp = −9.0. We see that the depth

of minimum is significantly smaller than seen in the experiments, showing that the scenario

where charged impurities are present in the added electrolyte does not explain the Jones-Ray

effect.

Theoretically, the problem of finding the optimal parameters reduces to finding the ap-

parent affinity parameters of cations and anions in eqs S7 and S8,

α+ = − ln
(
(1− ν)e−αNa + νe−αcou

)
, (S53)

and

α− = − ln
(
(1− ν)e−αCl + νe−αimp

)
. (S54)

We analytically calculate d∆γ/dcb
salt in the limits of low and high salinity. In the low salinity

limit, we find
d∆γ

dcb
salt

∣∣∣∣
cbsalt=0

= −kBTz
∗ (e−α+ + e−α− − 2

)
, (S55)
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whereas in the high salinity limit, we find

d∆γ

dcb
salt

∣∣∣∣
cbsalt→∞

= −kBTz
∗ (2e−(α++α−)/2 − 2

)
. (S56)

From eqs S55 and S56, we determine the condition for the existence of a minimum of the

function ∆γ(cb
salt). Figure S14 shows the region in the plane of ν and αimp where the surface

tension has a minimum. The red line indicates

e−α+ + e−α− − 2 = 0, (S57)

whereas the blue line indicates

e−(α++α−)/2 − 1 = 0, (S58)

where α+ and α− are expressed by eqs S53 and S54. In region A, d∆γ/dcb
salt > 0 for all cb

salt,

and in region C, d∆γ/dcb
salt < 0 for all cb

salt. Therefore, the minimum only exists in region

B. We see that region B is very narrow with respect to ν, meaning that a minimum is only

observed for very specific values of the impurity fraction ν.

Finally, we consider the effect of neutral impurities in the added salt, i.e. impurities

for which qimp = 0 and cb
cou = 0. In our model, neutral impurities do not affect the ion

distributions, and thus, the surface excess of impurities is given by

Γimp = νcb
saltz

∗ (e−αimp − 1
)
. (S59)

The ionic contribution to the surface tension is approximated by eq S38 for both low and

high salinity, because the surface tension is almost linear in cb
salt for sodium chloride, as

shown by the broken line in Figure 1 in the main text. The surface tension is therefore given

by

∆γ(cb
salt) ≈ kBT

[
2B(1− ν)− νz∗

(
e−αimp − 1

)]
cb

salt. (S60)
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Figure S13: Effect of charged impurities in added salts on the surface tension of the air/water
interface. We use z∗ = 0.5 nm, αNa = 1.16, αCl = 0.98, αcou = 1.07, qimp = −1, and
cb

H3O = cb
OH = cb

HCO3
= 0. We fix αimp = −15.1 in (a) and αimp = −9.0 in (b). We only

consider impurities in the added electrolyte, not in the water. We vary the impurity fraction
in the added electrolyte ν. The black solid lines are fits to cb,∆γ=0

salt = 6.5mM.
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Figure S14: Phase diagram for the existence of a minimum in the surface tension in the
plane of ν and αimp. We use z∗ = 0.5 nm, αNa = 1.16, αCl = 0.98, αcou = 1.07, qimp = −1,
and cb

H3O = cb
OH = cb
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= 0. We only consider impurities in the added electrolyte, not in

the water. The red line is eq S57 and the blue line is eq S58. In region A, d∆γ/dcb
salt > 0 for

all cb
salt, and in region C, d∆γ/dcb

salt < 0 for all cb
salt. Thus, a minimum of ∆γ(cb

salt) appears
in region B.
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Equation S60 is linear with respect to cb
salt, and thus, neutral impurities in the added salt do

not cause a minimum in the surface tension.
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