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Development of criterion for iR compensation: 

For OER and HER study, the current densities achieved at specified applied potentials 

are the most important performance measurements. The current density vs. applied 

potential curve, the so-called polarization curve, is often recorded in a three electrode 

system. To correctly interpret the intrinsic electrocatalytic activity of the catalyst, the 

solution resistance, that causes extra potential bias interfering with the current density 

measurements, needs to be removed. This is the so-called iR compensation. It is 

crucial to conduct the iR compensation properly, otherwise the iR-compensated results 

are just misleading artifacts. This issue has been in general ignored and treated as a 

black box. Here, we developed a criterion for proper choice of the compensation 

level. 

 The basic idea is based on the following understanding. First, the solution 

resistance occurs mainly between the Luggin capillary of the reference electrode and 

the working electrode. This is particularly true for OER or HER, in which bubble 

evolution dominates the solution resistance. Second, the current density achieved 

depends on the distance between the Luggin capillary and the working electrode, 

higher current densities for shorter distances because of less solution resistances. 

Third, the iR-compensated current density would become irrelevant to the distance if 

the compensation level is proper. With the above understanding, one can determine a 
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proper compensation level for the specific OER or HER system based on polarization 

curves recorded at increasing electrode distances, for which increasing compensation 

levels are applied to obtain the corresponding iR-compensated polarization curves. 

The highest compensation level, at which the iR-compensated polarization curves are 

in reasonable agreement, serves to give proper iR compensation. 

 Sample 20/20 was taken as an illustrating example. The relevant polarization 

curves are presented in Fig. S1. Fig. S1(a) shows the polarization curves of sample 

20/20 at three increasing electrode distances, 4, 8, and 12 mm. It is evident that the 

current density increases with decreasing electrode distance as expected. The 

corresponding iR-compensated polarization curves with increasing compensation 

levels from 80, 85, 90, 95, to 100%, together with the un-compensated polarization 

curves, are presented in Fig. S1(b)-S1(f), respectively. With compensation levels up to 

90%, the three iR-compensated polarization curves are in reasonable agreement. With 

compensation levels higher than 90%, the discrepancy between the three 

iR-compensated polarization curves is significantly enlarged. The 90% compensation 

level was thus chosen for this case. 
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Figure S1. Polarization curves of sample 20/20: (a) un-compensated, (b) compensated 

at 80% level, (c) at 85%, (d) at 90%, (e) at 95%, and (f) at 100 %. 
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Figure S2. XRD patterns of 3DPNN and samples 20/2, 20/8, 20/20, 20/40, and 20/80. 

♥: Ni, ●NiO, ♦: NiCo2O4. 
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Figure S3 XPS spectra of samples 20/8 and 20/20: (a) full survey spectra, (b) Co 2p 

of sample 20/20, (c1) Ni 2p of Ni sample 20/8, (c2) Ni 2p of sample 20/20, (d1) O 1s 

of sample 20/8, and (d2) O 1s of sample 20/20. 
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Figure S4. Polarization curves of commercial nickel foam and 3DPNN recorded in 1 

M KOH at scan rate of 10 mV s
-1

, with mass loading of electrocatalysts in working 

electrode controlled to be around 0.5 mg cm
-2

. 
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Figure S5. SEM images of (a) commercial Ni foam and (b) as-prepared 3D porous 

nickel network (3DPNN). Note that scale bar for (a) is 300 µm and 10 µm for (b). 
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Figure S6. Cyclic voltammograms recorded at increasing scan rates in 1 M KOH: (a) 

20/2, (b) 20/4, (c) 20/20, (d) 20/40, (e) 20/80. (f) Linear fitting of capacitive current 

density achieved at 1.0022 V vs. RHE vs. scan rate in 1.0 M KOH. 
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Figure S7. SEM image of NiO/NiCo2O4@3DPNN electrocatalyst after 12 h OER 

operation. 
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Table S1. Comparison of OER performances: present work vs. literature. 

Catalyst η10/mV 
Mass activity 

(η=350 mA)/A g
-1
 

Tafel 

slope/mV 

dec
-1
 

Reference 

NiCo2O4/NiO@3D porous 

nickel network 

263 

(η100= 350) 

(η250= 389) 

200 79 This work 

NiO/Ni foam 345 — 53 
1
 

porous Co3O4 nanosheets 368 — 59 
2
 

Ni-Co oxide hierarchical 

nanosheets 
340 — 51 

3
 

Co3O4 377 — 58 
4
 

mesoporous 

Co3O4 nanoflakes 
380 — 48 

5
 

iron-cobalt oxide nanosheets 308 54.9 36.8 
6
 

cobalt-nickel hydroxide 

nanosheets on Ni foam 
366 — 72 

7
 

NiCo2O4 nanocage 340 — 75 
8
 

Nickel cobalt oxide hollow 

nanosponges 
362 — 64 

9
 

Nickel-cobalt layered double 

hydroxide nanosheets 
419 

30.6 

(η=700 mV) 
113 

10
 

porous NiCo2O4 nanosheets 379 — 63.4 
11

 

Ni3Se2-Au@glass (annealed) 290 — 97.2 
12

 

CoP3 Nano-needle 

Array/CFP 

334 

(η50= 407) 
— 62 

13
 

Zn/Co hydroxy sulfate 370 
146 

(η=370 mV) 
60 

14
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Video S1. Showing oxygen evolution at 250 mA/cm
2
 (MP4).  
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