American Chemical Society
Browse

In Situ Phase Transformation on Nickel-Based Selenides for Enhanced Hydrogen Evolution Reaction in Alkaline Medium

Posted on 2020-07-07 - 21:06
Identification of the active species in electrocatalysts toward hydrogen evolution reaction (HER) is of great significance for the development of the catalytic industry; however, it is still the subject of considerable controversy. Herein, we applied operando synchrotron X-ray powder diffraction (SXRD) in the NiSe2 electrocatalyst system, and an in situ phase transformation from cubic NiSe2 to hexagonal NiSe was revealed. The NiSe phase showed an enhanced catalytic activity. Operando Raman spectroscopy verified the decomposition of NiSe2 during HER. Theoretical calculations suggested that the charge transfers from the Se site to Ni site during this evolution process, leading to an increased conductivity and a shifting up of d-band center, which is attributed to the enhanced activity. The generated NiSe phase acts as the “real” active species. Our work unravels the underlying phase transition of the electrocatalyst on reductive conditions in alkaline medium and highlights the significance of identifying the intrinsic active sites under realistic reaction conditions.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?