SUPPORTING INFORMATION # Merging Icosahedral Boron Clusters and Magnetic Nanoparticles: Aiming towards Multifunctional Nanohybrids Materials. Elena Oleshkevich, a Francesc Teixidor, Anna Rosell and Clara Viñasa, * ^a Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain. b Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain. ### Redox titration analysis. Geometry calculations. Surface coverage values calculations. **Figure S1.** Particle size distribution histograms from three batches of freshly prepared **1-**MNPs, prepared following the same synthesis, and mean particle size diameter. **Figure S2.** X-ray diffraction patterns corresponding to **1**-MNPs (black) and the typical magnetite/maghemite spinel structure (red). **Figure S3**. a) Images of **1**-MNP colloidal suspension in water at different pH. b) DLS studies in water at different pH. **Figure S4.** ¹H-NMR, ¹H{¹¹B}-NMR, ¹¹B-NMR, ¹¹B{¹H}-NMR, ³¹P-NMR spectra of the mother liquor after **1**-MNPs sterilization. Spectra were run in D₂O. Figure S5. Thermogravimetric Analysis of the ligand Na[1] and the 1-MNP. #### Redox titration analysis. The ratio of Fe²⁺ and Fe³⁺ ions forming **1**-MNPs nanoparticle core was determined by redox titration analysis. Samples of freshly prepared **1**-MNPs: Powder samples of **1**-MNPs (about 0.5 mg) before sterilization were decomposed in 0.1 mL HCl (37 wt.%) and diluted to 1mL by Milli-Q water giving a yellowish solution (with Fe²⁺ and Fe³⁺ ions). Preparation of the **1**-MNPs samples after sterilization: About 0.1 mL HCl (37 wt.%) was added to 1 mL of **1**-MNPs suspensions after sterilization to decompose the nanoparticles. In both samples, each of the obtained clear yellow solutions was analyzed by titration with $K_2Cr_2O_7$ (oxidizing solution) (5 mM). To know the end point of titration (oxidation of all Fe^{2+} to Fe^{3+}) the indicator sodium diphenylamine sulphonate was added to the prepared solution. The Fe^{2+} content was determined by the first titration. Then by addition of $SnCl_2$ (reductive agent) Fe^{3+} was reduced to Fe^{2+} . The total iron content $Fe^{2+/3+}$ was determined by the second titration. The Fe^{3+} content was calculated as follows: $Fe^{2+/3+}$ content - Fe^{2+} content. Titration was done in triplicate (n=3). Before sterilization: | n | W_{1-MNPs} , | Fe ²⁺ content, | Fe ³⁺ content, | |------|----------------|----------------------------|----------------------------| | | μg | wt.% _{Fe2+/totFe} | wt.% _{Fe3+/totFe} | | 1 | 540 | 23.57 | 76.43 | | 2 | 528 | 26.67 | 73.33 | | 3 | 546 | 25.00 | 75.00 | | MEAN | 538 | 25.08 | 74.92 | 25.08 % of Fe²⁺ content corresponds to magnetite/maghemite ratio 2Fe₃O₄·Fe₂O₃ (Fe₈O₁₁). After sterilization in 1mL of suspension of 1-MNPs: | | Fe ²⁺ content, | Fe ³⁺ content, | |------|---------------------------|----------------------------| | n | wt.% Fe2+/totFe | wt.% _{Fe3+/totFe} | | 1 | 14.31 | 85.69 | | 2 | 15.94 | 84.05 | | 3 | 13.89 | 86.11 | | MEAN | 14.71 | 85.28 | $14.71~\%~of~Fe^{2+}~content~corresponds~to~magnetite/maghemite~ratio~Fe_3O_4\cdot 2Fe_2O_3~(Fe_7O_{10})$ #### **Geometry calculations** $$R_2=3.55\pm0.3 \text{ nm}$$ $$A_2 = 4\pi R_2^2 = 132.732 \div 186.265 \text{ nm}^2 (158 \pm 27 \text{ nm}^2)$$ For square packing: $A_{[carboranylphosphate]} = 0.5 \times 0.5 = 0.25 \text{nm}^2$ $n_{max} = A_{2/}A_{[carboranylphosphate]} = 530.928 \div 745.060 (638 \pm 107)$ – maximum number of *meta*-carboranylphosphates that can fit one nanoparticle with core diameter of 6.2 ± 0.6 nm. #### Surface coverage values calculations. Energy Dispersive X-ray (EDX) analysis of **1**-MNPs before sterilization was performed for 3 (n = 3) bathes, prepared following the same synthesis. Average: Fe $$92.89 (At\%) - 13 Fe$$ $$P 7.11 (At\%) - 1 P$$ $$Fe:P = 13:1$$ For freshly prepared 1-MNPs the core composition is 2Fe₃O₄·Fe₂O₃ (Fe₈O₁₁). $$Fe_8O_{11}: C_2B_{10}H_{11}-P(H)OO^{-} = 1.625:1$$ (from geometry calculations) $d = 6.2 \pm 0.6$ nm - diameter of nanoparticle core. $m_{MNPs} = (1/6)\pi d^3 \rho_{MNPs} = (66.4 \pm 19)E-20 \text{ g}$ (taking the density of magnetite to be $\rho_{Magnetite} = 5.175 \text{g/cm}^3$ according to https://www.mindat.org/min-2538.html). $Mole_{MNPs} = m_{MNPs}/M_{2Fe_3O_4 \cdot Fe_2O_3} = N_{Fe_8O_{11}}/N_A$, where $M_{Fe_8O_{11}} = 622.75$ g/mol is molecular weight of magnetite/maghemite couple $2Fe_3O_4 \cdot Fe_2O_3$, $N_{Fe_8O_{11}}$ – number of Fe_8O_{11} units that contain one nanoparticle core with diameter 6.2 ± 0.6 nm. $$N_{Fe8O11} = m_{MNPs} N_A / M_{Fe8O11} = 642 \pm 182 Fe_8 O_{11} / NP$$ Taking into account EDX results before sterilization, Fe_8O_{11} : $C_2B_{10}H_{11}$ - $P(H)OO^- = 1.625$: 1, each nanoparticle bears $n_{\text{[carboranylphosphate]}} = N_{\text{Fe}8O11} / 1.625 = 395 \pm 112$ meta-carboranylphosphinates. The saturation of surface of the nanoparticles core (%) $s_{CBP} = n_{[carboranylphosphate]}/n_{max} \cdot 100\% = 61.29 \pm 7.43\%$. $$s_{[carboranylphosphate](ICP)} = 61.29 \pm 7.43$$ %, $n_{CBP} = 395 \pm 112$ CBP/NP Energy Dispersive X-ray (EDX) analysis of **1**-MNPs after sterilization was performed for 3 (n = 3) bathes, prepared following the same synthesis. Average: Fe 55,34 (At%) – 70 Fe P 0.79 (At%) - 1 P Fe:P = 70:1 For 1-MNPs after sterilization the core composition is Fe₃O₄·2Fe₂O₃ (Fe₇O₁₀). $Fe_7O_{10}: C_2B_{10}H_{11}-P(H)OO^- = 10: 1.$ $Mole_{MNPs} = m_{MNPs}/M_{Fe7O10} = N_{Fe7O10}/N_A$, where $M_{Fe7O10} = 550.91$ g/mol is molecular weight of magnetite/maghemite couple Fe_7O_{10} , N_{Fe7O10} – number of Fe_7O_{10} units that contain one nanoparticle core with diameter 6.2 ± 0.6 nm. $N_{Fe7O10} = m_{MNPs} N_A / M_{Fe7O10} = 726 \pm 205 Fe_7 O_{10} / NP$ Taking into account EDX results after sterilization, Fe_7O_{10} : $C_2B_{10}H_{11}$ - $P(H)OO^- = 10$: 1, each nanoparticle bears $n_{[{\bf carboranylphosphate}]} = 73 \pm 21$ meta-carboranylphosphinates. The saturation of surface of the nanoparticles core (%)) $s_{[{\bf carboranylphosphate}]} = n_{[{\bf carboranylphosphate}]}/n_{max} \cdot 100\% = 11.21 \pm 1.41\%$. $$S_{\text{[carboranylphosphate](ICP)}} = 11.21 \pm 1.41 \%$$. %, $n_{[carboranylphosphate]}$ (ICP) = 73 ± 21 [carboranylphosphate]/NP **Figure S1.** Particle size distribution histograms from three batches of freshly prepared **1-**MNPs, prepared following the same synthesis, and mean particle size diameter. **Figure S2.** X-ray diffraction patterns corresponding to **1**-MNPs (black) and the typical magnetite/maghemite spinel structure (red). **Figure S3**. a) Images of **1**-MNP colloidal suspension in water at different pH. b) DLS studies in water at different pH. **Figure S4.** 1 H-NMR, 1 H{ 11 B}-NMR, 11 B-NMR, 11 B-NMR, 11 B-NMR, 31 P-NMR spectra of the mother liquor after **1**-MNPs sterilization. Spectra were run in D_2O . ¹H-NMR ¹¹B-NMR -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 f1 (ppm) ³¹P-NMR -16.27 -11.46 Figure S5. Thermogravimetric Analysis of the ligand Na[1] and the 1-MNP.