American Chemical Society
Browse

Vapor Transport Deposition of Methylammonium Iodide for Perovskite Solar Cells

Posted on 2021-04-20 - 13:06
Vapor-based processes are promising options to deposit metal halide perovskite solar cells in an industrial environment due to their ability to deposit uniform layers over large areas in a controlled environment without resorting to the use of (possibly toxic) solvents. In addition, they yield conformal layers on rough substrates, an important aspect in view of producing perovskite/crystalline silicon tandem solar cells featuring a textured silicon wafer for light management. While the inorganic precursors of the perovskite are well suited for thermal evaporation in high vacuum, the sublimation of the organic ones is more complex to control due to their high vapor pressure. To tackle this issue, we developed a vapor transport deposition chamber for organohalide deposition that physically dissociates the organic vapor evaporation zone from the deposition chamber. Once evaporated, organic vapors, here methylammonium iodide (MAI), are transported to the deposition chamber by a carrier gas through a showerhead, ensuring a spatially homogeneous conversion of PbI2 templates to the perovskite phase. The method enables the production of homogeneous perovskite layers on a textured 6 in. wafer. Furthermore, small-scale methylammonium lead iodide solar cells are also processed to validate the quality of the absorbers produced by this hybrid thermal evaporation/vapor transport deposition process.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?