Supporting Information

Increases of Total Mercury and Methylmercury Releases from Municipal Sewage into Environment in China and Implications

Maodian Liu^{†‡}, Peng Du[†], Chenghao Yu[†], Yipeng He^{†‡}, Haoran Zhang[†], Xuejun Sun^{§⊥}, Huiming Lin[†], Yao Luo[†], Han Xie[†], Junming Guo^I, Yindong Tong[#], Qianggong Zhang[§]⊽, Long Chen[°], Wei Zhang[¶], Xiqing Li[†], Xuejun Wang[†]*

[†]Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing 100871, China

Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Rd., Groton, CT 06340, USA

§Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

⊥Graduate University of the Chinese Academy of Sciences, Beijing 100049, China IState Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

#School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China

∇Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China

 Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China


◆ School of Geographic Sciences, East China Normal University, Shanghai 200241, China

¶School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China

Corresponding authors:

Xuejun Wang. Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. Tel: +86-10-62759190. E-mail: xjwang@urban.pku.edu.cn

Number of Pages: 21 Number of Supporting Figures: 10 Number of Supporting Tables: 2 **Supporting Figures**

Figure S1. Eight regions in China. A is North China, B is Northeast China, C is East China, D is Central China, E is South China, F is Southwest China, G is Northwest China, and H is Tibetan region. South China Sea isn't included in the map.

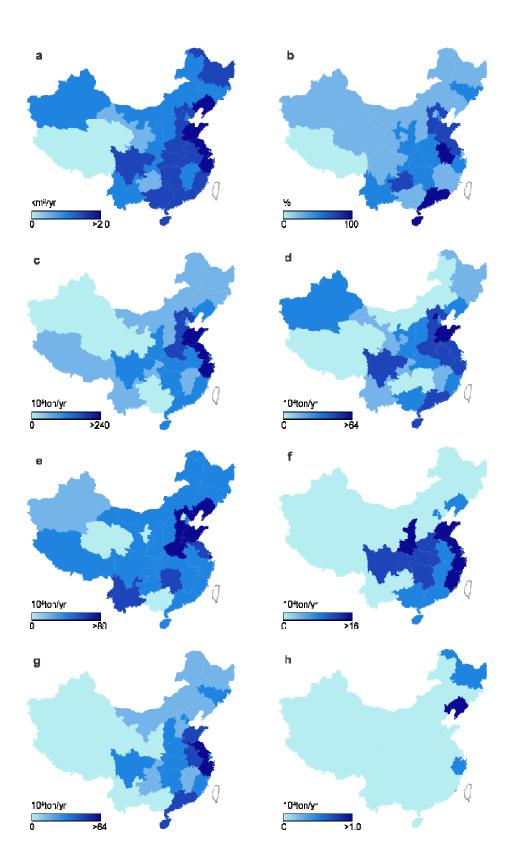
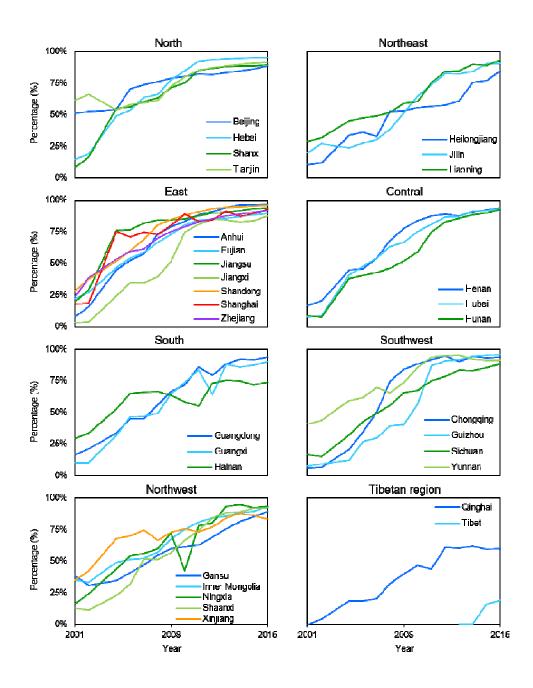
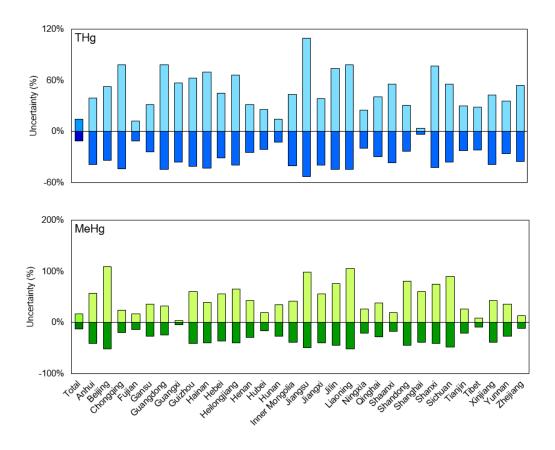
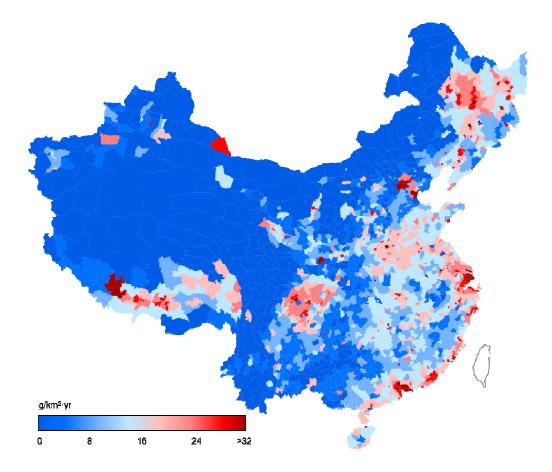
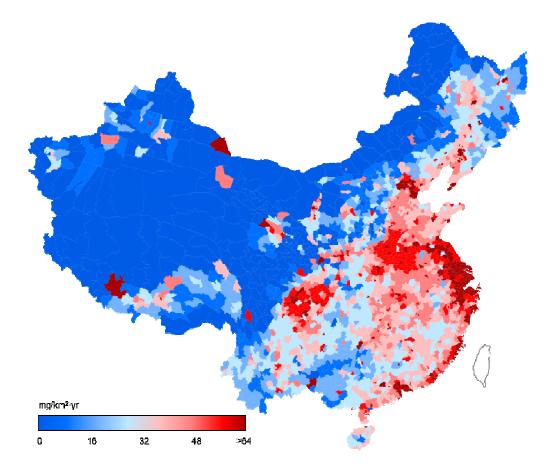
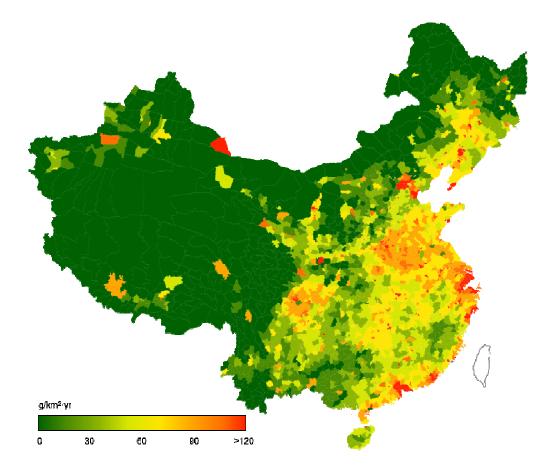
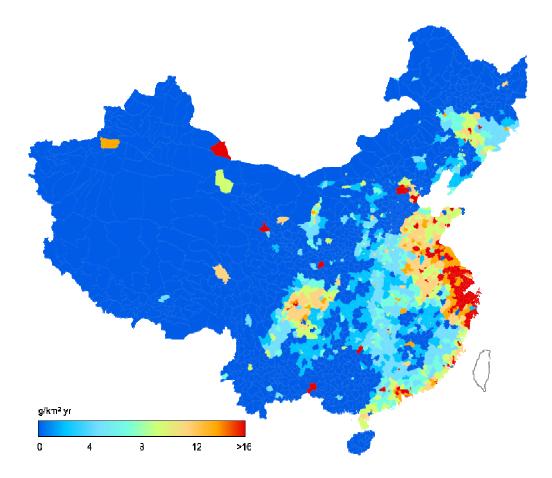




Figure S2. Basic data associated with the life cycle of municipal sewage in China in


2015 used in the material flow analysis. **a** is generation of municipal sewage in each province of China (*China Environmental Statistical Yearbook*);¹ **b** is treatment ratio of municipal sewage (*China Environmental Statistical Yearbook*); **c** is generation of sewage sludge (*China Environment Yearbook*);² **d** is sewage sludge discharged into landfill (*China Environment Yearbook*); **e** is sewage sludge discharged into cropland (*China Environment Yearbook*); **f** is sewage sludge used for building materials (*China Environment Yearbook*); **g** is incineration of sewage sludge (*China Environment Yearbook*); **h** is sewage sludge irregularly dumped into natural land (*China Environment Yearbook*).


Figure S3. Trend of treatment ratio of municipal sewage of each province from 2001 to 2015. Data are referenced from the *China Environmental Statistical Yearbook*.¹


Figure S4. Uncertainties (P20-80 confidence interval) of THg and MeHg released from municipal sewage of each province in China in 2015.


Figure S5. Distribution of THg released from municipal sewage into aquatic environment in China in 2015.

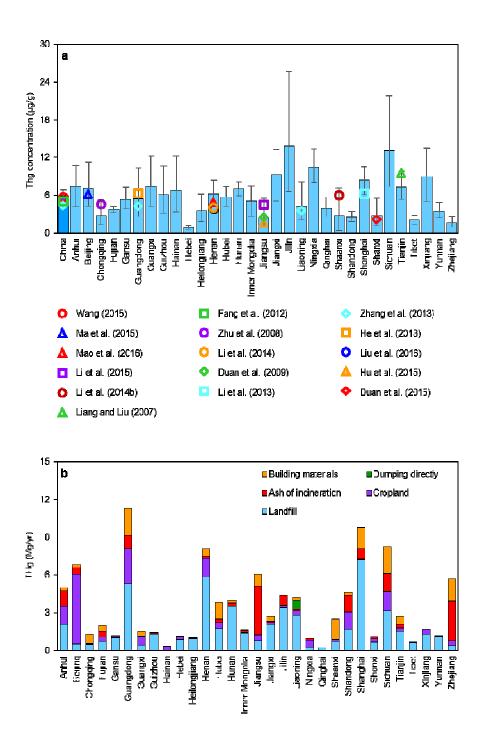

Figure S6. Distribution of MeHg released from municipal sewage into aquatic environment in China in 2015.

Figure S7. Distribution of THg released from municipal sewage into land in China in 2015.

Figure S8. Distribution of THg emitted from municipal sewage into atmosphere in China in 2015.

Figure S9. Modeling results of THg concentration in sewage sludge and compared with measurement data from published literatures (**a**), and THg released from municipal sewage into different sinks of land in each province in China in 2015 (**b**). Column and bar in figure **a** are median value and P20-80 confidence interval,

respectively. Measurement data are referenced from Wang (2015),³ Fang et al. (2012),⁴ Zhang et al. (2013),⁵ Ma et al. (2015),⁶ Zhu et al. (2008),⁷ He et al. (2013),⁸ Mao et al. (2016),⁹ Li et al. (2014a),¹⁰ Liu et al. (2016),¹¹ Li et al. (2015),¹² Duan et al. (2009),¹³ Hu et al. (2015),¹⁴ Li et al. (2014b),¹⁵ Li et. (2013),¹⁶ Duan et al. (2015),¹⁷ Liang and Liu (2007).¹⁸

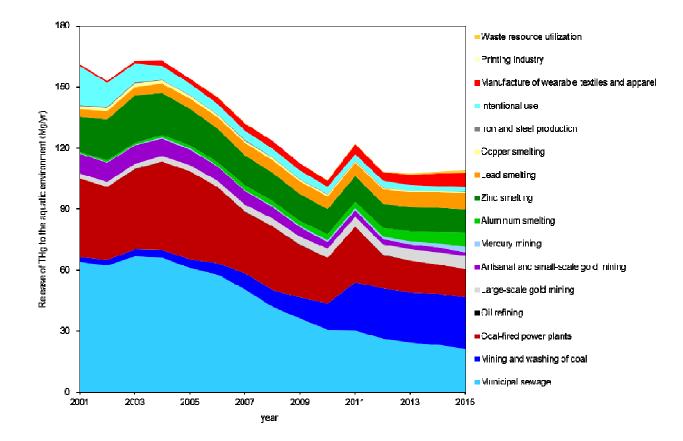


Figure S10. Updates of THg released from direct anthropogenic sources in China from 2001 to 2015.

Supporting Tables

Table S1. Municipal sewage treatment plants and sampling information

Region	Province	MSTP ^a ID	Influent (untreated sewage)	Effluent (treated sewage)	Treatment technology ^b	Sewage flow (m ³ /d)	THg removal ratio (%)	MeHg removal ratio (%)
North China								
	Beijing	CP-1	\sqrt{c}	\checkmark	A^2/O	20,000	98%	91%
	Beijing	CP-2	\checkmark	\checkmark	CAST	20,000	94%	90%
	Beijing	CY-1	\checkmark	\checkmark	MBR	100,000	100%	97%
	Beijing	CY-2	\checkmark	\checkmark	OD	40,000	98%	96%
	Beijing	CY-3	\checkmark	\checkmark	A^2/O	600,000	90%	93%
	Beijing	CY-4	\checkmark	\checkmark	OD	350,000	88%	73%
	Beijing	FT-1	\checkmark	\checkmark	A^2/O	80,000	93%	89%
	Beijing	FT-2	\checkmark	\checkmark	SBR	80,000	99%	91%
	Beijing	FT-3	\checkmark	\checkmark	A^2/O	43,000	93%	95%
	Beijing	HD-1	\checkmark	\checkmark	A^2/O	550,000	100%	90%
	Beijing	HD-2	\checkmark	\checkmark	A^2/O	21,000	96%	99%
	Beijing	TZ-1	\checkmark	\checkmark	ASP	950,000	98%	54%
	Tianjin	TG-1	\checkmark	\times^{d}	A/O	64,000	n/a ^e	n/a
	Hebei	SJZ-1	\checkmark	X	A^2/O	490,000	n/a	n/a
	Hebei	SJZ-2	\checkmark	X	ASP	160,000	n/a	n/a
	Shanxi	CZ-1	\checkmark	\checkmark	OD	160,000	85%	90%

	Shanxi	TY-1	\checkmark	X	A^2/O	150,000	n/a	n/a			
	Shanxi	TY-2	\checkmark	×	A^2/O	70,000	n/a	n/a			
Northeast Chin	Northeast China										
	Liaoning	SY-1	\checkmark	\checkmark	BAF	400,000	95%	89%			
	Liaoning	SY-2	\checkmark	X	BP	400,000	n/a	n/a			
	Liaoning	DL-1	\checkmark	X	CAST	80,000	n/a	n/a			
	Liaoning	DL-2	\checkmark	X	BAF	100,000	n/a	n/a			
	Heilongjiang	HEB-1	\checkmark	\checkmark	A/O	140,000	99%	97%			
	Heilongjiang	HEB-2	\checkmark	\checkmark	A/O	290,000	96%	91%			
	Heilongjiang	HEB-3	\checkmark	\checkmark	CAST	27,000	96%	85%			
East China											
	Fujian	XM-1	\checkmark	\checkmark	BAF	260,000	87%	86%			
	Fujian	XM-2	\checkmark	\checkmark	OD	190,000	96%	54%			
	Jiangsu	NJ-1	\checkmark	Х	A^2/O	640,000	n/a	n/a			
	Jiangsu	NJ-2	\checkmark	X	SBR	58,000	n/a	n/a			
	Jiangsu	SZ-1	\checkmark	X	ASP	140,000	n/a	n/a			
	Jiangsu	SZ-2	\checkmark	Х	ASP	110,000	n/a	n/a			
	Jiangsu	SZ-3	\checkmark	Х	ASP	42,000	n/a	n/a			
	Shandong	JN-1	\checkmark	Х	A^2/O	340,000	n/a	n/a			
	Shanghai	CN-1	\checkmark	\checkmark	SO	75,000	99%	96%			
	Shanghai	HK-1	\checkmark	\checkmark	A/O	52,000	96%	66%			
	Zhejiang	HZ-1	\checkmark	\checkmark	A^2/O	380,000	94%	78%			
Central China											
	Henan	LY-1	\checkmark	\checkmark	A^2/O	190,000	96%	78%			
	Henan	LY-2	\checkmark	X	A^2/O	160,000	n/a	n/a			
	Hubei	WH-1	\checkmark	\checkmark	A^2/O	300,000	95%	86%			

	Hunan	CS-1	\checkmark	\checkmark	A^2/O	n/a	97%	70%	
South China									
	Guangdong	GZ-1	\checkmark	\checkmark	A^2/O	1,200,000	96%	88%	
	Guangdong	SZ-1	\checkmark	\times	A^2/O	750,000	n/a	n/a	
	Guangdong	SZ-2	\checkmark	\times	A^2/O	290,000	n/a	n/a	
	Guangxi	NN-1	\checkmark	\times	ASP	310,000	n/a	n/a	
	Guangxi	NN-2	\checkmark	\times	ASP	290,000	n/a	n/a	
Southwest China									
	Chongqing	SPB-1	\checkmark	\checkmark	BP	18,000	95%	86%	
	Sichuan	CD-1	\checkmark	\checkmark	BAF	210,000	93%	87%	
	Sichuan	XC-1	\checkmark	\checkmark	OD	42,000	94%	91%	
	Yunnan	KM-1	\checkmark	\checkmark	A^2/O	300,000	94%	95%	
Northwest C	hina								
	Gansu	LZ-1	\checkmark	\times	A^2/O	50,000	n/a	n/a	
	Gansu	LZ-2	\checkmark	\times	ASP	170,000	n/a	n/a	
	Gansu	LZ-3	\checkmark	\times	SO	130,000	n/a	n/a	
	Gansu	LZ-4	\checkmark	\times	A^2/O	40,000	n/a	n/a	
	Ningxia	YC-1	\checkmark	\checkmark	SBR	100,000	97%	93%	
	Ningxia	YC-2	\checkmark	\checkmark	CAST	70,000	95%	89%	
	Ningxia	YC-3	\checkmark	\checkmark	A^2/O	200,000	93%	81%	
	Shannxi	XA-1	\checkmark	\checkmark	OOD	170,000	95%	89%	
	Shannxi	XA-2	\checkmark	\checkmark	A^2/O	380,000	95%	89%	
	Shannxi	XA-3	\checkmark	\checkmark	A^2/O	n/a	97%	92%	
Tibetan regio	on								
	Qinghai	XN-1	\checkmark	\checkmark	A^2/O	74,000	97%	93%	
	Qinghai	XN-2	\checkmark	\checkmark	A^2/O	56,000	98%	96%	

Tibet	LS-1	\checkmark	\checkmark	n/a	50,000	99%	96%	

Note: a) municipal sewage treatment plants; b) A/O: anoxic/oxic process, A²/O: anaerobic-anoxic-oxic process, ASP: activated sludge process, BAF: biological aerated filter, BP: biomembrance process, CAST: cyclic activated sludge technology, MBR: membrane Bio-Reactor, OD: oxidation ditch, SO: secondary oxidation, SBR: sequencing batch reactor, OOD: orbal oxidation ditch; c) have sample; d) no sample; e) not available.

Region		Influent (untre	eated sewage)		Effluent (tr	reated sewage)	Reference
	n ^a	THg ^b	DHg ^c	n	THg	DHg	
		(ng/L)	(ng/L)		(ng/L)	(ng/L)	
Beijing, North China		560-14,000	n/d ^d		n/d	n/d	Shi et al. (2007) ¹⁹
Guangdong, South China		n/d	10-310		n/d	n/d	Zhao et al. $(2014)^{20}$
Henan, Central China		260-2,800	n/d		2.7-410	n/d	Mao et al. (2016) ⁹
Henan, Central China		3,100	n/d		170	n/d	Chen et al. $(2006)^{21}$
Henan, Central China		530-2,300	11-61		11-29	3.1-6.9	Li et al. (2014a) ¹⁰
Minnesota, USA		170	n/d		3.5	n/d	Balogh and Nollet (2008) ²²
Onondaga, USA		310	n/d	25		n/d	Gbondo-Tugbawa et al. $(2010)^{23}$
Winnipeg, Canada		61	n/d		7.0	n/d	Bodaly et al. $(1998)^{24}$
Sao Paulo, Brazil		130	n/d		50	n/d	Da et al. $(2007)^{25}$
North China	18	$4,500\pm3,200^{\rm e}$	33 ± 39	13	210 ± 220	23 ± 20	This study
Northeast China	7	$5,000 \pm 4,500$	20 ± 5.0	4	170 ± 180	33 ± 3.3	This study
East China	11	$3,300 \pm 3,000$	24 ± 5.7	5	150 ± 120	40 ± 18	This study
Central China	4	$3,200\pm1,300$	26 ± 6.1	2	130 ± 55	31 ± 2.0	This study
South China	5	$2,100\pm1,600$	43 ± 47	1	93 ± 74	17 ± 1.5	This study
Southwest China	4	$3,600 \pm 3,000$	45 ± 22	3	230 ± 230	33 ± 7.9	This study
Northwest China	10	$3,200 \pm 1,400$	140 ± 90	3	140 ± 62	47 ± 33	This study
Tibetan region	3	6,900±6,200	50 ± 33	3	85 ± 43	28 ± 5.5	This study
China	62	$3,400\pm 2,600$	39 ± 24	34	160 ± 130	33 ± 12	This study
		TMeHg ^f	DMeHg ^g		TMeHg	DMeHg	
		(ng/L)	(ng/L)		(ng/L)	(ng/L)	

 Table S2. Comparison of THg and MeHg concentrations with previous studies

Henan, Central China		1.5-9.6	n/d		0.10-1.0	n/d	Mao et al. (2016) ⁹
Henan, Central China		6.7-50	0.55-8.1		0.42-1.2	0.13-0.62	Li et al. (2014a) ¹⁰
Onondaga, USA		5.1	n/d		1.5	n/d	Gbondo-Tugbawa et al. $(2010)^{23}$
Winnipeg, Canada		2.2	n/d		0.20	n/d	Bodaly et al. $(1998)^{24}$
North China	18	8.5 ± 9.4	4.3 ± 6.4	13	0.74 ± 0.89	0.45 ± 0.61	This study
Northeast China	7	5.3 ± 4.6	2.7 ± 1.6	4	0.58 ± 0.64	0.98 ± 0.80	This study
East China	11	6.9 ± 6.3	4.1 ± 2.8	5	1.4 ± 1.2	1.1 ± 0.65	This study
Central China	4	5.7 ± 3.2	2.2 ± 1.1	2	1.2 ± 0.70	0.41 ± 0.35	This study
South China	5	2.5 ± 0.65	2.0 ± 0.47	1	0.31 ± 0.28	0.25 ± 0.10	This study
Southwest China	4	11 ± 10	5.7 ± 4.6	3	1.1 ± 1.3	1.4 ± 1.4	This study
Northwest China	10	4.6 ± 3.7	1.8 ± 1.5	3	0.50 ± 0.37	0.60 ± 0.26	This study
Tibetan region	3	14 ± 4.6	1.6 ± 1.1	3	0.69 ± 0.35	0.35 ± 0.22	This study
China	62	6.5 ± 5.5	3.4 ± 2.6	34	1.0 ± 0.82	0.80 ± 0.59	This study

Note; a) number of MSTPs; b) total Hg, calculated by dissolved Hg (ng/L) + particulate Hg (ng/L); c) dissolved Hg; d) no data; e) mean value \pm

standard deviation; f) calculated by dissolved MeHg (ng/L) + particulate MeHg (ng/L); g) dissolved MeHg.

REFERENCES

1. NBS, *China Environmental Statistical Yearbook*. National Bureau of Statistics (NBS): Beijing, China, 2002-2016.

2. NBS, *China Environment Yearbook*. National Bureau of Statistics (NBS): Beijing, China, 2002-2016.

3. Wang, T., Analysis on urban sludge nutrition element and heavy metal content in China. *China Environmental Protection Industry* **2015**, *4*, 42-45 (in Chinese).

4. Fang, P.; Cen, C.; Tang, Z.; Tang, Z., Air pollutants emission and their control from sludge incineration: a review. *Environmental Science & Technology* **2012**, *35*, (10), 70-80 (in Chinese).

5. Zhang, L.; Li, H.; Su, D., Characteristics and changes of heavy metals in sewage sludge of Chin. *Research of Environmental Sciences* **2013**, *26*, (3), 313-319 (in Chinese).

6. Ma, W.; Liu, F.; Cheng, X.; Jing, Y.; Nie, C.; Zhang, P., Environmental evaluation of the application of compost sewage sludge to landscaping as soil amendments: a field experiment on the grassland soils in Beijing. *Desalination and Water Treatment* **2015**, *54*, (4-5), 1118-1126.

7. Zhu, J.; Liu, J.; Wang, Z., Discussion on the application of residual sludge of SWUST wastemater treatment plant to orchard. *Journal of Southwest University of Science and Technology* **2008**, *23*, (2), 92-96 (in Chinese).

8. He, J.; Wei, C.; Feng, C.; Ren, Y.; Hu, Y.; Wu, C., States distribution of heavy metals in coking wastewater sludge and its potential environmental risks. *Chinese Journal of Environmental Engineering* **2013**, *7*, (1), 79-85 (in Chinese).

9. Mao, Y.; Cheng, L.; Ma, B.; Cai, Y., The fate of mercury in municipal wastewater treatment plants in China: significance and implications for environmental cycling. *Journal of hazardous materials* **2016**, *306*, 1-7.

10. Li, H.; Mao, Y.; Li, Y.; Ma, Y.; Wang, X.; Song, D., Occurrence and mass balance of mercury at a sewage treatment plant. Part 1: total mercury. *Environmental Chemistry* **2014a**, *33*, (7), 1059-1065 (in Chinese).

11. Liu, X.; Ma, B.; Cui, Y.; Li, W.; Liu, J.; Niu, Y., Distribution characteristics of mercury in the sewage treatment plant. *Environmental Science & Technology* **2016**, *39*, (9), 125-130 (in Chinese).

12. Li, J.; Luo, G.; Gao, J.; Yuan, S.; Du, J.; Wang, Z., Quantitative evaluation of potential ecological risk of heavy metals in sewage sludge from three wastewater treatment plants in the main urban area of Wuxi, China. *Chemistry and Ecology* **2015**, *31*, (3), 235-251.

13. Duan, Y.; Zhao, C.; Wang, Y.; Wu, C., Mercury emission from co-combustion of coal and sludge in a circulating fluidized-bed incinerator. *Energy & Fuels* **2009**, *24*, (1), 220-224.

14. Hu, G.; Chen, S.; Cai, X.; Chen, B.; Wang, J.; Sun, J.; Gao, Y., Evaluation on the potential ecological risks of heavy metal pollution in sludge from the sewage treatment plants in chemical industry parks of Jiangsu province. *Resources and Environment of Yangtze River Basin* **2015**, *24*, (1), 122-127 (in Chinese).

15. Li, T.; Wang, L.; Xu, X.; Zhan, Q.; Zhao, J., Morphological Characteristics of Heavy Metals in Sewage Sludge and Their Potential Ecological Risk Assessment in Xi'an, (Shannxi). *Urban Environment & Urban Ecology* **2014b**, *27*, (4), 6-10 (in Chinese).

16. Li, J.; Chen, J.; Shen, Y.; Shi, K.; Zheng, J.; Ke, Y.; He, P., Chemical analysis and assessment of the heavy metal pollution in the sewage sludge and leaching solution. *Journal of Safety and*

Environment **2013**, *13*, (3), 115-121 (in Chinese).

17. Duan, B.; Liu, F.; Zhang, W.; Zheng, H.; Zhang, Q.; Li, X.; Bu, Y., Evaluation and source apportionment of heavy metals (HMs) in sewage sludge of municipal wastewater treatment Plants (WWTPs) in Shanxi, China. *International journal of environmental research and public health* **2015**, *12*, (12), 15807-15818.

18. Liang, Y.; Liu, N., Study on using the HG-AFS method to measure the mercury in the sewage sludge. *Technology & Application* **2007**, (1), 44-46 (in Chinese).

19. Shi, C.; Lin, H.; Ke, Z.; Jian, X.; Lan, R., Research about the contribution of medical industry sources to influent mercury of municipal wastewater. *Research of Environmental Sciences* **2007**, *20*, (5), 129-132 (in Chinese).

20. Zhao, J.; Jiang, Y.; Yan, B.; Wei, C.; Zhang, L.; Ying, G., Multispecies acute toxicity evaluation of wastewaters from different treatment stages in a coking wastewater - treatment plant. *Environmental toxicology and chemistry* **2014**, *33*, (9), 1967-1975.

21. Chen, C.; Zhang, Y.; Hu, X.; Yang, X.; Jia, L.; Chen, Q., The analysis of available ingredients and heavy metal lead and mercury of domestic sewage in Xinxiang city. *Journal of Anhui Agri. Sci.* **2006**, *34*, (22), 5933-5934 (in Chinese).

22. Balogh, S. J.; Nollet, Y. H., Mercury mass balance at a wastewater treatment plant employing sludge incineration with offgas mercury control. *Science of the total environment* **2008**, *389*, (1), 125-131.

23. Gbondo-Tugbawa, S. S.; McAlear, J. A.; Driscoll, C. T.; Sharpe, C. W., Total and methyl mercury transformations and mass loadings within a wastewater treatment plant and the impact of the effluent discharge to an alkaline hypereutrophic lake. *Water research* **2010**, *44*, (9), 2863-2875.

24. Bodaly, R. D.; Rudd, W.; Flett, R. J., Effect of urban sewage treatment on total and methyl mercury concentrations in effluents. *Biogeochemistry* **1998**, *40*, (2-3), 279-291.

25. da Silva Oliveira, A.; Bocio, A.; Trevilato, T. M. B.; Takayanagui, A. M. M.; Domingo, J. L.; Segura-Muñoz, S. I., Heavy metals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant. *Environmental Science and Pollution Research-International* **2007**, *14*, (7), 483-489.